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Krzysztof Nieśpiałowski 1,* , Jarosław Tokarczyk 1 , Sławomir Bartoszek 1 , Piotr Kanty 2, Norbert Kurek 2,
Andrzej Dymarek 3 and Tomasz Dzitkowski 3
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Abstract: Regarding the vehicles used in civil engineering, some are manufactured in large quantities
and some (especially innovative ones) are still prototypes manufactured for tests or rare use. The
latter describes the case of equipment for mass mixing (mass stabilization) technology which is not
widely used compared to other types of geotechnical equipment. The purpose of this paper is to
present a research and development project on an innovative cement transporter designed for mass
mixing. Three-dimensional models and advanced finite element method (FEM) calculations are used
to validate the design of the most important part of the cement transporter—the frame connecting
the undercarriage and the upper carriage. The results presented in the paper confirm that the design
based on the strength criterion and boundary conditions from geotechnical safety requirements can
be used for designing the parts of the prototype vehicle. It is concluded that in innovative vehicle
design for geotechnical purposes, the analyses may extend beyond the standard static analyses.

Keywords: mass mixing; geotechnics; cement transporter; computer simulations; finite element method

1. Introduction

Mass mixing, otherwise known as solidification or mass stabilization, is a strengthen-
ing technology based on improving the strength properties of the weak subsoil by mixing
it with a binding agent. It is usually a subsoil reinforcement reaching only a few meters
deep. The purpose of this soil improvement technology is to improve the mechanical and
deformation parameters of the natural subsoil. The method consists in introducing a special
mixing unit into the subsoil, which destroys the subsoil structure and mixes it with the
binding agent pumped at the same time (Figure 1). Classic (dry) solidification consists
in mixing the subsoil with a binding agent (e.g., cement, cement-ash mixtures) without
additional water. This treatment, applied in most cases on organic soils [1], allows the soil
to dry (due to the dehydration process) and then bind.

This technology is used in Scandinavian countries but still is not common in Europe
or the US. Recently, this technology has begun to be applied in Poland [2]. Guidelines
from Scandinavian design experience are available [3]. For effective soil strengthening, it
is necessary to use specialized equipment. The scientific project (Number POIR.01.01.01-
00-0184/19) on the design of a self-propelled cement transporter intended for use in this
technology is the answer to this need. The research work on the innovative mass mixing
system is based on three-dimensional (3D) modeling, analysis, and calculations. Part of the
research work carried out within the project is discussed in this article. The design of this
type of vehicle used on construction sites should be based on machinery standards [4–6]
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and material codes for designing. On the other hand, the environment in which the vehicle
will work is unpredictable. Therefore, the analysis is out of the normal scope and additional
tests are required.
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Figure 1. Scheme of soil improvement by the solidification method.

The working platform poses a risk due to its low quality. Methods to avoid the
risk are presented in [7–9]. The above-mentioned guidelines show some typical reasons
for accidents—mainly a loss of stability/tipping over. The causes of accidents should be
eliminated, but at the same time, the design of the equipment should take them into account,
and this is the innovativeness of the method presented here. Only the material obstacles,
such as hoses full of material, old foundations which were not removed, no densified and
highly deformable platform material, and excessive inclination of the working platform,
are important. The present work focuses on the two first obstacles. We expect that extended
simulations including all aspects will be published later, while tests on the machine–subsoil
interaction are still very rare [10,11].

There are two novelties in this solution. First, the system itself (see Figure 2), which
contains a cement buffer tank, a transporter, software, and a mixing head—this kind
of system does not exist worldwide. The second novelty is the approach to the main
component’s design (e.g., the frame), where the boundary conditions and analyses are
adapted to the design case. The design is not very complicated, but it includes some new
aspects of innovation.
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2. Materials and Methods
2.1. CAD 3D Models

The whole design concept was based on numerical modeling and the possibility to
include most of the components as 3D models. The system Omnibox is used for mass
mixing (Figure 2) contains a mixing head, an excavator with an operation system able
to monitor the soil strengthening parameters [12], a cement buffer tank, and a cement
transporter. The paper focuses on the transporter.

Within the transporter, the following components were distinguished: the transporter
main frame, crawlers, power unit, control system, and pneumatic components (Figure 3).
In addition, the engine frame, compressor frame, and hydraulic equipment frame were
designed. This article presents the results of the main vehicle frame numerical calculations
(see Section 2.2), where all other components are treated as loads acting on the main frame.
Most of them are dead loads, and only cement is treated as a variable load.
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4—control system.

