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Abstract: Smart grid technology has given users the ability to regulate their home energy use more
efficiently and effectively. Home Energy Management (HEM) is a difficult undertaking in this regard,
as it necessitates the optimal scheduling of smart appliances to reduce energy usage. In this research,
we introduce a metaheuristic-based HEM system which incorporates Earth Worm Algorithm (EWA)
and Harmony Search Algorithms (HSA). In addition, a hybridization based on the EWA and HSA
operators is used to optimize energy consumption in terms of electricity cost and Peak-to-Average
Ratio (PAR) reduction. Hybridization has been demonstrated to be beneficial in achieving many
objectives at the same time. Extensive simulations in MATLAB were used to test the performance
of the proposed hybrid technique. The simulations were run for multiple homes with multiple
appliances, which were categorized according to the usage and nature of the appliance, taking
advantage of appliance scheduling in terms of the time-varying retail pricing enabled by the smart
grid two-way communication infrastructure algorithms EWA and HSA, along with a Real-Time Price
scheme. These techniques helped us to find the best usage pattern for energy consumption to reduce
electricity costs. These metaheuristic techniques efficiently reduced and shifted the load from peak
hours to off-peak hours and reduced electricity costs. In comparison to HSA, the simulation results
suggest that EWA performed better in terms of cost reduction. In comparison to EWA and HSA,
HSA was more efficient in terms of PAR. However, the proposed hybrid approach EHSA gave the
maximum reduction in cost which was 2.668%, 2.247%, and 2.535% in the case of 10, 30, and 50 homes,
respectively, as compared to EWA and HSA.

Keywords: metaheuristic algorithms; home energy; energy controller; smart grid; smart home

1. Introduction

In the coming decades, electrical power control grids, confronted with decentralization,
liberalization of energy, and increasing requests for high-quality and reliable electricity,
will come under stress in trying to provide energy according to these needs [1]. The use of
a Smart Grid (SG) is considered a promising approach to coordinate these upcoming needs.
Energy management has been investigated as one of the foremost and most complicated
optimization problems in power control systems. In [1–3], practitioners proposed differ-
ent approaches for efficiently managing the energy by using a smart grid with optimal
power dispatch, scheduling of efficient home electrical appliances, and using metaheuristic
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approaches to solve energy resource-management-related problems in an SG to attain
better performance, respectively. SGs provide bidirectional or two-way communication to
manage electricity demand and provide communication between the utility and consumer,
and this communication is used for energy optimization which permits more productive
energy generation and distribution through better communication and information.

Energy management in SGs focuses on reducing Peak-to-Average Ratio (PAR), min-
imization of electricity cost, minimization of power consumption, and maximization of
user comfort. This paper considered a residential area containing multiple homes with
multiple appliances, aiming to reduce electricity costs while maintaining user comfort and
optimizing energy consumption. The relationship of demand and supply in Demand-Side
Management (DSM) is reflected by dynamic pricing rates rather than flat pricing. DSM
manages the load efficiently to shift from on-peak to off-peak hours. With the help of
DSM, load management is handled by the Demand Response (DR) and Load Response
(LR) features. There is communication between DR and LR in order to control the high
peaks [2].

In our work, we considered Real-Time Pricing (RTP), i.e., dynamic pricing rates which
encourage users to shift load between peak hours. RTP works more efficiently for electricity
markets as compared to other schemes. To achieve the goal of reducing Peak-to-Average
Ratio (PAR) and electricity cost while increasing user comfort level, we used metaheuristic
approaches. In this paper, the metaheuristic approaches Earth Worm Algorithm (EWA)
and Harmony Search Algorithm (HSA), and hybrid EHSA (EWA and HSA) metaheuristic
algorithms are examined to see how effectively we were able to control and monitor smart
appliances for multiple and single homes.

1.1. Authors’ Contributions

Proposed an energy management system model of single and multiple homes;

• Applied the existing and proposed hybrid approach to optimize the energy consump-
tion for multiple (10, 30, 50) and single homes on eight appliances each;

• Evaluated the approach over three different time intervals of 60, 30, 5 min OTI;
• Reduced the maximum cost of electricity consumption;
• Reduced the PAR to accommodate the comfort of the users;
• Real-Time Pricing from dynamic pricing rates was used;
• Evaluated proposed approach in terms of PAR, cost, wait time, and load parameters;
• Proposed an efficient home appliance scheduling technique: EHSA.

The notation guide for algorithms and other abbreviations is provided in Table 1.

Table 1. Notation guide.

Notations Description

HEM Home energy management
EWA Earth Worm Algorithm
HSA Harmony Search Algorithms

EHSA Earth worm Harmony Search Algorithms
PAR Peak-to-Average Ratio
SG Smart Grid

DSM Demand-Side Management
DR Demand Response
LR Load Response

RTP Real Time Pricing
EMS Energy Management System
SM Smart Meters
RES Renewable Energy Sources
SA Smart Appliances

EMC Energy Management Controller
GA Genetic Algorithm
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Table 1. Cont.

