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Abstract: In this paper, the 12-slot/4-pole (12/4) synchronous reluctance motor (SynRM) with
concentrated windings is proposed for low-cost hybrid vehicles. The non-linear magnetic equivalent
circuit (MEC) model of the 12/4 SynRM is built to obtain the main electromagnetic characteristics
such as coil flux, inductances, torque, etc. The magnetic saturation is also counted in by the MEC.
Results calculated by MEC are validated by 2D finite element analysis (FEA). Then, aiming at larger
average torque, lower torque ripple and lower total harmonic distortion (THD) in phase voltage,
the parameter optimization method of the SynRM is proposed based on the Taguchi method and
the MEC model. The proposed Taguchi-MEC method enables a fast optimization with satisfactory
accuracy. Finally, the motor prototype is manufactured, and experimental validations are carried out.

Keywords: magnetic circuit; optimization; synchronous reluctance; torque performances

1. Introduction

Thanks to the simple structure and robust rotor without a brush and slip ring, the syn-
chronous reluctance motor (SynRM) has become an attractive candidate [1–3]. Conventional
SynRMs employ distributed windings to obtain essentially sinusoidal back electromotive
force (back-EMF) per phase and a high winding factor [4–7]. However, due to the long
end-part winding length, distributed windings result in increased copper loss, decreased ef-
ficiency and power density. On the other hand, concentrated windings are rarely employed
for SynRMs because of the high harmonic distortion in armature windings and low winding
factor. Spargo and other authors introduce fractional slot concentrated windings (FSCW)
to SynRM, with a segment stator to improve torque density and efficiency [8–14], e.g., the
6-slot 4-pole (6/4) SynRel machine. The 6/4 machine exhibits a comparable performance of
a permanent magnet (PM)-assisted SynRM with a high torque output capability and a low
level of torque ripple [8,9]. The proposed 12/4 CW machine exhibits comparable torque
performance, compared to the case of adopting distributed winding, when the total stack
length is unchanged. The short winding end, PM-free and very low mutual inductances
of the 12/4 CW machine will be appreciated by applications where a short stack length,
high robustness and low cost are required, such as the integrated starter generator (ISG) in
low-cost wild hybrid vehicles. The ISG is located between the engine and the gear box, and
drives the output shaft directly. First of all, the vehicle producer requires a brushless and
PM-less motor and concentrated windings. Getting rid of permanent magnets reduces the
cost and enhances robustness and speed range. Avoiding distributed windings improves
the air flow and makes it more dustproof, as well as other mechanical considerations. These
above requirements leave only the choices of the reluctance motor and SynRM. The 9/6 or
15/8 SynRM are not considered due to unbalanced radial forces on the rotor. More impor-
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tantly, low mutual inductances between armature phases is highly appreciated, since it will
facilitate a high fault-tolerant capability, which can be found in the 12/4 SynRM machine.

Consequently, the magnetic equivalent circuit (MEC) model is built to predict electro-
magnetic performance, including air-gap flux density distributions, winding inductances
and electromagnetic torque. Then, the obtained results are validated by 2D-finite element
analysis (2D-FEA). Furthermore, aiming at better torque performances and lower total
harmonic distortion (THD) in phase voltage, the optimization of the 12/4 SynRM is carried
out combing the MEC and Taguchi method. Unlike traditional optimization methods using
FEA coupling optimization algorithms, such as a genetic algorithm [15–18] and particle
swarm algorithm [19–22], the Taguchi method exhibits the merit of being less time consum-
ing [23–26]. This merit can be greatly enhanced by using MEC instead of FEA, maintaining
satisfactory accuracy.

2. Machine Topologies and Design Specifications

This section provides a brief introduction to a prototype of the 12/4 SynRM. The topol-
ogy structure of the designed 12/4 SynRM is shown in Figure 1, with the key dimensional
parameters listed in Table 1. The outer dimensions of the stator are chosen based on the
available test bench and power converters for the following experiment. The segmented
stator core is designed to improve the slot filling factor (SFF). Torque ripple reduction also
needs to be mitigated, so that a continuous skew rotor is adopted. It should be noted that
the skewing angle is optimized to achieve a balance between the sinusoidal back-EMF and
electromagnetic torque. Two rotors are manufactured, one without skewing and another
with skewing. This paper only introduces the 12/4 SynRM without rotor skewing. The
skewed rotor will be introduced in another coming paper. Moreover, the seam/gap be-
tween the neighboring stator segments depends on the manufacturing accuracy and are
normally less than 0.05 mm. Considering these seams are very small, their influences on
magnetic performances can be neglected and not considered in the MEC and FEA models.
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Table 1. Main Design Specifications of the 12/4 Machine.