2.2. FEM Computational Models
2.2.1. D Mesh

Based on the 3D geometrical models, computational models were developed in the
MSC.Patran (MSC.Software, Santa Ana, CA, USA) [13] software environment, based on
the finite elements method (FEM) [14]. Strength calculations were performed in the linear
range for static conditions with the use of the MSC.Nastran solver (MSC.Software, Santa
Ana, CA, USA) [15]. In the event of dynamic loads, other dedicated solvers were used, e.g.,
MSC.Dytran (MSC.Software, Santa Ana, CA, USA) [16]. Strength calculations (simulation
tests) of the frame assembly of the cement transporter were the research work objective
(Figure 4).
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A spatial geometric model of the frame assembly was discretized using different types
of finite elements: second-order tetrahedral solid elements (TETRA10) and shell elements
(QUAD4). TETRA10 solid elements ensure high accuracy of calculation results with an
acceptable length of calculation time. Their advantage is the ability to discretize complex
geometric models [17], which results in their widespread use in structural analyses in
different economy branches [18–22].

Apart from the finite element type, the mesh density is another major factor influencing
the quality of the obtained calculation results. It has a direct impact on the potential
degeneration of finite elements. Therefore, the selection of the size (resolution) of the
elements was determined after the verification of the tetrahedral mesh, which consisted of
the following stages:

• Aspect: ratio of the height of the element to the square root of the opposing face area.
• Edge angle: the absolute value of the angle between the two faces meeting at an edge,

subtracted from 70.529◦.
• Face skew (carried out for each triangular face of the tetrahedral element)—two vectors

are constructed: one from a vertex to the mid-point of the opposite edge, and the
other between the mid-points of the adjacent edges. The difference results from the
angle between these two vectors and 90◦. This procedure is repeated for the other two
vertices. The largest of the three computed angles is reported as the skew angle for
that element.

• Collapse: An indicator of near-zero volume tetrahedral elements. The test takes the
ratio of the height of a vertex to the square root of the area of the opposing face.

2.2.2. Material Model

The following properties of the linear elastic material model were assigned to the steel
material in computational models:

• Young modulus, E = 205 GPa,
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• Poisson’s ratio, ν = 0.3,
• Density, ρ = 7850 kg/m3.

2.2.3. Boundary Conditions

Three cases of load conditions to the transporter main frame were tested, under normal
operating conditions of the cement transporter. These conditions are unfavorable and result
in multi-plane torsion of the frame. There were the following cases:

• Case 1—blocking of the left track while the right track drives on. The blocking may
occur when old foundations have not been removed from the working platform. Such
an obstacle is rigid and will stop the machine. This concerns the criterial state in
which the vehicle hits (at a low speed) a non-deformable obstacle on the left side and
the drive is activated on the right side. The assumed highest tractive force results
from the achieved torque, while not exceeding the permissible values specified by the
manufacturer of the drive sprocket (Figure 5).

• Case 2—drive over a convex unevenness such as a hose for pneumatic transport of
cement under working pressure. The first track roller is supported on the left side and
the penultimate one on the right side. Due to the fact that the vehicle is asymmetrically
loaded, it was necessary to carry out a few preliminary numerical calculations in order
to find the equilibrium point and select the correct roller that was fixed (Figure 6).

• Case 3—a set of fixations similar to Case 2; however, due to the asymmetrical location
of the center of gravity, the first roller on the right and the last roller on the left were
supported.

In addition, loads (identical in all variants) related to the mass of the main sub-
assemblies were introduced into the computational models. Multi-point constraints were
applied, taking into account the object stiffness not included in the computational model.
These constraints were also used to connect various types of FEM meshes, e.g., 2D–3D, or
were introduced into the computational model in order to dissipate point forces, which
may locally generate false stress concentrations (Figure 7).
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The force of gravity was also included in the computational model. It contributed
to an increase in reaction time due to the weight of the computational model. Mass was
calculated as the quotient of volume and density (solid elements) or as a physical parameter
(shell elements). Regarding the other relevant sub-assemblies that impact the load in the
main computational model, the superposition method was introduced. That is, the reaction
values obtained in previous subtasks were introduced into the computational model with
the same magnitude but the opposite direction.