Notations Description

BPSA Binary Particle Swarm Optimization
ACO Ant Colony Optimization
IBR Inclined Block Rate
ToU Time of Use

CHEMS Comprehensive Home Energy Management System
UCI User Comfort Index
SFL Shuffled Frog Leaping

TLBO Teaching and Learning based Optimization
LOT Length of Operation Time
OTI Operational Time Interval
UC User Comfort

BFOA Bacterial Foraging Optimization Algorithm
WDO Wind Driven Optimization
HMS Harmony Memory Size

HMCR Harmony Memory Consideration Rate
PSO Particle Swarm Optimization

GWD Genetic Wind Driven

1.2. Paper Organization

The rest of the paper is organized as follows: Section 2 contains discussion of the
background, Section 3 outlines related work, and Section 4 presents the problem statement.
The proposed system model is discussed in Section 5. Section 6 discusses the optimiza-
tion techniques which we used for energy optimization. The simulation and results are
discussed in Section 7. In Section 8, discussion and implications are presented, and finally,
conclusions and future work are described in Section 9.

2. Background

An Energy Management System (EMS) is a collection of computer-aided tools used
by electric utility grid operators to monitor, control, and optimize the performance of a
generation or transmission system. Energy management is the process of tracking and
optimizing energy consumption to reduce energy consumption in a building. Energy
management is regarded as a critical component of an SG to improve renewable energy
consumption and energy efficiency [1].

Electricity consumption is rising in tandem with the world’s population. Conventional
power grids are incapable of meeting today’s electricity demand. The concept of the SG
has been introduced to meet this demand. SGs have been is introduced to meet today’s
electricity demand, which is increasing because of the increase in population and electricity
usage. An SG is an electricity network that allows for the bidirectional flow of electricity
and data, as well as the use of digital communications technology to detect and respond to
changes in usage and other issues. By using an SG, it is possible to manage power quality,
energy efficiency, generation, and storage while fulfilling the market need, as shown in
Figure 1. Some essential components of SGs used to meet energy optimization challenges
are Smart Meters (SM), Renewable Energy Sources (RES), and Smart Appliances. SGs are
designed to improve the reliability of the electrical power supply and reduce overall energy
consumption. Using this information, Demand-Side Management (DSM) strategies are
applied to optimize the usage of electricity and maintain a balance between demand and
supply, which ultimately results in reduced electricity costs. These DSM strategies help
users to manage the load during peak hours [2].
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Figure 1. Smart electric grid.

3. Related Work

Many researchers and practitioners are currently working on energy management
in smart grids. In [3], the authors used an energy management controller (EMC) with
three heuristic algorithms, Genetic Algorithm (GA), Ant Colony Optimization (ACO), and
Binary Particle Swarm Optimization (BPSO). An EMC model was presented with the aim
of reducing electricity cost and increasing user comfort by keeping peak generation away
from residential energy. Residential users were further divided into three categories in
this work: passive users, active users, and semi-active users. Using Multiple Knapsack
Problems (MKP) for single and multiple homes, by using the combination of Inclined
Block Rate (IBR) and Time of Use (ToU), and this combined pricing scheme was used for
the calculation of cost. The algorithms used with these pricing schemes were GA, ACO,
and BPSO, which are metaheuristic algorithms. Appliances were divided into three types
according to energy consumption patterns. This system model was implemented using
three heuristic algorithms, which were combined with the EMC model and RES separately
to evaluate the efficiency of the proposed heuristic algorithms compared with EMC. After
calculation of the electricity bill for all three combined techniques, the results showed that
GA-EMC worked more effectively than ACO-EMC and BPSO-EMC. The electricity bill was
752 cents in the case of GA-EMC, and for ACO-EMC and BPSO-EMC the electricity bill
increased by 25% and 39%, respectively.

In [4], a model for microgrid operations with responsive load and an electric vehicle
was considered. The electrical vehicle scheduler model was implemented using BPSO,
with the cost linked with the rescheduling of generated units. Rescheduling affected cost
because of the change in power generation by wind and photovoltaic cells. In the presented
model, microgrid operations with a responsive load and an electric vehicle were considered.
The model was divided into two steps which were used to determine operating costs. By
considering the uncertainties associated with photovoltaic (PV) power and wind, the cost
function and emission function were divided into two parts. In [5], the authors proposed
a Comprehensive Home Energy Management System (CHEMS). The six-layered model
included appliance interface, cost minimization, electricity theft, fault, demand prediction,
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and dynamic pricing. In this paper, the authors presented a CHEMS model; in this model,
load and appliances were categorized into different forms using the SG domain. The
purpose of the presented CHEMS model was to schedule the different appliances for
energy optimization and reduce peak load. Out of the six layers of the CHEMS model, four
layers were implemented in this paper, remaining two layers are electricity theft control
and fault identification. Through reduction of the peak load via a scheduled load with a
User Comfort Index (UCI) and an unscheduled load, the reduction of the total cost was
evaluated. Four layers (appliance interface, cost minimization, electricity theft, and fault)
were implemented in this paper, and demand prediction and dynamic pricing associated
with the remaining two layers were left for future work.