Item Value

Outer diameter 150 mm
Lamination length 75 mm
Total end winding 20 mm
Total stack length 95 mm

β2 12.4◦

wb1 10.00 mm
stooth 11.12 mm
syoke 11.38 mm
β1 11.10◦

dm1 4.41 mm
wrib1-1 0.58 mm
wrib2 0.28 mm
dm2 3.50 mm

wrib1-2 0.50 mm
lso 1.0 mm

Turns per coil 30
Copper fill factor 0.58

d-axis inductance (FEA) 19.3 mH
q-axis inductance (FEA) 6.2 mH

Phase current 30.1 A
Current angle 55◦

3. Magnetic Equivalent Circuit Method and Evaluation

As an efficient tool, the MEC method has been widely utilized to analyze the electro-
magnetic performance of electrical machines [27,28], and is considered as a compromise
between FEA with high accuracy and an analytical method (AM) with straightforward
physical connections of performance and geometrical parameters. Therefore, the MEC
model of the 12/4 SynRM is built in this paper. Figure 2 illustrates a quarter of the 12/4
machine, where each specific magnetic path is illustrated by a different MEC branch. The
SynRM is separated into segments according to the geometrical shape. The equivalent
permeance of each part of the stator and rotor core can be calculated using the perme-
ance equations.
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The basic equation which governs each branch of the magnetic circuit is given by,

Φ

G
= F (1)

G = µiµ0
S
l

(2)

In Equation (1), Φ, G and F are the flux, permeance and magnetic-motive-force (MMF),
respectively. In Equation (2), µr, µ0, S and l are the relative permeability, the permeability of
free space, the cross-section area and the length, respectively. Specifically, µr is determined
by iteration from the B–H curve of the lamination material. The permanent magnets can
simply be modeled as an equivalent MMF [29],

Fm =
Br

µiµ0
hm (3)

and permeance,

Gm = µiµ0
lmla

hm
(4)

where hm and lm are the magnet thickness and width, respectively, and Br is the remanence.
Then, the MEC model is solved by MATLAB following the flow chart shown in

Figure 3. The saturation in iron is counted in by the iteration of µr. For each branch in the
magnetic circuit at the ith step in an iteration, the condition of convergence ε is defined as,

ε =

∣∣∣∣µi − µ′i
µi

∣∣∣∣ ≤ 10−6 (5)

where µi is the permeance given before equation solving, and µ’i is the real permeance
obtained after the equation solving, as shown in Figure 4. If ε ≤ 10−6 is not achieved, the
permeance at the (i + 1)th step in an iteration is given by Equation (6) and k = 0.5 in this case.

µi+1 = (1− k)µi + kµ′i, 0 < k < 1 (6)
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Figure 5 shows the mesh results of the FEA model in which the air-gap consists of
6 layers of elements. The path to plot the air-gap flux density distribution is also given
in Figure 5a, which covers 1/4 of the air-gap. The air-gap flux density distributions
generated by phase-A current, d-axis current and q-axis current, respectively, are predicted
by MEC and then compared to the FEA results by Figure 6. Overall, satisfied agreements
are achieved.
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4. Results and Discussion

When the MEC model of the 12/4 SynRM motor is solved, the electromagnetic char-
acteristics can be easily calculated, e.g., the flux in the air-gap (ΦA), coil flux linkage (Ψa),
phase-A self-inductance (Laa) and mutual inductance between phase-A and -B (Mba) can be
obtained by

ΦA =
∫

BdS (7)

ΨA = N(ΦA + ΦδA) (8)
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Laa =
ΨA
IA

(9)

Mba =
ΨB
IA

(10)

Then, the Ld (d-axis), Lq (q-axis) and Ldq (d-q coupled inductance) can be calculated by
Equations (11) and (12). Figure 7 compares the MEC and FEA obtained inductances with
good agreements.  Ld

Lq
Ldq

 = P

 Laa Mba Mca
Mab Lbb Mcb
Mac Mbc Lcc

P−1 (11)

P =
2
3

 cos θ cos
(
θ − 2

3 π
)

cos
(
θ + 2

3 π
)

− sin θ − sin
(
θ − 2

3 π
)
− sin

(
θ + 2

3 π
)

1
2

1
2

1
2

 (12)

P−1 =

 cos θ − sin θ 1
2

cos
(
θ − 2

3 π
)
− sin

(
θ − 2

3 π
) 1

2
cos
(
θ + 2

3 π
)
− sin

(
θ + 2

3 π
) 1

2

 (13)
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It should be noted that in the 12/4 SynRM with concentrated windings, there is
a cross-coupling between the d-axis and q-axis, i.e., the Ldq contributes unneglectable
electromagnetic torque, as given in Equation (14).

