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Abstract: This paper proposes a type-2 fuzzy controller for floating tension-leg platforms in wind
turbines. Its main objective is to stabilize and control offshore floating wind turbines exposed to
oscillating motions. The proposed approach assumes that the dynamics of all units are completely
unknown. The latter are approximated using the proposed Sugeno-based type-2 fuzzy approach.
A nonlinear Kalman-based algorithm is developed for parameter optimization, and linear matrix
inequalities are derived to analyze the system’s stability. For the fuzzy system, both rules and
membership functions are optimized. Additionally, in the designed approach, the estimation error
of the type-2 fuzzy approach is also considered in the stability analysis. The effectiveness and
performance of the proposed approach is assessed using a simulation study of a tension leg platform
subject to various disturbance modes.

Keywords: wind turbine; intelligent control; type-2 fuzzy control (T2FLC); learning algorithm;
tension leg platforms (TLP)

1. Introduction

Wind energy has been one of the fastest growing renewable energy sources in the
world. The global onshore and offshore installed wind-generation capacity has seen an
annual increase of 14% on average, reaching 743 GW in 2020 [1]. The size of the wind
turbines has seen a steady increase over the years as well. This has led to increased interest
in installing wind turbines and floating wind turbines offshore. Since offshore wind speeds
tend to be faster and steadier than those on land, offshore wind farms can be made larger
and generate more energy than those onshore with less physical impact [2,3].

Floating WTs can be installed in three ways, including floating foundation, tension
leg platform (TLP), and barge, the stability of which requires special techniques. The first
technique is related to floating rigs, the weight of which becomes heavy by accumulating
sand in the lower part of the rig. Then, strong cables are connected to the end of the rig to
attach it to the seabed. The second technique is associated with TLP rigs, which achieve
static stability using tensile restraining cables and floating force resulting from the presence
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of a tank at the bottom of the tower. The third technique is specific to the rigs that are
placed on floating platforms connected to the seabed by cables. The TLP connection has
various advantages. These platforms are significantly more secure than fixed platforms in
earthquake-prone areas. Moreover, the cost of installing TLP rigs is lower than that of the
protected structures, especially at the deep seabed. TLP systems can be easily deployed
and transported depending on local conditions [4,5].

The limitations of conventional design methods, including low attenuation of struc-
tural systems and materials for absorbing the energy of dynamic loads as well as having
constant dynamic properties incompatible with external dynamic loads, have led to the
development of modern methods in order to design durable structures and reduce damage
to rigs. Structural control systems have been developed to reduce unwanted vibrations
applied to the main system for any reason [6,7].

Since the collision of turbulent sea waves with these platforms causes unwanted
oscillatory motion and spatial instability of turbine rigs, designing suitable controllers to
mitigate this spatial instability is of great importance. Several researchers have proposed
methods for controlling and stabilizing TLP systems. Chen et al. investigated the stability
of TLP systems using Lyapunov’s stability method and a fuzzy logic system (FLS), and
designed a controller considering a constant delay [8,9]. Amini et al. examined the con-
trol of TLP systems using linear-matrix inequalities (LMI) and a type-1 fuzzy controller
considering uncertainty, delay and disturbance [10,11]. The adaptive FLSs are used in
various uncertain problems [12,13]; however, for TLP, FLS-based controllers have been
rarely designed.

Designing an appropriate controller for nonlinear systems in the presence of uncer-
tainties is among the most important topics in control design. Methods developed based
on Lyapunov stability and neural networks as well as FLS controllers have very good
performance in the presence of noise and uncertainties [14]. Applying fuzzy logic to the
sliding surface can increase the desired signal tracking accuracy, reduce chattering and
minimize the control effort [15]. Due to the widespread use of fuzzy logic-based systems
in various fields of engineering, developing fuzzy systems has attracted the attention of
many researchers. Interval type-2 (T2) FLS, which includes membership functions (MFs)
of fuzzy intervals, was proposed and proved to be more resistant to uncertainties than
type-1 fuzzy logic. Interval T2FLS has many applications, the most recent of which includes
fault detection [16,17], robotic control [18], medical diagnose [19], prediction problems [20],
risk diagnosis [21] and financial investment [22]. The general T2FLS was introduced to
improve IT2FLS performance in various applications. In [23], the general type-2 fuzzy set
with optimal MFs was examined for frequency tuning in AC microgrids (MGs). In [24], a
GT2FLS was used for the edge detection problem. A general type-2 fuzzy classifier (GT2FC)
was proposed by Ontiveros-Robles and Melin [25], for the diagnosis problems. Shukla and
Muhuri [26] proposed a general type 2 fuzzy decision-making approach (GT2DM). They
applied this method to travel time selection. Results revealed that GT2DM outperforms
interval type-2 (IT2DM) in decision-making.