The work in [6] presented an energy management system with real-time reporting
of the load to manage electricity and reduce cost and PAR, and also considered user
comfort. Appliances within a single home were categorized into five types, elastic (el),
thermostatically controlled (tc), inelastic (iel), user aware (ua), and regular (r), according to
their usage with time. In order to increase user comfort level, users could manage the wait
time of appliances manually. A Conventional Programmable Communication Thermostat
(CPCT) was used with GA for implementation. The knapsack was used to control PAR
reduction, which was handled using GA. The results show that the proposed system and
algorithms worked effectively by organizing the scheduling of the appliances to manage
energy consumption.

In [7], four types of pricing schemes are discussed: RTP, CPP, TOU, and no tariff.
The algorithms used for the management of energy consumption and optimization of the
load were Shuffled Frog Leaping (SFL) and Teaching and Learning based Optimization
(TLBO). Appliances were classified into three types: non sheddable loads, sheddable loads,
and shiftable loads. The results showed that if payment methods of consumers in the
smart grid were optimized using TLBO and SFL, the demand response with the change
in pricing according to the demand information could reduce cost and provide the best
energy optimization pattern. The performance of TLBO was more efficient than that of
SFL. In [8], the authors introduced hybrid technique that combined HSA with DE (HSDE)
with the objective of minimization of operation cost and the total generation by PV, wind
turbine (WT), and power flow constraint batteries. By comparing this technique with
different hybrid techniques like modified DE (MDE), a photovoltaic–wind smart microgrid
model with battery storage and day-ahead scheduling was presented. Photovoltaic arrays,
wind turbines, diesel generators, and batteries were used to minimize total startup and
generation costs. Harmony search algorithm (HSA) with hybrid differential evolution
(HDE) was used for the optimization. An improved mutation was introduced in the
proposed system in order to increase the working of the algorithm. In [9], author shows
the evolutionary algorithms that were used in a smart home with hard constraints in the
form of deadlines, focusing on the optimized pattern for shiftable appliances. Discrete
Non-Dominated Multi-Objective Particle Swarm Optimization (DNMPSO) and Manhattan
distance-based Non-Dominated Multi-Objective Genetic Algorithm (MNMGA) were used
in this work; these algorithms are heuristic algorithms. To evaluate both DNMPSO and
MNMGA, numerical simulations were implemented for energy management, with the
scheduling of appliances to achieve the goal of reducing cost and minimizing peak demand.
The results showed that the effect of DNMPSO was better than that of MNMGA.

All economical activities require energy resources, whether to provide transportation,
manufacture goods, or run machines, computers, and heavy industrial machinery. High
energy demands may result in competition for energy utilities and affect the arrangement
of retail energy markets. The energy management system for retail energy market from
supply side to a supply-demand balanced situation is shown in Figure 2. The supply end
shows how energy is harvested, distributed, and allocated, which is linked to networking
and metering to balance the load and predict the usage of individuals.
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Figure 2. Energy management taxonomy.

To date, researchers have proposed several solutions to optimize energy management,
from smart meters to smart grids to energy-efficient energy appliances to balance the supply
and demand. Job scheduling of appliances is optimized using a GA for cost minimization
in an SG. Storage devices like batteries and RES have been considered. The batteries
become active and start discharging when high prices and high load come into action and
start recharging when the price is low; RES is used for recharging of the batteries. In [10],
Author considered different aspects of appliances including time duration, the priority of
the appliance, and resource availability. In [11], Bacterial Foraging Optimization Algorithm
(BFOA), Wind Driven Optimization (WDO), Genetic Wind-Driven (GWD), BPSO, and GA
were used to manage home energy management systems by scheduling smart appliances.

These algorithms are heuristic. In this work, the RTP pricing scheme was used with
these algorithms. User Comfort (UC), PAR reduction, and decrease in electricity cost
were successfully achieved in this work. The results show different optimal solutions for
these algorithms, as GWD performed best compared to other algorithms for electricity
cost reduction. These techniques were applied in scenarios describing one home and
multiple homes. In [12], WDO was used based on the knapsack problem, and was called
Knapsack Wind Driven Optimization technique (KWDO). KWDO was applied to manage
the electricity cost and allow control of the peak loads by the user. The main goal of this
work was to achieve UC with cost reduction. However, to achieve UC, RES plays an
important role, and experiments have shown that RES affects electricity bills. The setup of
RES is not managed, which directly affects the total bills of the user.