T =
3
2

pis
2
[

1
2
(

Ld − Lq
)

sin 2α + Ldq cos 2α

]
(14)

where p is the rotor pole-pairs, Ld and Lq is the d- and q-axis inductance, respectively,
and α is the current phase angle, i.e., the angle between the current vector and d-axis.
Thus, the torque waveform can be calculated. Figures 8 and 9 give the torque performance
versus current phases and rotor position, respectively. As can be seen, good agreements are
achieved between the MEC and FEA results.



Energies 2022, 15, 1735 8 of 16

Energies 2021, 14, x FOR PEER REVIEW 8 of 17 
 

 

  
(a) (b) 

Figure 7. Comparison of the inductance results obtained by MEC and FEA. (a) Phase self and mutual 
inductances when 1 A is applied in phase-A. (b) d-axis and q-axis inductances at rated operation. 

It should be noted that in the 12/4 SynRM with concentrated windings, there is a 
cross-coupling between the d-axis and q-axis, i.e., the Ldq contributes unneglectable elec-
tromagnetic torque, as given in Equation (14). 𝑇 = 32 𝑝𝑖௦ଶ ൤12 ൫𝐿ௗ − 𝐿௤൯sin2𝛼 + 𝐿ௗ௤cos2𝛼൨ (14)

where p is the rotor pole-pairs, Ld and Lq is the d- and q-axis inductance, respectively, and 
α is the current phase angle, i.e., the angle between the current vector and d-axis. Thus, 
the torque waveform can be calculated. Figures 8 and 9 give the torque performance ver-
sus current phases and rotor position, respectively. As can be seen, good agreements are 
achieved between the MEC and FEA results. 

 
Figure 8. Torque vs. rotor positions when 30 A is applied. 

0

5

10

15

20

25

0 60 120 180 240 300 360
Rotor Position (°)

In
du

ct
an

ce
s (

m
H
）

Laa FEA Laa MEC Mab FEA Mab MEC

0

3

6

9

12

15

0 60 120 180 240 300 360
Rotor Position (°)

In
du

ct
an

ce
s (

m
H
）

Ld FEA Ld MEC Lq FEA Lq MEC

0

3

6

9

12

15

0 60 120 180 240 300 360
Rotor Position (°)

To
rq

ue
 (N

m
)

FEA MEC

Figure 8. Torque vs. rotor positions when 30 A is applied.
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Figure 9. Average torque, calculation values vs. current phases when 50 A is applied.

5. Optimization of Torque Characters Based on MEC and Taguchi Method

The Taguchi method is chosen as one of the many optimization methods. The opti-
mization methods introduced in Section 1 require sophisticated algorithms and additional
programming and data processing along with a lot of FEA cases of electromagnetic field.
So, the methods are usually time consuming and complex. On the other hand, the Taguchi
method can obtain satisfactory results by reduced calculation cases, and thus is less time
consuming. In this paper, the Taguchi method and the MEC model are used to optimize
the SynRM. The steps in the Taguchi method are as follows [30]:

1. Select the parameters and determine its levels.
2. Design of exams.
3. Review the optimization results.

First of all, the means of all results Mt(S) and average effect MXj can be calculated as

Mt(S) =
1
n

n

∑
pn=1

Spn (15)

MXj(Y) =
1
3
(Y1 + Y2 + Y3) (16)

where Xi and Yi are factor-level and performances, respectively. Then, the analysis of
variance is carried out, which provides a measure of confidence. The technique does not
directly analyze the data, but rather determines the variance of the data. The sum of squares
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(SS) is calculated first. It is a measure of the deviation of the experimental data from the
mean value of the data. The sum of squares due to various factors can be calculated as

SS = j
j

∑
pj=1

(
MXpj

(Y)−Mt(S)
)2

(17)

where Mt(S) and Mxpj(Y) are results of Equations (5) and (6). SS shows the relative impor-
tance of various factors on machine performance. Then, the Pearson coefficient is chosen to
calculate the coefficient of correlation and given as

ρXi ,Yi =
n ∑ XiYi −∑ Xi ∑ Yi√

n ∑ X2
i − (∑ Xi)

2
√

n ∑ Y2
i − (∑ Yi)

2
(18)

The optimization aim is a larger average torque (Tavg), lower torque ripple (Trip) and
lower THD of phase voltage (THDU). Firstly, the optimization parameters are determined
and shown in Figure 10 and listed in Table 2, which are related to the rotor barriers and
ribs, stator tooth and yoke width.
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Table 2. Design Parameters and Their Variation Levels.