Type-3 (T3) FLS was introduced to improve the behavior of GT2FLS in the presence of
uncertainties. It provided significant performance in various engineering applications. The
upper/lower bounds of uncertainty are not fixed in T3FLS and its secondary membership
is not the same as that of T2FLS. A deep-learned T3FLS was proposed in [27] by Cao et al.
to model and estimate renewable energy. The proposed recurrent T3FLS has a nonlinear
structure. Furthermore, the optimal version of the membership function, rule parameters,
and the level of upper/lower slices were presented. A novel approach based on T3FLS
was presented for voltage management in fuel/PV/battery [28]. The superiority of the
proposed methodology was assessed via a comparison study with classic SMC, PID and
PBC. In another study, a new technique was presented by Liu et al. [29] using T3FLS and
an online learning approach for solar energy management. They evaluated the stability
and robustness of the proposed method. A new optimized version of T3FLS using an
unscented Kalman filter (UKF) was used to solve singular multi-pantograph differential
equations (SMDEs) [30]. Non-singleton T3FLS, fractional-order and an IT3FLS controller
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were proposed for control of gyroscopic MEMS [31]. Non-singleton T3FLS was employed
for fault detection in industrial applications [32]. It was shown that the designed method
can tackle non-Gaussian noise. Moreover, nonlinear unscented Kalman filters with fuzzy
kernel sizes were employed for learning non-singleton T3FLS. A novel controller based on
T3FLS was designed by Tian et al. [33] for autonomous road vehicles (VRAs). Adaptive
learning algorithms were employed to adjust the IT3FLS. The stability and robustness of
the designed controller were investigated using adaptation rules and compensators.

Reviewing the literature reveals that in most previous studies, the uncertainties and
effects of perturbations such as turbulence and sea waves have not been carefully studied.
To the best of our knowledge, most previous studies have not properly addressed the
uncertainties and effects of perturbations such as turbulence and sea waves in TLP-based
floating wind turbines. Hence, designing a controller with high accuracy and resistance
to perturbations and uncertainties is of particular importance for TLP systems due to
turbulence and sea waves causing oscillating and unstable motions. The present study
aimed to design a novel control system to stabilize and control TLP systems, improve
system performance and resolve the weaknesses of past works. In [34], a simple controller
was presented based on the Lyapunov function and optimization algorithms for TLP.
However, important parameters such as time delay and uncertainty were not considered.
Another study analyzed only a simple model of a TLP system [35]. The proposed model
in [8] improved the model presented in [9] by adding a fixed delay term. In [10], a controller
was developed based on T1FLS and LMI considering the effects of uncertainty and time
delay. As stated in the research background on fuzzy system development, high-order
fuzzy control systems have higher resistance to uncertainties and perform properly in
noisy and disturbing environments. Given that only old fuzzy systems were addressed
in previous studies, this paper aims to design a control system based on a type-2 Sugeno
fuzzy systems and square-root cubature Kalman filter (SCKF) and compare its performance
with previous classical methods. The main contributions of this work are as follows:

• Development of a new Sugeno-based fuzzy approach to identify the unknown dy-
namics of TLP.

• Derivation of new LMI-based conditions to ensure system stability.
• A design that considers, in addition to perturbations such as turbulence and sea waves,

the effect of estimation errors.
• Optimization of all parameters using the square-root cubature Kalman filter (SCKF).

The remainder of this paper is organized as follows. The dynamic model of the TLP
system is provided in Section 2. Its representation using a type-2 Sugeno fuzzy system is
described in Section 3. The square-root cubature Kalman filter is given in Section 4. System
stability is analyzed in Section 5. Simulation results illustrating the performance evaluation
of the proposed approach are presented in Section 6. Some concluding remarks are finally
drawn in Section 7.