In [3,5,7], Time of Use (ToU) pricing schemes were used with different approaches.
In [3], block rate IBR and ToU were combined and this combined pricing scheme was used
for the calculation of cost via evolutionary algorithms GA, BPSO, and ACO. In [5], the
presented model was a six-layered CHEMA and a ToU pricing scheme was used for the
evaluation, in order to reach the objectives of appliance interface cost minimization, elec-
tricity theft, and electrical fault. Meanwhile in [7], the ToU pricing scheme was changeable
according to the demand response information. TOU was not considered alone throughout
the process, but RTP, CPP, and no tariffs were also considered in this scenario; the pric-
ing scheme changed when demand response change occurred because this model was
implemented in the smart grid with the help of the TLBO and SFL algorithms. If TOU
is used with IBR, it gives good results in terms of cost and PAR reduction, considering
evolutionary algorithms.

RTP pricing schemes were used by [6,8,10,11]. GA algorithm was used with RTP
in [6,10] with different purposes. In [6], the objective was to obtain PAR reduction by
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using GA and RTP. In [10], cost minimization in SG was considered when using GA and
RTP. Comparing these two sets of results from the same techniques, GA and RTP, we see
that GA and RTP work more efficiently if they are used for PAR reduction. Conventional
Programmable Communication Thermostat (CPCT) was used with GA to achieve optimal
solution patterns and more reduced PAR HEMS using HSA [6]. In [8], RTP was used with
HSA and HDE to achieve the objective of minimizing total startup and generation costs.
In [11], the RTP pricing scheme was used with BFOA, GWD, BPSO, and GA, to retain the
UC, PAR reduction and decrease in electricity cost.

The authors in [3,9,12] used evolutionary algorithms for the purpose of achieving cost
and PAR reduction and optimized patterns for shiftable appliances, respectively. In [3],
GA, ACO, and BPSO were used with EMC and results were evaluated by combining these
algorithms with EMC. The results showed that GA-EMC worked more effectively than
ACO-EMC and BPSO-EMC. In [9], Particle Swarm Optimization (PSO) was combined with
Discrete Non-Dominated Multi-Objective and a new technique, DNMPSO, was introduced;
meanwhile, GA was combined with Manhattan Distance Based Non-Dominated Multi-
Objective to introduce MNMGA. To achieve the purpose of reducing cost, results showed
that DNMPSO was better than MNMGA. The authors in [12] presented the use of Bacterial
Foraging Optimization Algorithm (BFOA), Wind Driven Optimization (WDO), Genetic
Wind-Driven (GWD), BPSO, and GA to manage home energy management systems via
scheduling smart appliances [13]. These algorithms are heuristic algorithms and an RTP
pricing scheme was applied. UC reduction and a decrease in electricity cost were achieved.

Energy management in residential buildings is a critical research issue, and practi-
tioners have used multiple approaches to manage the energy more efficiently in smart
homes [14,15] through metaheuristics approaches [16,17], balancing the load between
on-peak and off-peak hours [18], smart meters [19], and smart grids for scheduling op-
timal energy consumption [20]. In [21,22], the authors used multiobjective optimization
with Renewable Energy Resources (RES) in a smart grid to improve the cost and achieve
emission-based optimization using the DE metaheuristics approach and designed an AC–
DC smart microgrid with RES for energy optimization, respectively.

Table 2 describes the state of the art of existing energy management approaches.

Table 2. State of the art.

References Price Schemes Techniques Target Area Objectives

[3] Load scheduling
and renewable energy

resources
IBR, TOU GA, ACO, BPSO Evolutionary

algorithms
Residential energy cost

and PAR reduction

[4] Smart grid model
using DSM

Managed by load
response

BPSO heuristic
algorithm Microgrid operations Operational costs

[5] Comprehensive
home energy

management system
(CHEMA)

ToU CHEMA 6-layered
process

Home energy
management system

(HEMS)

Appliance interface,
cost minimization,

electricity theft, and
fault

[6] Energy
management system is

presented with
real-time reporting of

the load

Real-time pricing (RTP) GA heuristic algorithm Residential area PAR reduction

[7] Demand response
optimization in smart

grids

RTP, CPP, ToU, and no
tariff (changeable

according to demand
response)

Shuffled Frog Leaping
(SFL) and Teaching and

Learning based
Optimization (TLBO)

Residential area Optimized energy
consumption

[8] A hybrid HSA with
differential evolution

Day-ahead pricing
scheme HSA + HDE HEMS Minimize total startup

and generation cost
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Table 2. Cont.

