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Abstract: An essential challenge in generation scheduling (GS) problems of hydrothermal power
systems is the inclusion of adequate modeling of the hydroelectric production function (HPF). The
HPF is a nonlinear and nonconvex function that depends on the head and turbined outflow. Although
the hydropower plants have multiple generating units (GUs), due to a series of complexities, the
most attractive modeling practice is to represent one HPF per plant, i.e., a single function is built
for representing the plant generation instead of the generation of each GU. Furthermore, due to
the computation time constraints and representation of nonlinearities, the HPF must be given by a
piecewise linear (PWL) model. This paper presented some continuous PWL models to include the
HPF per plant in GS problems of hydrothermal systems. Depending on the type of application, the
framework allows a choice between the concave PWL for HPF modeled with one or two variables and
the nonconvex (more accurate) PWL for HPF dependent only on the turbined outflow. Basically, in
both PWL models, offline, mixed-integer linear (or quadratic) programming techniques are used with
an optimized pre-selection of the original HPF dataset obtained through the Ramer-Douglas-Peucker
algorithm. As a highlight, the framework allows the control of the number of hyperplanes and,
consequently, the number of variables and constraints of the PWL model. To this end, we offer two
possibilities: (i) minimizing the error for a fixed number of hyperplanes, or (ii) minimizing the number
of hyperplanes for a given error. We assessed the performance of the proposed framework using
data from two large hydropower plants of the Brazilian system. The first has 3568 MW distributed in
50 Bulb-type GUs and operates as a run-of-river hydro plant. In turn, the second, which can vary
the reservoir volume by up to 1000 hm3, possesses 1140 MW distributed in three Francis-type units.
The results showed a variation from 0.040% to 1.583% in terms of mean absolute error and 0.306% to
6.356% regarding the maximum absolute error even with few approximations.

Keywords: hydro production function; piecewise linear model; mixed-integer linear programming

1. Introduction

The electricity industry in the world has gone through significant transitions regarding
the digitalization of electric networks, management and automation of industries, expan-
sion in the use of renewable sources, and improvement of decentralized energy generation
technologies. This process is synthesized in the so-called three Ds: decarbonization, digiti-
zation, and decentralization. In this context, Brazil, for example, has a privileged position,
having, in 2020, about 83% of the electrical power system made up of renewable energy
resources. However, it is worth noting that a considerable amount of these resources, about
65.2%, comes from hydroelectricity, whose expansion is limited due to solid environmental
constraints. Thus, it is essential to optimize the operation of this type of resource, which is
performed by operators and generation companies worldwide, mainly with the support of
long, medium, and short-term generation scheduling (GS) models [1]. The mathematical
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characteristics of these models are intrinsically linked to the market design employed in
a given electrical system. In systems whose design adopts a loose-pool dispatch, the GS
models are tools primarily used to maximize the expected revenue associated with energy
trading in spot and future markets [2,3]. On the other hand, in the case of markets with
centralized dispatch, i.e., the tight-pool, an independent system operator employs a chain of
GS models to minimize the expected operating cost, considering some risk-measure [4–7].

Regardless of the market design, the representation of the hydroelectric production
function (HPF) is a vital modeling aspect in each GS model. Briefly, the HPF relates the
power output with the turbined outflow, net head, and efficiency. In turn, the generating
unit (GU) efficiency is a function of the turbined outflow and net head. As a result, the HPF
is usually represented by a two-variable, nonlinear, and nonconvex function. In addition
to the representation by GU, the HPF can represent the plant generation by aggregating
the GUs into an equivalent GU [6]. In long and medium-term GS models, the inclusion of
uncertainties for risk management via, for example, the stochastic programming model is a
priority [4]. In this case, the dimensionality and mathematical characteristics of the HPF
must be controlled so that the models can efficiently include the uncertainties.

Furthermore, with the increasing insertion of wind generation and run-of-river hy-
droelectric plants, short-term GC models also include uncertainties in their modeling,
demanding the same type of requirement as the more extended horizon models. In this
context, the plant-based HPF is advantageous because the high dimensionality introduced
by the individualized representation considerably increases the GS models’ computational
burden. Although the plant-based representation is the most feasible option, other aspects
that burden the solving strategies of GS models are the nonlinearities and nonconvexities
inherent to the HPF. In this sense, an alternative that has proven to be very efficient is the
HPF representation by a piecewise linear function (PWL), which allows GS problems to be
effectively solved via state-of-the-art linear programming (LP) and mixed-integer linear
programming (MILP) software.