2. Modeling and Formulation of the TLP Systems

The general model of the tension leg platform (TLP) system is shown in Figure 1. The
TLP systems used in this paper were based on the design proposed by Grad-Hassan [36].
Due to the collision of sea waves with TLP rigs, spring-like fluctuations were observed on
the surface of the rigs. By modeling equations of motion (EOMs) of spring, the EOM could
be written as follows:

[M + A∞]ζ̈ +

t∫
0

ι(t− τ) .ζ̇dτ + Dζ̇ + Cζ = X (t) + FT (1)
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Figure 1. Schematic representation of tension leg platform

In order to model the system considering floating hydrodynamic and aerodynamic
models as well as calculations and equations presented in [36,37] regardless of high orders
and nonlinear terms, the dynamic model and state-space equations of TLP systems could
be obtained as follows:

Ẋ (t) = AX(t) + BU(t) + fe(t)Ψ(t) = CX(t) + DU (2)

where the system’s state variables and inputs are defined as follows:

X (t) = [χr(t) χp(t) χv(t) χ1(t)
χ2(t) χ3(t) χ4(t)]T

U (t) = [∆TGen(t) ψ(t)]T
(3)

The parameters are described in Table 1.
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Table 1. Parameter description.

Parameter Description

M System mass (mast + turbine)

A∞
Mass added to the system by wave effect for

infinite frequencies

K(t) The forgetting function is related to the effects
of hydrodynamic memory

C System energy saving coefficient
D Linear adjustment coefficient of the system

ζ(t) Spatial displacement
F(t) Time-dependent wave excitation forces
FT(t) Time-dependent aerodynamic force

xr(t), (rad/s) Average rotor rotation speed
xp(t) Deviation from the average wave location

xv(t), (m/s) Wave speed
x1(t), x2(t), x3(t), x4(t)

(
Nm

s

)
Effects of system memory

fe(t) Disorder entered on the system

3. Type 2 Fuzzy Takagi-Sugeno

In order to consider uncertainties, the system dynamics are modeled using a type-2
Takagi-Sugeno fuzzy system. The Gaussian membership functions (MFs) are considered
for inputs. The rules are written as:

Rule i: IF ω1(χ(t)) is Mi
1 AND . . . AND ωp(χ(t)) is Mi

p THEN:

χ̇(t) = Aiχ(t) + Biu(t), y(t) = Ciχ(t) (4)

where the number of rules is r, and the number of MFs is two for each input. The centers of
MFs are considered to be the left and right bounds of the input range. In (4), ω(χ(t)) =
{ω1(χ(t)), . . . , ωa(χ(t))} represents the premise of variables that are usually a function
of state variables, Mi

a, i = 1, 2, . . . , r indicates the fuzzy set, and u(t), y(t), Ai and Bi are
system matrices. The i-th rule could be expressed as the following interval sets:

Wi(χ(t)) = [υi(χ(t)) ῡi(χ(t))] (5)

where υi(χ(t)) and ῡi(χ(t)) are the lower and upper firing strength in the i-th rule, respec-
tively, which are expressed as follows:

ῡi(χ(t)) =
p

∏
a=1

µ̄Mi
a
(ωa(χ(t)) υi(χ(t)) =

p

∏
a=1

µ
Mi

a
(ωa(χ(t)) (6)

where µ
Mi

a
(ωa(χ(t)) ≥ 0 and µ̄Mi

a
(ωa(χ(t)) ≥ 0 are the lower and upper membership

functions, respectively. Thus, it could be said for all of the rules that µ̄Mi
a
(ωa(χ(t)) ≥

µ
Mi

a
(ωa(χ(t)) and ῡi(χ(t)) ≥ υi(χ(t)). The IT2TS fuzzy system could be expressed as

follows:
χ̇(t) =

r
∑

i=1
υi(χ(t))[Aiχ(t) + Biu(t)],

y(t) =
r
∑

i=1
υi(χ(t))Ciχ(t),

(7)
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where:
υ̃i(χ(t)) = Υ(χ(t))υi(χ(t)) + Ῡ(χ(t))ῡi(χ(t))

υi(χ(t)) =
υ̃i(χ(t))

r
∑

j=1
υ̃j(χ(t))

r

∑
i=1

υi(χ(t)) = 1

(8)

where Ῡ(χ(t)) and Υ(χ(t)) are nonlinear functions with the following characteristics:

0 ≤ Υ(χ(t)) ≤ 1
0 ≤ Ῡ(χ(t)) ≤ 1

Υ(χ(t)) + Ῡ(χ(t)) = 1
(9)