Parameter Level 1 Level 2 Level 3

β1 11.5◦ 12.5◦ 12◦

β2 11.5◦ 12.5◦ 12◦

dm1 3.5 mm 4.5 mm 4 mm
dm2 2.5 mm 3.5 mm 3 mm
wb1 3 mm 4 mm 3.5 mm

wrib1 0.55 mm 0.65 mm 0.6 mm
wrib2 0.45 mm 0.55 mm 0.5 mm
syoke 10 mm 12 mm 11 mm
stooth 10 mm 12 mm 11 mm

lso 0.8 mm 1.2 mm 1 mm

The design of the exam is carried out after preparing the initial information. To obtain
the number of exams, the orthogonal arrays are presented using Taguchi. The exams’
matrix can be easily created using existing software, in this case the Minitab. Shown in
Table 3 are the Taguchi experiments that are tailored to their parameters and levels. The
rows of the exams table represent the levels of factors in each experiment, and its columns
represent the number of factors.
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Table 3. Exams Table.

Exams A B C D E F G H J K

1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 2 2 2 2 2 2
3 1 1 1 1 3 3 3 3 3 3
4 1 2 2 2 1 1 1 2 2 2
5 1 2 2 2 2 2 2 3 3 3
6 1 2 2 2 3 3 3 1 1 1
7 1 3 3 3 1 1 1 3 3 3
8 1 3 3 3 2 2 2 1 1 1
9 1 3 3 3 3 3 3 2 2 2
10 2 1 2 3 1 2 3 1 2 3
11 2 1 2 3 2 3 1 2 3 1
12 2 1 2 3 3 1 2 3 1 2
13 2 2 3 1 1 2 3 2 3 1
14 2 2 3 1 2 3 1 3 1 2
15 2 2 3 1 3 1 2 1 2 3
16 2 3 1 2 1 2 3 3 1 2
17 2 3 1 2 2 3 1 1 2 3
18 2 3 1 2 3 1 2 2 3 1
19 3 1 3 2 1 3 2 1 3 2
20 3 1 3 2 2 1 3 2 1 3
21 3 1 3 2 3 2 1 3 2 1
22 3 2 1 3 1 3 2 2 1 3
23 3 2 1 3 2 1 3 3 2 1
24 3 2 1 3 3 2 1 1 3 2
25 3 3 2 1 1 3 2 3 2 1
26 3 3 2 1 2 1 3 1 3 2
27 3 3 2 1 3 2 1 2 1 3

Using the results of experiments designed using the Taguchi method and after ana-
lyzing the results of the experiments, the optimal combination of factor levels and output
voltage and cost values are calculated at the optimal point. The effect of each level is listed
in Table 4.

Table 4. The Average Value of Levels.

Value Tavg (Nm) Trip THDU

Level 1 2 3 1 2 3 1 2 3

β1 9.80 9.82 9.79 0.43 0.41 0.41 0.41 0.37 0.39
β2 9.57 9.97 9.82 0.55 0.32 0.35 0.39 0.38 0.39

dm1 10.12 9.80 9.77 0.34 0.44 0.44 0.39 0.38 0.39
dm2 9.72 9.68 9.85 0.41 0.43 0.43 0.39 0.38 0.39
wb1 9.26 10.13 9.61 0.42 0.43 0.44 0.39 0.37 0.39

wrib1 9.64 9.99 9.73 0.38 0.41 0.39 0.35 0.42 0.36
wrib2 9.93 9.85 9.81 0.43 0.43 0.42 0.38 0.39 0.38
syoke 9.98 9.42 9.86 0.42 0.42 0.41 0.39 0.38 0.39
stooth 9.58 9.99 9.87 0.43 0.41 0.44 0.41 0.36 0.38

lso 9.82 9.88 9.83 0.41 0.45 0.43 0.38 0.38 0.38

Figures 11–13 present the output graph for different levels of each parameter. It can be
observed that Tavg is most sensitive to Syoke and Stooth, while Trip is most sensitive to β2, wb1
and Stooth. On the other hand, wb1 and Stooth have the greatest influence on THDU.
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Table 5 gives the initial parameters and Taguchi-MEC optimized parameters. Table 6
compares the Tavg, Trip and THDU. As can be seen, the final results obtained by Taguchi-
MEC are very close to those obtained by the multi-object optimization carried out on
JMAG. It should be emphasized that the total time needed for Taguchi-MEC is 10 min
(including nearly 8 min organizing data), while the time needed for JMAG is nearly 58 h
(43,086 elements in mesh and 180 steps in each case). Overall, the proposed Taguchi-MEC
method exhibits the great advantage of fast calculation with promising accuracy.