The literature is very vast in the representation of HPF in GS problems. Thus, to
support the developments proposed in this paper, in the sequence, we focused on more
recent works that make use of the HPF aggregated representation, commonly called plant-
based models. Thus, an efficient numerical optimization method to obtain an HPF is
proposed for cascading reservoirs in long-term GS problems [5]. The HPF depends on the
average stored volume and the turbined outflow in this work. Despite the good accuracy
of this method, the nonlinear representation of the hydraulic performance is not considered
as in [6]. Still, in [6], the HPF was represented by a PWL model, which depends on the
volume and the turbined outflow obtained by an algorithm incorporating convex hull (CH)
techniques. This model is distinguished by using the nonlinear HPF instead of constant
productivity models [8,9], whose HPF depends solely on the turbined outflow (therefore,
it does not include the effects of the net head variations). Another common approach is
the use of univariate PWL. In such a case, the gross head is fixed, and the linearization is
accomplished for an HPF that depends on the turbined outflow [7]. The main advantage of
this method is the implementation’s simplicity and suitable computational performance.
However, the non-consideration, simultaneously, of the net head and turbined outflow
effects results in a flawed correspondence between the PWL and original HPF. Another
alternative that can be used is the direct representation of the HPF by a set of concave
functions dependent on the turbined outflow, according to [9,10]. However, this type of
representation notably increases the number of constraints and variables in the problem.

The plant-based HPF is also widely used in the context of short-term GS models,
whether in purely hydro systems [11–13], hydrothermal systems [14–18], or hydrothermal
systems interconnected with renewable sources such as solar and wind [14–17]. In [15],
it PWL is obtained as a function of the turbined outflow and gross head through CH
techniques. It is central to highlight that the resulting model obtained by the CH is concave.
Therefore, the PLW can be included in the GS problems without adding binary variables,
significantly favoring the computational performance. However, these approximations
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often overestimate the function, mainly in the nonconcave regions of the HPF, usually
requiring coefficients adjustment or hybrid linearization strategies [19]. The models pro-
posed in [14–17] represent the HPF as a quadratic function dependent on the volume
and the turbined outflow. Although the product between outflow and the net head has
been included in this case, the use of quadratic functions inevitably leads to mixed-integer
quadratic programming models (MIQP), which computationally burdens the resolution of
the problem. The model proposed in [16] used a nonlinear HPF depending on gross head
and turbined flow. This approach requires the use of nonlinear programming (NLP) tech-
niques that, although resulting in accurate solutions, are impractical for use in large-scale
systems. Additionally, in some works, as in [18,20], the linearization is based on SOS2 sets.
The idea is that the power generation, gross head, and turbined outflow can be expressed
as a convex combination of SOS2 sets.

Some studies have relied on linearization based on the logarithmic aggregation convex
combination (LACC) model [19,21]. According to the current literature, the LACC model
represents one of the best options for representing high-precision PWL functions. However,
the number of equations associated with LACC is intrinsically linked to the number of
data points employed in the PWL approximation. This issue leads to incorporating more
binary variables in CG models, further increasing the computational effort. In [21], for
handling this negative issue, the LACC is employed only in the nonconvex domain of the
HPF, and the concave part is linearized by using CH techniques. Nevertheless, the overall
PWL approach can often supply unnecessary equations for a given precision due to the
lack of “controllability,” which is a key point we offer in this paper.

The primary purpose of this paper was to present a computational framework based
on the most recent contributions developed for PWL fitting. A relevant particularity is that
an analytical model is not available for the plant-based HPF, unlike the individualized case,
unless some simplifications are adopted [6,22]. Thus, for the construction of the plant-based
PWL, it must be considered that only a discrete set of points are provided, given by the
triples (turbined outflow, gross head, and power generation) for the bivariate case where
outflow and gross head are input parameters, or (outflow and power generation) for the
univariate case where the gross head is fixed. In particular, the power generation values
can only be obtained by solving a mixed-integer nonlinear optimization problem (MINLP)
since the maximum power generation of the plant depends on which combination of GUs
is used in the optimal dispatch [23].