References Price Schemes Techniques Target Area Objectives

[9] Intelligent
residential energy

management in smart
grid

IBR pricing scheme
DNMPSO + MNMGA

evolutionary
algorithms

Smart homes Optimized pattern for
shiftable appliances

[10] Smart grid cost
optimization RTP GA heuristic algorithm Residential area Cost minimization in

SG

[11] Wind-driven
heuristic optimization
and RTP environment

RTP environment BPSO, GA, WDO Residential area Load management,
maximum UC

[12] Residential load
management

BFA and GA dynamic
RTP for smart homes NILM Residential appliances

scheduling Manage DR, cost, load

[13] Residential
demand response Hourly pricing scheme Mixed Integer

Programming (MIP) Residential area Load management, DR

[16] EWA global
optimization problem Real pricing scheme EWA Industrial/residential

area Energy optimization

[17] EWA for HEMS CPP EWA optimization
technique and BFA

Home energy
management

Cost, PAR, load
management

[18] Advance HEMS
using (NILM)

technique

Day-ahead RTP and
IBR signals

NILM with
Non-dominated sorting

genetic algorithm-II
(NSGA-II)-based

Residential area

Control power
consumption by

monitoring household
appliances

[19] Smart meter
monitoring TOU NILM Residential area

Users’ load
tracking/load
management

[20] Constraint
multi-objective load

scheduling

Two price function,
Unity function model

Constrained
multi-objective

optimization problem
(CMOP)

Smart grids Price management

Energy Management has been a critical research issue for decades, as discussed above.
Researchers have used different metaheuristic approaches for the reduction of costs using
different pricing schemes. In our work, we selected the HSA and EWA metaheuristic
approaches and proposed a hybrid EHSA approach (a hybrid of HSA and EWA). We
extracted these approaches from state-of-the-art, and the RTP tariff was applied. In this
work, we evaluated the proposed approach on eight appliances by categorizing them into
interruptible, non-interruptible, and based categories. We applied the proposed strategies
on multiple homes, using 10, 30, and 50 homes, to evaluate the effectiveness of the proposed
approach. We minimized the cost and PAR using these metaheuristic approaches. We were
successful in reducing the energy consumption and load during peak hours to decrease the
electricity bill cost to the user, while minimizing the waiting time to enhance user comfort.

4. Problem Statement

In HEMS, many optimization techniques are used to achieve the objective of reduced
PAR, energy management, and User Comfort (UC) with the help of SGs. The revolutionary
algorithms ACO, BPSO, and GA were used in [3] to achieve the objectives of PAR and
cost reduction by using IBR and ToU pricing schemes. This work achieved the goal of cost
and PAR reduction by combining all three algorithms with EMC separately for evaluation.
However, the results for UC were not satisfactory. The authors in [5] presented a six-layered
CHEMA model. Four layers—appliance interface, cost minimization, electricity theft, and
fault—were implemented in this paper with the aim of reduction of peak load through
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scheduled load with UCI and unscheduled load, and reduction of the total cost. Two
layers—demand prediction and dynamic pricing—were left for future work.

In [6], five categories of appliances were presented: elastic (el), thermostatically con-
trolled (tc), inelastic (iel), user aware (ua), and regular (r). These categories were defined
according to usage with time. CPCT was used with GA for implementation. The proposed
systems and algorithms worked effectively by organizing the scheduling process of the
appliances to manage energy consumption. However, the results for user comfort were not
satisfactory. TLBO and SFL algorithms are presented in [7]; in this work, the authors con-
sidered RTP, CPP, ToU, and no-tariff pricing schemes. However, the performance of TLBO
was better than that of SFL. In [8], HSA and HDE were used for optimization. An improved
mutation was introduced in the proposed system in order to increase the effectiveness of
the algorithm. Total startup and generation costs were reduced in this work, while user
comfort, PAR, and load balancing were not considered properly. In [10], GA was used for
cost minimization while considering job scheduling optimization. This work considered
different aspects of appliances, including time duration, the priority of the appliance, and
resource availability.

Subscribers or users are currently facing issues of electricity cost and user comfort,
as discussed above in the earlier researchers’ work. Most of them achieve low cost by
compromising on user comfort. However, this compromise can be minimized by shifting
the load from peak hours to nonpeak hours. Along with this, the pricing scheme that
is implemented also plays a role in power usage and electricity cost. Thus, in our work,
we implemented EWA, HSA, and a hybrid of both metaheuristic techniques, HSA and
EWA, using the RTP pricing scheme to achieve the goal of reduced PAR, minimized cost of
electricity, load management, and maximized user comfort. Our work considered multiple
homes and multiple smart appliances within three different scenarios: 5 min Operational
Time Interval (OTI), 30 min OTI, and 60 min OTI.

5. System Model

In our proposed model, we include multiple homes with multiple appliances which
are categorized into different types depending on the time of use and the nature of the
appliances. The three categories are interruptible, noninterruptible, and baseload appli-
ances. The purpose of our model is to reduce PAR and electricity costs for the user while
considering UC in terms of waiting time. Hybrid EWA and HSA along with the RTP
scheme were used to achieve our objectives. The smart home is assembled with a Smart
Meter (SM) and EMC. EMC is used to control, manage, and communicate between utility
and consumer, as shown in Figure 3. Information transmission from the utility to the
EMC and SM allows management of the load and price signals to reduce electricity cost.
According to the power or electricity consumption pattern, appliances are categorized into
three broad classes: interruptible, noninterruptible, and based appliances. The appliances
and the parameters used in our system model are listed in Table 3 along with their power
ratings and Length of Operation Time (LOT).