4. Learning Using a Square-Root Cubature Kalman Filter (SCKF)

The parameters of the second-order Takagi-Sugeno fuzzy system rules were tuned
using the square-root cubature Kalman filter (SCKF) algorithm. The main advantage of
SCKF over methods such as gradient descent, extended Kalman filter (EKF) and Lyapunov-
based methods are that the nonlinear structure of FLS is preserved in the SCKF method.
Moreover, other nonlinear methods such as unscented Kalman filter (UKF), EKF, and
quadratic Kalman filter depend on the dimension of the problem. To use the Kalman filter
(SCKF), the state-space model could be expressed as follows:

φk+1 = φk + Vk
Υk+1 = Υk + Wk

(10)

where Vk and Wk are Gaussian noises associated with process and measurement, the
covariances of which are Qk−1 and Rk, respectively.

a. The square root of the error covariance was considered as θk−1 at k.
b. Cubature points were calculated as follows (i = 1, 2, 3, . . . , m):

Zi,k−1 = θk−1ξi + Ẑk−1 (11)

where m = 2N, ξi =
√

N and N are the number of free parameters and Ẑk−1 denotes
the parameters predicted by the second-order fuzzy system.

c. Compute the propagated cubature points:

Υi,k−1 = T2FLS(φi,k−1) (12)

d. Estimate:

Υ̂i, k|k−1 =
1
m

m

∑
i=1

Υi, k|k−1 (13)

e. The square root of the innovation covariance matrix was calculated as θz,k−1 =
Tria([λk−1 θR,k]), where θR,k represents the square root factor of Rk, so that Rk =
θR,kθT

R,k. The weighted centered matrix could be expressed as follows:

λk−1 = 1
j[

Υ1,k−1 − Υ̂1,k−1, Υ2,k−1 − Υ̂2,k−1, . . . Υj,k−1 − Υj,k−1

] (14)



Energies 2022, 15, 1705 7 of 19

f. Compute the cross-variance matrix:

Φxz,k−1 = κk−1λT
k−1κk−1

= 1
j

[
Z1,k−1 − Ẑ1,k−1, Z2,k−1 − Ẑ2,k−1, . . . ,

Zj,k−1 − Ẑj,k−1

]
(15)

g. Estimate the Kalman gain:

Wk = (Φxz,k−1/ZT
zz,k−1)/ZT

zz,k−1 (16)

h. Compute the updated state:

φ̂k = φ̂k−1 + Wk(Υk − Υ̂k−1) (17)

i. Calculated covariance error:

Zzz,k−1 = Tria([κk−1 −Wkλk−1 WkZR,k]) (18)

The state-space equations could be expressed as follows considering disturbances,
time delays and a fuzzy model:

.
X (t) = AX(t)+

n
∑

i=1
[Adi + ∆Adi(t)]X (t− τi(t))

+BU(t) + fe(t)
Ψ(t) = CX(t) + DU(t)

(19)

where X (t), A/Adi, B, C, E and U (t) are n × 1, n × n, n × m, m × n, n × m and m × 1
matrices, respectively. fe = Eϕ(t) is the disturbance and τi(t) denotes the time-delay, so
that the value of the time delay derivative is in the range of ζk for all of the values of
I = 1, 2, . . . , n. According to |τ̇k(t)| ≤ ζk < ζ, ζ is the upper bound for ζk. Uncertainties of
system 19 were considered as follows:

∆Adi(t)DFl(t)Hi (20)

where D and Hi denote fixed matrices and Fl(t) is an unknown and time-varying matrix,
so that the following inequality is always established:

FT
l (t)Fl(t) ≤ I , ∀t (21)

5. Stability Analysis

To prove TLP system stability, applying the following lemmas to systems with uncer-
tainties and time delays makes it possible to achieve a robust controller.

Lemma 1. For any x and z defined as matrices or vectors, the following inequality is always
established [8]:

xTz + zTx ≤ αxTx + α−1zTz (22)

Lemma 2. A set of nonlinear inequalities as Q(χ) − Υ(χ)R−1(χ)ΥT(χ) > 0 , R(χ) > 0
where R(χ) = RT(χ) and Υ(χ) = ΥT(χ) could be converted into LMI as follows [38]:

[Q(χ) Υ(χ)Υ(χ)T R(χ)] > 0 (23)
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To eliminate the disturbance effects, consider ∀ 0 < ‖ fe(t)‖2
sup

< ∞ → ‖Ψ(t)‖2
‖ fe(t)‖2

≤

γ−1, where γ represents a constant. Then:

ΨT(t)Ψ(t) ≤ γ−2ETEϕT(t)ϕ(t)→
ΨT(t)Ψ(t)γ− γ−1ETEϕT(t)ϕ(t) < 0

(24)

Then, the positive definite function of V(χ(t)) is defined as a Lyapunov candidate
as follows:

V(χ(t)) = X T(t)QX (t)+
n
∑

i=1

∫ t
t−τi(t)

X T(τi(t))RiX (τi(t)) dτi
(25)

where Q = QT � 0 and Ri = RT
i � 0 are determined. After obtaining the derivative of

V(χ(t)), this results in:

V̇(χ(t)) + ΨT(t)Ψ(t)γ− γ−1ETEϕT(t)ϕ(t) < 0 →
V̇(χ(t)) +X T(t)CTCX(t)γ− γ−1ETEϕT(t)ϕ(t) < 0 (26)

Since the second term of (1) is negative, we should investigate the conditions under
which the derivative of function V(χ(t)) becomes negative, so that (26) becomes less than
zero. For this purpose, the derivative of (25) was calculated, assuming that the time-delay
derivative is always in the range of ζk

V̇(χ(t)) = Ẋ T
(t)QX (t) +X T(t)QẊ (t)

+
n
∑

i=1
X T(t)RiX (t)

−
n
∑

i=1
(1− ζi)X T(t− τi(t))RiX (t− τi(t))

(27)

By substituting the value of Ẋ (t) into the above equation and considering U (t) = KX(t),
we have:

V̇(χ(t)) = X T(t)[A + Bι]TQX (t)+
n
∑

i=1
X T(t− τi(t))(Adi + ∆Adi(t))

TQX (t)

+ϕT(t)ETQx(t) +X T(t)Q[A + Bι]X (t)+

X T(t)Q
n
∑

i=1
(Adi + ∆Adi(t))X (t− τi(t))+

X T(t)QEϕ(t) +
n
∑

i=1
X T(t)RiX (t)−

n
∑

i=1
(1− ζi)X T(t− τi(t))RiX (t− τi(t))

(28)

Considering (20) and (28), we obtain:

V̇(χ(t)) = X T(t)
[

Q( A + Bι) + (A + Bι) TQ
]
X (t)+

X T(t)
[

QDFlE1 + E1
T Fl

T DTQ
]
X (t)+

X T(t)
[

QDFlE2ι + ιE2
T Fl

T DTQ
]
X (t)+
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X T(t)Q
n
∑

i=1
AdiX (t− τi(t))

+X T(t)Q
n
∑

i=1
DFl HiX (t− τi(t))

+
n
∑

i=1
X T(t− τi(t))Adi

TQX(t)

+
n
∑

i=1
X T(t− τi(t))Hi

T Fl
T DTQX (t)

+ϕT(t)ETQX (t) +X T(t)QEϕ(t)+
n
∑

i=1
X T(t)RiX (t)−

n
∑

i=1
(1− ζi)X T(t− τi(t))RiX (t− τi(t))

(29)

According to Lemma 2, the following inequalities could be obtained:

X T(t)
[

QDFlE1 + E1
T Fl

T DTQ
]
X (t)

≤ α1X T(t)QDDTQX (t) + α1
−1X T(t)E1

TE1X (t) (30)

X T(t)
[

QDFlE2ι + ιE2
T Fl

T DTQ
]
X (t)

≤ α2X T(t)QDDTQX (t) + α2
−1X T(t)ιTE2

TE2KX(t) (31)

X T(t)Q
n
∑

i=1
DFl HiX (t− τi(t))

+
n
∑

i=1
X T(t− τi(t))Hi

T Fl
T DTQX (t) ≤

n
∑

i=1

(
βiX T(t)QDDTQX (t)

)
+

n
∑

i=1

(
βi
−1χT(t− τi(t))Hi

T HiX (t− τi(t))
)

(32)

Based on (30)–(32) and placing them in (29), we have:

X T(t)
[

Q( A + Bι) + (A + Bι) TQ
]
X (t)

+α1X T(t)QDDTQX (t) + α2X T(t)QDDTQX (t)

+
n
∑

i=1

(
βiχ

T(t)QDDTQX (t)
)
+

n
∑

i=1

(
βi
−1χT(t− τi(t))Hi

T HiX (t− τi(t))
)

+X T(t)Q
n
∑

i=1
AdiX (t− τi(t))