3. Results

The results of the strength calculations for each load variant are presented in the form
of maps of displacements, reduced stresses, maximum principal stresses, and iso-surfaces,
in Tables 1 and 2. In the presented example, iso-surfaces identified areas (volumes) of the
material in which the reduced stresses exceeded the declared value. The stress values are
important to design the proper shape of the frame and for verification of used steel. The
displacements are important because the deformation of the frame can affect the level of
fixation of components such as bulks, engine, compressors, etc. Too high deformations will
lead to a risk of separating this part from the frame.
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Table 1. Results of numerical strength calculations (maps of displacements and reduced stresses).

Number of
Load Case Displacements Reduced Stresses

1
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practice and current construction site observations. Three different loads, corresponding to
the momentary, asymmetric support system of the tracked chassis (crossing an obstacle) and
to the blocking of the left side of the undercarriage with the right-track drive, were entered
for calculation. These variants, generating frame torsion, were identified as unfavorable.

A detailed description of the three loading cases is presented in Section 2.2.3. Their
“disadvantage” was that they require the biggest effort in the main load-carrying sub-
assembly, i.e., the vehicle frame. Obviously, other catastrophic scenarios that will cause the
vehicle damage may occur, however at this stage, the necessity of increasing the amount of
material in the main components of the machine (and simultaneously its weight) should be
balanced in relation to the risk of experiencing hypothetical, critical scenarios, e.g., losing
stability and tipping over. It should be highlighted that the results of strength calculations
were conducted only for static loads, for several reasons. First, in such conditions, it
is possible to determine the boundary conditions in detail, in particular a calculation of
external loads acting on the vehicle as regards their spot as well as their value. A calculation
of dynamic overloads at the design and construction stage involves a lot of uncertainty.
A crash into an obstruction can be an example. To calculate an overload acting on the
vehicle, it should be taken into account whether the obstruction is at least partly deformable,
where exactly the impact happened, if there was a terrain inclination, what the load of
the vehicle was like in that particular moment, and what role in the dissipation of the
kinetic energy was played by the deforming vehicle equipment that was at the impact
point. To calculate the biggest overload, it would be necessary to analyze combinations of
the aforementioned cases, which would create a need for constructing many calculation
tasks. Another issue is the time-consumption of the dedicated FEM analytical model, the
necessity of highly qualified staff and specialist software for quick-changing phenomena
(i.e., explicit approach). All of these aspects mean that the issue of taking dynamics into
consideration is time-consuming and often impossible to be conducted during a typical
design and construction process of a machine. This is why so-called safety factors are used
and the obtained maximal values of stresses cannot exceed the determined percentage
value, e.g., the yield point of the material.

In the presented case, the obtained results led to strengthening the selected nodes of
the construction (an increase of the transverse cross-cut and local use of the material having
increased strength parameters).

A proper virtual prototyping process requires from the specialist both basic knowledge
in the field of mechanics and experience in creating the computational models. In the case
of static or quasi-static analyses, special attention should be paid to the correct definition of
boundary conditions, which correspond to different loads, since an error at this stage will
significantly affect calculation results and their subsequent interpretation. The boundary
conditions should have multi-criteria, according to the geotechnical conditions.

The highest stresses and displacements were found in Case 1, i.e., when the left track
was blocked, and the tractive force of the right track was in action. The force corresponds to
the maximum torque that can be transmitted by the planetary gear of the drive (70 kNm).
The maximum displacement was 5.58 mm, and the reduced and maximum principal
stresses were approximately 400 MPa. It should be noted that the highest stress (this
applies to all variants) was found in the area of the frame narrowing, at the front of the
vehicle (on the upper surfaces of the supporting profiles). However, it is a local stress
accumulation, which was visible during the analysis of the propagation of the maximum
stress into the material (iso-surfaces). These stresses were reduced by optimizing the
components’ geometry in the most stressed area. Optimization was based on a global–local
method. The local model included the area with the highest stress concentrations and its
geometry was modified. Internal forces, which were calculated using the global model,
were the boundary conditions. It was an iterative process until the required constraints of
the objective function were obtained (determined maximal values of principal stresses).

In Cases 2 and 3, the maximum displacements and stresses were close to each other
and did not exceed 300 MPa. Presented load variants are to be considered as accidental
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design cases. During typical machine operation, the safety factors should be higher, and all
design requirements will be met.
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