Table 3. Parameters of appliances.

Appliance Power (kWh) LOT (Hours) Category

Dishwasher 3.5 2 Interruptible/Shiftable
Television 1 2 Interruptible/Shiftable
Computer 2 12 Interruptible/Shiftable

Washing machine 2 2 Noninterruptible
Laundry dryer 2.5 1 Noninterruptible
Electric vehicle 3 2 Noninterruptible

Lighting 1 16 Based
Refrigerator 2 24 Based
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For evaluation, we implemented three scenarios using EWA, HSA, and hybrid EWA HSA
along with a RTP tariff in a smart home considering multiple appliances. We considered 5 min
Operational Time Interval (OTI), 30 min OTI, and 60 min OTI for eight appliances, and the
results were based on cost, PAR, energy consumption, and user comfort.

6. Optimization Techniques

In this work, we considered two metaheuristic optimization techniques, EWA and
HSA, and a hybrid of these metaheuristic approaches for the evaluation of PAR, cost, user
comfort, and load management. The techniques are as follows.

6.1. Earth Worm Optimization

The bioinspired metaheuristic algorithm Earthworm Algorithm (EWA) is inspired
by the contributions of earthworms in nature. The EWA method is inspired by the two
reproductions of earthworms in nature (reproduction 1 and reproduction 2). In EWA, the
offspring are independently generated by Reproduction 1 and Reproduction 2, and then all
the generated offspring are weighted and summed to give the final earthworm of the next
generation. The working procedure of EWA is shown in Algorithm 1.

6.2. Harmony Search Algorithm

This is a metaheuristic algorithm. It imitates the improvisation process of a jazz
musician. Musical improvisation is a process of searching for better musical harmony. Three
steps are used to generate a new harmony: memory considerations, pitch adjustment, and
random selection. The generation of a new harmony depends on two control parameters,
namely Harmony Memory Consideration Rate (HMCR) and Pitch Adjustment Rate. For
each element of the new harmony random number is used, if a generated random number
is less than the predefined HMCR, then a number is generated and the value chooses a
specific location attain it from previously existing memory. The steps of HSA is shown in
Algorithm 2.
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Algorithm 1. EWA for SG Scheduling

1: Step 1: Start initialization. First set t = 1 which is the generation counter
2: Set to generate t = 1 counter
3: Set the population to NP earthworm’s P
4: randomly select individuals in the search space
5: Set the number of earthworms nKEW, the maximum generation MaxGn, α is the similarity
factor, the ratio is β, and the constant γ = 0.9.
6: Step 2: Evaluate fitness. Set every aspect of the earthworm to its place
7: Step 3:
8: while Until the best solution is not reached or t < MaxGen
do
9: Sort all earthworms according to fitness value
10: for i = 1 to NP (all earthworms) do
11: Generate offspring xi1 by breeding 1
12: produces offspring by breeding 2
13: end for
14: do crossover
15: if i > nKEW then
16: Set the number of specific parents (N) and the offspring produced (M)
17: uses roulette to select N parents;
18: generates M off springs;
19: Calculate xi2 based on the generated offspring M
20: else
21: A random single earthworm is xi2
22: Update the position of the earthworm
23: end if
24: for j = nKEW + 1 to NP (earthworm individuals are not reserved) do
25: Do Cauchy mutation
26: end for
27: Calculate population-based on newly reorganized positions;
28: t = t + 1.
29: end while
30: Step 4: Display the output of the best solution.
31: End

6.3. Hybrid HSA and EWA

The combination of two approaches is known as a hybrid approach. The fitness func-
tion of HSA is employed to operate after the initial functioning of EWA. In EWA, selection
is done by comparing the trial and target vectors, but in HSA, selection is done entirely
with HM members. The hybrid technique EHSA is more widely adopted, since it combines
the best features of both existing approaches, HSA and EWA, to improve performance.
EHSA combines the EWA-based production of new worms with the HSA-based selection
technique. The hybrid approach was here evaluated in terms of PAR, electricity cost, load,
and waiting time, used to indicate user comfort. Our work considered three scenarios
for simulation and evaluation of the results of HSA, EWA, and the hybrid of these both
techniques. Our work focused on PAR reduction and reduction electricity cost while con-
sidering user comfort in terms of waiting time. Our optimization problem was evaluated
in terms of scheduling of appliances in different time slots to reduce electricity cost.
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Algorithm 2. HSA for SG Scheduling