A brief comparison of the proposed 12/4 SynRM with existing state of the art is carried
out. Figure 14 shows the 12/4 SynRM with concentrated winding (CW) and its counterpart,
i.e., the 12/4 SynRM with distributed windings (DW). As can be seen, the end winding in
the CW machine is much smaller than the DW one; thus, more laminations can be adopted
when the same stack length is achieved. A higher copper fill factor and more coil turns
are also obtained by the CW machine. More details regarding design specification and
electromagnetic performances are given in Table 7, where the DW SynRM is optimized by
a multi-object optimization method carried out on JMAG. The fault tolerant capability is
evaluated by the mutual linkage coefficient kml, which is also given in Table 7.
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Table 5. Comparison of the Parameters and Performances.

Parameters Initial Optimized by Taguchi-MEC

β2 12.0◦ 12.4◦

wb1 3.50 mm 10.00 mm
stooth 11.00 mm 11.12 mm
syoke 11.00 mm 11.38 mm
β1 12.00◦ 11.10◦

dm1 3.50 mm 4.41 mm
wrib1-1 0.60 mm 0.58 mm
wrib2 0.50 mm 0.28 mm
dm2 2.50 mm 3.50 mm

wrib1-2 0.60 mm 0.50 mm
lso 1.0 mm 1.0 mm

Table 6. Comparison of the Optimization Results Between Taguchi-MEC and FEA.

Results Initial Taguchi-MEC FEA (by JMAG)

Tavg 9.40 Nm 9.82 Nm 9.90 Nm
Trip 37.4% 31.2% 30.5%

THDU 37% 35% 35%

kml =
∑360

θ=0(|Mab|)
∑360

θ=0(Laa)
(19)

where θ is electrical rotor position. The smaller kml indicates weaker mutual linkage between
armature phases and thus better fault tolerant capability. As can be seen from Table 7,
the proposed 12/4 CW SynRM shows a better torque output result and much better kml
than the traditional 12/4 DW SynRM. The advantage of the torque performances of the
CW machine is more obvious when the total stack length is smaller than 95 mm since the
proportion of lamination length to total stack length varies with available space in stack.
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Table 7. Design Specifications of the 12/4 SynRMs.

Item Distributed Winding Concentrated Winding

Outer diameter 150 mm 150 mm
Lamination length 50 mm 75 mm
Total end winding 45 mm 20 mm
Total stack length 95 mm 95 mm

Turns per coil 30 40
Copper fill factor 0.5 0.58
Average torque 9.6 Nm 9.9 Nm
Torque ripple 30% 30.5%

Mutual linkage coefficient, kml 50% 14%
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6. Experimental Validation

The experimental setup shown in Figure 15 consists of a prototyped 12/4 SynRM and
a back-to-back load machine, which are both controlled by inverters. The load machine
of the experimental platform supports the torque range of 50 Nm and the max speed of
15,000 r/min. The inverter supports the power of 30 kW/60 A. The torque sensor supports
the torque range of 50 Nm/10 Nm with the accuracy of 0.1%, respectively. The torque
shown in Figure 16 is measured by a sensor positioned between the SynRM and the load
machine. Figure 17 compares the torque values obtained by MEC and FEA, and as can be
seen, good agreements are achieved. The FEA calculated losses and efficiency is given in
Table 8, and the measured efficiency under different rotor speed is presented in Figure 18.
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Table 8. Power loss and efficiency at rated operation.

Item FEA Results

Iron loss 15.7 W
Copper loss 130.8 W
Efficiency 91.40%

Power factor 0.65
Speed 1500 r/min
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7. Conclusions

This paper demonstrates the electromagnetic performance of a 12/4 SynRM with
concentrated windings. The non-linear MEC model of the 12/4 SynRM is built to get the
air-gap flux density, coil flux-linkages, armature winding inductances, etc. The saturation
effect is counted in by the MEC. The MEC model is validated by 2D-FEA. Then, the
parameter optimization method based on Taguchi and MEC is proposed, aiming at the best
average torque, lowest torque ripple and THD in phase voltage. Overall, the proposed
Taguchi-MEC method exhibits comparable accuracy with traditional FEA-based multi-
object parameter optimization methods, but using much less time. It should be emphasized
that the MEC is not used to deal with complex topologies such as a rotor with a non-uniform
rotor iron shape or rotor outline. Nevertheless, the proposed MEC-Taguchi method can be
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employed to obtain a roughly optimized topology that can be used as the initial design to
be further optimized by FEA.
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