+
n
∑

i=1
X T(t− τi(t))Adi

TQX(t) + ϕT(t)ETQX (t)

n
∑

i=1

(
βi
−1χT(t− τi(t))Hi

T HiX (t− τi(t))
)

+X T(t)Q
n
∑

i=1
AdiX (t− τi(t))

+
n
∑

i=1
X T(t− τi(t))Adi

TQX(t) + ϕT(t)ETQX (t)

(33)
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By substituting (33) into (26), the following result is obtained:

X T(t)
[

Q( A + Bι) + (A + Bι) TQ
]
X (t)

+α1X T(t)QDDTQX (t) + α2X T(t)QDDTQX (t)

+
n
∑

i=1

(
βiχ

T(t)QDDTQX (t)
)
+

n
∑

i=1

(
βi
−1χT(t− τi(t))Hi

T HiX (t− τi(t))
)
+

X T(t)Q
n
∑

i=1
AdiX (t− τi(t))+

n
∑

i=1
X T(t− τi(t))Adi

TQX(t) + ϕT(t)ETQX (t)+

X T(t)QEϕ(t) +
n
∑

i=1
X T(t)RiX (t)−

n
∑

i=1
(1− ζi)X T(t− τi(t))RiX (t− τi(t))

+X T(t)CTCX(t)γ− γ−1ETEϕT(t)ϕ(t) < 0

(34)

Inequality (34) could be rewritten as follows:
X (t)

X (t− τ1(t))
...

X (t− τi(t))
ϕ(t)



TΩ̄0 +


C
0
...
0
0



T

γ


C
0
...
0
0



·


X (t)
X (t− τ1(t))

...
X (t− τi(t))

ϕ(t)

 < 0

(35)

∆ = Ω̄0 +


C
0
...
0
0



T

γ


C
0
...
0
0

 < 0 (36)

where:

Ω̄0 =


Γ00 Γ01 . . . Γ0i Γ0 i+1
∗ Γ11 0 0 0
... ∗ . . . 0 0
∗ ∗ ∗ Γii 0
∗ ∗ ∗ ∗ Γi+1 i+1

 (37)

where i = 1, 2,. . . , n and * indicate the elements of matrix 35 that are transmitted symmetri-
cally relative to the main diagonal.

Γ00 = Q(A + Bι) + (A + Bι)TQ

+

(
α1 + α2 +

n
∑

i=1
βi

)
QDDTQ

+
n
∑

i=1
RiΓ01 = QAd1Γ0i = QAdiΓ0 i+1 =
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QEΓ11 = β1
−1H1

T H1 − (1− ζ1)R1
...

Γii = βi
−1Hi

T Hi
−(1− ζi)RiΓi+1 i+1 = −ETEγ−1 I

(38)

Defining ∆ as (36) and considering (38), one has:

∆ =



Q(A + Bι) + (A + Bι)TQ +

(
α1 + α2 +

n
∑

i=1
βi

)
QDDTQ

+
n
∑

i=1
Ri

∗
...
∗
∗

QAdi . . . QAdi QE
β1
−1H1

T H1 − (1− ζ1)R1 0 0 0
...

. . . 0 0
∗ ∗ βi

−1Hi
T Hi − (1− ζi)Ri 0

∗ ∗ ∗ −ETEγ−1 I

+


C
0
...
0
0



T

γ


C
0
...
0
0

 < 0 (39)

Using Lemma 1, inequality (39) becomes:

∆ =



Q(A + Bι) + (A + Bι)TQ +

(
α1 + α2 +

n
∑

i=1
βi

)
QDDTQ

+
n
∑

i=1
Ri

∗
...
∗
∗
∗

QAdi . . . QAdi
β1
−1H1

T H1 − (1− ζ1)R1 0 0
...

. . . 0
∗ ∗ βi

−1Hi
T Hi − (1− ζi)Ri

∗ ∗ ∗
∗ ∗ ∗

QE CT

0 0
0 0
0 0

−ETEγ−1 I 0
∗ −γ−1 I

 < 0 (40)

By achieving the above equation, the derivative of the Lyapunov function becomes
negative and system stability is ensured.

Remark 1. In this paper, an LMI-bases approach is developed for robustness analysis of the designed
type-2 FLC. The readers can find other methods for robustness analysis of Type-2 FLCs in [11,39,40].