1: Step 1: Parameters and problem initialization
2: Harmony memory size (HMS)
3: Harmony Memory Consideration Rate (HMCR)
4: Pitch adjustment rate
5: stop condition
6: Step 2: HM initialization
7: randomly initialize the population
8: Step 3: Create a new harmony
9: memory considerations
10: select any value from HM
11: The value of HMCR specifies the probability of selecting a value from the previous value
stored in HM
12: Pitch adjustment
13: Each component of New Harmony selected from HM may be adjusted in pitch
14: is similar to the mutation process in genetic algorithm
15: random selection
16: Take a possible range and choose a random value
17: Increase the diversity of solutions
18: Step 4: Update Harmony memory
19: if The new HM value is better than the previous worst harmony, then replace the previous
worst harmony with the new HM then
20: if xnew < xworst then
21: Update HM to xworst = xnew
22: end if
23: end if
24: Step 5: Termination
25: If the given conditions are met, the selection and calculation are terminated.
26: Otherwise, repeat steps 3 to 4
27: End

The attributes associated with each appliance are appliance status (ON or OFF) and
power rating, listed in Table 2. The cost of the electricity was calculated using Equation (1);
load and PAR were calculated using Equations (2) and (3), respectively.

Cost = ∑24
t=1 Ehour

Rate × PApp
Rate (1)

Load = PApp
Rate × App (2)

PAR =
max(Loads)

Ave(Loads)
(3)

7. Simulations and Results

This work was done using MATLAB. The appliances used were eight appliances with
different usage patterns. Results were evaluated using EWA, HSA, and the hybrid of EWA
and HSA (EHSA) approach along with a RTP pricing scheme. A time interval of five
minutes was defined to complete all activities. For simulations, we considered 5 min OTI,
30 min OTI, and 60 min OTI across eight appliances, and the results were evaluated on the
bases of cost in PKR, PAR, energy consumption or load in kWh, and user comfort in terms
of waiting time, which was measured using the units of minutes or hours.
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7.1. Simulations for Sixty Minutes OTI

In the 60 min OTI, the performance of the hybrid approach (EHSA) was better than
that of the HSA and EWA with RTP. HSA and EWO also outperformed the unscheduled
appliances. Cost and PAR were decreased, and in terms of load energy consumption,
the hybrid approach, HSA, and EDW reduced load during peak hours. Peak hours were
determined from 17 to 23 according to the 60 min OTI and 24 slots. The results of the
hybrid approach (EHSA), HSA, and EWA were gathered. The EHSA minimized the Peak-
to-Average Ratio (PAR) effect on the cost, as shown in Figure 4a. EHSA and EWA reduced
the energy consumption and load during peak hours in order to decrease the electricity
bill cost of the user, as shown in Figure 4b. The cost value of EHSA was 1100 and that of
EWA was 1200, and the waiting time of EWA was increased compared to those of HSA and
EHSA. EHSA performed better in terms of user comfort, as shown in Figure 4c. Figure 4d
shows that the load was reduced or shifted during peak hours to reduce the cost. The
hybrid technique of both EWA and HSA showed that in 60 min OTI, the cost of the hybrid
and EWA approach was reduced but the waiting time of EWA was more as compared to
the hybrid technique EHSA. The results reveal that EHSA performed better in terms of
user comfort and cost.
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7.2. Simulations for Thirty Minutes OTI

Simulations and results for 30 min OTI showed that the performance of the hybrid
approach was better in terms of PAR, cost, and user comfort, as shown in Figure 5a–c.
The hybrid technique EHSA with RTP performed better as compared to the EWA, HSA,
and unscheduled appliances. The cost and PAR of EHSA were reduced as compared
to EWA and HSA. In terms of cost, HSA performed well as compared to EWA, both
metaheuristic techniques performed better as compared to the unscheduled pattern, and
in load energy consumption, EHSA, HSA, and EWA reduced load during peak hours, as
shown in Figure 5d. Peak hours were from (07:30 to 17:30) according to 30 min OTI and
48 slots. Results show that when using EHSA, HSA, and EWA with 30 min OTI, EHSA,
EWA, and HSA reduced the energy consumption and load during peak hours to produce a
decrease in the electricity bill cost of the user. However, the hybrid technique performed
better than both of the metaheuristic algorithms by achieving a cost value of 2400 with
minimum PAR value, as shown in Figure 5a,b, respectively. The waiting time of HSA and
EWA was increased, while EHSA performed better in the form of user comfort, as the
simulation results of 30 min OTI show in Figure 5c.
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7.3. Simulations for Five Minutes OTI

Results for 5 min OTI show that the performance of EHSA, EWA, and HSA with
RTP was better as compared to that of the unscheduled appliances, However, the EHSA
approach outperformed the others in terms of cost, as it achieves low cost with minimum
PAR by shifting the load from peak hours, and shifted the minimum load to maximize
user comfort and reduce the total cost value. The cost and PAR of HSA were almost the
same as those of EWA; however, both metaheuristic techniques performed better than the
unscheduled pattern, as shown in Figure 6a,b, and in load energy consumption, EHSA and
EWA reduced load during peak hours by achieving the maximum user comfort, reducing
the waiting time as shown in Figure 6c. Peak hours were from (06:45 to 19:05) according to
5 min OTI and 288 slots, as represented in Figure 6d. Results show that when using EHSA,
HSA, and EWA with 5 min OTI, EHSA, and EWA reduce the energy consumption and
load during the peak hours to decrease the electricity bill cost of the user, and the waiting
time of EWA was increased. EHSA performed better in terms of user comfort, as shown in
Figure 6c of 5 min OTI.
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7.4. Simulations for Multiple Homes

We evaluated the results of our proposed hybrid technique EHSA and collected
results for our proposed scheme across multiple homes, comparing it with EWA, HSA, and
unscheduled to find the differences between the cost and user comfort level. We applied
our hybrid technique on 10, 30, and 50 homes with the goal of minimizing the total cost
and maximizing the user comfort level via load management during peak hours, as shown
in Figure 7a,b, respectively.
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7.5. Feasible Region

A feasible region is a defined area defined by a set of points where the objective
function satisfies the result. The problem’s restrictions are a small number of specified
points. We found the feasible region of a cost function for multiple houses in this paper. As
demonstrated in Figure 8, the feasible region of the objective function minimizes cost by
minimizing energy consumption. Figure 8 shows the feasible region for single, 10, 30, and
50 houses in Figure 8a–c, respectively. All viable solutions were covered according to the
fitness function. The feasible region, also known as the search space, is a region defined by
a subset of all optimization problems. The overall cost region is shown by points P1 (0.600,
15.02), P2 (26.00, 31.08), P3 (200.0, 251.3), P4 (198.0, 201.0), P5 (210.0, 221.3), and P6 (211.0,
219.0), where P1 (0.600, 15.02) is the cost of electricity when the minimum load is set at the
lowest price. The objective function remains the same; however, because of the increased
number of houses, the constraints are changed, where the objective function satisfies the
result and a few specific points are the constraints. The feasible region reveals that cost is
diminished with a desirable waiting time. The cost of electricity in this region at any time
slot is reasonable and contributes to the reduction of total electricity costs.
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8. Discussion and Implications

After the simulations of EHSA, EWA, HSA, and unscheduled approaches, different
results were evaluated in terms of PAR, user comfort, electricity cost, and load. The
performance of techniques varies from scenario to scenario, and there was always a trade-
off between user comfort and cost. However, this could be maximized by shifting the
unnecessary use during peak hours, thus maintaining the user comfort and reducing the
cost. Discussion of these four parameters is as follows:

8.1. PAR

PAR was reduced when using EHSA, HSA, and EWA as compared to unscheduled
load, because EHSA, HSA, and EWA efficiently reduced the load during peak hours to
reduce the cost to the user. Low PAR also helps the utility to maintain its stability, which
results in a reduction of cost. While in our proposed hybrid technique PAR outperformed
EWA and HSA, reduced PAR and increased user comfort showed a trade-off between PAR,
user comfort, and cost.

8.2. User Comfort

User comfort of EHSA was than that for EWA and HSA. In our proposed hybrid
technique, user comfort was superior compared to HSA and EWA. The hybrid technique
performed well in terms of user comfort; however, there was a trade-off between cost
and user comfort which could be managed by shifting the unnecessary load to reduce the
waiting time and achieve high user comfort with minimum cost.

8.3. Cost

EHSA, EWA, and HSA performed efficiently to reduce the cost to the user as compared
to the unscheduled process. Because it reduced the load during peak hours according to
the categories and usage of the appliances, HSA efficiently turned appliances ON/OFF to
reduce cost in peak hours; however, user comfort acted there as a trade-off parameter to
achieve the cost parameter with a specific or small number of appliances. The cost was
reduced with a desirable waiting time.

9. Conclusions

In this paper, the performance of HEMS with RTP was investigated utilizing meta-
heuristic optimization techniques such as HSA, EWA, and the proposed EHSA. We ran sim-
ulations for multiple homes to demonstrate the effectiveness of the proposed methodology.
There were eight smart appliances in each home. According to their energy consumption
patterns, these appliances were divided into subcategories. We analyzed similar appliances
in three situations for each home: 60 min Operational Time Interval (OTI), 30 min OTI, and
5 min OTI. Cost, PAR, and user comfort were all factors considered when evaluating opti-
mization approaches. The user comfort was measured by the length of waiting time. The
efficiency of our proposed technique in terms of cost and PAR reduction was demonstrated
by simulation results. The proposed scheme gave the maximum reduction in cost, which
was 2.668%, 2.247%, and 2.535% in the case of single, 10, 30, and 50 homes, respectively, as
compared to EWA and HSA. In terms of PAR and cost reduction, the proposed technique
EHSA performed well compared to HSA and EWA. HSA performed better than EWA
in terms of PAR reduction, whereas EWA outperformed HSA in terms of cost reduction.
Furthermore, the proposed EHSA technique outperformed the other techniques in terms of
PAR and cost reduction, but there was still a cost-to-user comfort trade-off. In the future, we
will combine RES with a storage system to investigate the cost of reducing electricity usage.
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