6. Simulation

As shown in the previous section, TLP systems are unstable under three modes: distur-
bances, multiple time-varying delays, and uncertainties. As described in this section, after
calculating the required parameters, a simulation was performed in MATLAB-Simulink.
LMIs were used to obtain the control gain. In the previous section, the matrix inequality
of (40) was obtained while proving the system stability. The resulting inequality was not
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affine. An affine expression could be achieved by multiplying both sides of the inequality
by diag(P, I, I, I, · · · , I, I, I). In this case, optimal values of P, L, α1, α2, β̄1, β̄2, β̄3, γ̄, R̄1, R̄2
and R̄3 were computed considering three time-varying delays (n = 3) and wind speeds of
16 and 24 m/s, so that P = Q−1, L = KP,βi

−1 = β̄i, γ−1 = γ̄ and Ri
−1 = R̄i. According to

the mentioned conditions, (40) and (20) were converted into the following forms:

.
X (t) = [A + ∆A(t)]X (t)+

3
∑

i=1
[Adi + ∆Adi(t)]X (t− τi(t))

+[B + ∆B(t)]U (t) + Eϕ(t)

(41)

∆ =



AP + BL + PAT + LTBT

+α1 + α2 + β1 + β2 + β3
Ad1 Ad2

∗ β̄1H1
T H1 − (1− ζ1)R1 0

∗ ∗ β̄2H2
T H2 − (1− ζ2)R2

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

Ad3 E PCT P E2L P P P
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

β̄3H3
T H3 − (1− ζ3)R3 0 0 0 0 0 0 0

∗ −ETEγ̄I 0 0 0 0 0 0
∗ ∗ −γ̄I 0 0 0 0 0

∗ ∗ ∗ −α1

(
E1

TE1

)−1
0 0 0 0

∗ ∗ ∗ ∗ α2 I 0 0 0
∗ ∗ ∗ ∗ ∗ −R̄1 0 0
∗ ∗ ∗ ∗ ∗ ∗ −R̄2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −R̄3



< 0 (42)

Ad1 =



0.8 0.2 0.05 0 0.07
0 0 0.17 0.01 0
0 0.01 0 0 0.15

0.1 0.2 −0.06 0.07 0.021
0.1 0.02 0 0 0
0.2 0.3 0.05 0.01 0.01
0.1 0.1 0 0.01 0

0 −0.1
0.01 0.1

0 0.1
0 0.12
0 0.01
−0.02 0.1

0 0.1



Ad2 =



−0.6 0.15 −0.05 0 0
−0.1 0.5 0 0 0.01
0.21 0.1 0 0 0.25
0.06 −0.5 −0.06 0.07 0.121
0.1 −0.15 0 0 0.01
−0.3 0.05 0.25 0.01 −0.01
0.2 0.1 0 −0.01 0.01

0.3 0.12
0 0.1
0 0.1
0 0.2
0 0.3
−0.12 1
−0.21 −0.1


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Ad3 =



−0.8 0.015 −0.15 0 0
−0.1 0.05 0 0 0.1
−0.1 0.1 0 0 0.015
0.06 −0.05 −0.06 0.07 0.21
0.01 0.15 0.1 0 0.1
−0.03 0.05 0.025 0.01 0.1
0.02 0.1 0.2 −0.01 0.01

0.03 0.1
0 0.2
0 0.1
0 0.02
0 0.3

0.12 1
−0.1 0.1


(43)

D = I, ζ1 = ζ=2 = ζ3 = 0.5, E1 = 0.2I,
E2 = 0.3I, H1 = 0.4I, H2 = 0.5I

(44)

H3 =[
1 0 0.5 −0.25 0.23 −0.05 −0.2
0 1 1 0.02 −0.1 0.6 0.32

]T (45)

F1(t) = sin(t)/2 , F2(t) = cos(2t)/2 ,
F3(t) = (sin(3t) + cos(t))/2
F4(t) = (sin(2t) + cos(t))/2, F5(t) = cos(2t)/2

(46)

The necessary gain for the fuzzy TS controller was achieved by obtaining the optimal
value of ι1.

ι1 =

[
3.4659 −3.0050 0.1515 −1.1428 0.3853 1.3840 2.9467
−10.3529 8.9760 0.4524 3.4136 −1.1509 −4.1339 − 8.8019

]
ι2 =

[
015.7412 12.6518 −0.7701 5.1992 −1.5073 −6.0574 −17.0996
48.0559 038.6244 2.3511 −15.8726 4.6017 18.4923 52.2028

] (47)

In the first scenario, the initial conditions of the system were considered as:

χ0 =[
−0.5 0.25 0.01 0.5 −0.2 −0.75 0.3

]T (48)

and the applied disturbance was set to ϕ(t) = 100 sin(πt). From Figure 2, time-delays
were considered as τ1(t) = 0.5 sin

(
π
3 t
)

with a sawtooth wave.

0 5 10 15 20 25Time (s)
-1

-0.5

0

0.5

1

1.5

2

A
m

pl
it

ud
e

Figure 2. System delays related to Scenario 1.

The Figures 3–9 illustrate the behavior of the system’s state variables and how they
converged to zero with minimal fluctuations.
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0 5 10 15 20 25Time (s)
-0.6

-0.4

-0.2

0

0.2
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Figure 3. Time response of xr related to Scenario 1.
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Figure 4. Time response of xp related to Scenario 1.
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Figure 5. Time response of xv related to Scenario 1.
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Figure 6. Time response of x1 related to Scenario 1.
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Figure 7. Time response of x2 related to Scenario 1.
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0 5 10 15 20 25Time (s)
-2
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0

1

2

Figure 8. Time response of x3 related to Scenario 1.
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0.1

0.2

0.3

Figure 9. Time response of x4 related to Scenario 1.

In the second scenario, the initial conditions were considered as
χ0 = [−0.9 −0.2 0.1 0.05 −0.6 −0.7 −0.8]T and the applied disturbance was set
to ϕ(t) = 100 + 60 cos(3πt) + χ4 × 80 sin(2πt). From Figure 10, time-delays are a pulse
wave at the amplitude of first state as well as a sawtooth wave of τ3(t) = cos(πt) at the
amplitude of first state.

0 5 10 15 20 25Time (s)
-2

-1

0

1

2

A
m

pl
it

ud
e

Figure 10. System delays related to Scenario 2.

After applying the above values, the system was simulated using Simulink-MATLAB.
The obtained results are depicted in Figures 11–17.

0 5 10 15 20 25Time (s)

-0.8

-0.6

-0.4

-0.2

0

0.2

Figure 11. Time response of xr related to Scenario 2.
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Figure 12. Time response of xp related to Scenario 2.
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Figure 13. Time response of xv related to Scenario 2.
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Figure 14. Time response of x1 related to Scenario 2.
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Figure 15. Time response of x2 related to Scenario 2.
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Figure 16. Time response of x3 related to Scenario 2.
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Figure 17. Time response of x4 related to Scenario 2.

This study aimed to stabilize and minimize oscillations caused by the collision of sea
waves with TLPs. Therefore, the necessary conditions were provided for designing a fuzzy
controller using the linear matrix inequality technique. Results of implementing the system
in the two scenarios revealed that all of the system state variables converged to zero within
a short period of time.

To better examine the accuracy of the designed approach, a comparison analysis was
carried out with some related methods, such as a type-1 fuzzy controller (T1FLC) [10] and
integral load control (ILC) [41]. The RMSEs are given in Table 2. The values of RMSEs
depicted in Table 2 verify that the designed type-2 fuzzy approach has better accuracy in
the presence of natural perturbations of TLP systems.

Table 2. Performance comparison.

Proposed Method T1FLC [10] ILC [41]

χ1 1.7766 2.0125 2.7180
χ2 0.6056 1.4241 1.8914
χ3 0.1153 0.5101 0.9421
χ4 0.1146 0.1247 0.8401

7. Conclusions

This paper proposed a novel control method based on second-order Sugeno fuzzy
systems to stabilize offshore floating WTs subject to oscillating motions resulting from sea
turbulences and waves. The parameters of fuzzy control system rules were tuned using a
square-root cubature Kalman filter. The effectiveness and performance of the proposed
approach was assessed using a simulation study of a tension leg platform. Two scenarios
were considered in the performance analysis. In the first scenario, in addition to dynamic
uncertainties, a sinusoidal disturbance was applied to the system as a dynamic perturbation.
In the second scenario, in addition to uncertainties and disturbances, a time-varying delay
was also added as a time-varying pulse. The obtained results showed that the system is
well stabilized and the oscillations are well minimized. Additionally, the system’s state
variables converged to zero within a short period of time. This study focused on the design
of an optimized fuzzy controller to tackle the perturbations such as turbulence and sea
waves and uncertainties of TLP. Our future work will look into expanding the approach to
mitigate the effect of system faults.
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