Recently, two studies presented significant contributions in PWL fitting [24,25], which
avoids the use of nonlinear constraints necessary to preserve the continuity of the fitted
model. Precisely, those works use big-M-type constructions to enforce continuity through a
set of linear constraints. This paper aimed to use these formulations with modifications
and contributions in the plant-based HPF.

Few papers in the literature propose a representation of the plant-based HPF with
a PWL function obtained through a refined control of the number of hyperplanes or a
pre-established linearization error. Therefore, the major contribution of this work is the
“controllability” aspect. Our main objective was to present a computational framework
based on the most recent contributions developed in PWL and apply it to the plant-based
HPF. We also propose using the Ramer-Douglas-Peucker algorithm (RDP) [26,27] for the
optimal selection of points to be used in the linearization process. Moreover, this approach
also selects the nonlinear region of the HPF, which was our region of interest.

Firstly, this work showed the nonlinear HPF for the individualized case (i.e., GU),
and then it built the optimization model based on MINLP to extract the plant-based
HPF. The models then linearized the nonlinear HPF. In the proposed framework, the
control is achieved in two ways: (i) minimizing the number of hyperplanes for a given
error and (ii) minimizing the error for a fixed number of hyperplanes. By stipulating a
given acceptable error in the linearization, it is possible to obtain the minimum amount
of associated hyperplanes, thus limiting the number of variables in the problem and
improving the computational performance. As a result of this, we can establish, for example,
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acceptable errors for different hydropower plants according to their importance in the
system (e.g., power or storage capacity). The predictability of computational performance
is improved if we choose to fix the number of hyperplanes, thus knowing the number of
variables and constraints of the model in advance. The PWL models can still be restricted to
produce nonconvex and concave PWL functions. Although more accurate, the nonconvex
model requests binary variables, hindering use in large-scale problems. In this work, the
nonconvex PWL was constrained to the univariate case, thus being more suitable for plants
with lower capacity or simplified representation in the final stages of the planning horizon
of a given GS model.

On the other hand, the concave PWL eliminates binary variables to represent the plant-
based HPF. This paper used the concave approach in both univariate and bivariate cases.
Subsequently, we presented two different methods of partitioning the HPF domain: (i) the
most used in the literature which is based on uniform discretization, i.e., the domain is
subdivided into a grid of equidistantly spaced points, and (ii) in which an optimal partition
of the domain is performed using the RDP algorithm which, in general terms, searches for
a curve with a higher concentration of points in regions of pronounced nonlinearity of the
HPF. With the appropriate treatment of the data, the models proposed in this work then
control the accuracy and the resulting computational effort in the GS models.

The remainder of this paper is organized as follows: Section 2 provides details on
obtaining the plant-based HPF. Section 3 presents the proposed framework for the lin-
earization of the HPF. Section 4 presents the use of the RDP algorithm for the optimized
pre-selection of data. Numerical results and discussions are provided in Section 5. Finally,
conclusions are discussed in Section 6.

2. The Plant-Based Hydro Production Function

To present the plant-based HPF formulation, it is important first to detail the individual
model, which is given by:

gj = 0.00981 · gej · wj · hj (1)

In (1), gj is the power generation of the GU j (MW), gej is the global efficiency of the GU
j, wj is the turbined outflow of the GU j (m3/s), and hj is the net head of the GU j (m). The
net head is the difference between the gross head, gh, and the hydraulic losses associated
with the turbined outflow. By definition, gh is given by the difference between the forebay
and the tailrace levels, which depend in most cases on the stored volume (v) and the total
outflow (d) of the reservoir, respectively, as follows:

gh = f bl(v)− tlr(d) (2)

In (2), fbl(v) is the forebay level (m) and tlr(d) is the tailrace level (m). The total outflow
d is given by q + s, where q is the plant turbined outflow. Mathematically, the equation

q =
N
∑

j−1
wj represents the turbined outflow in the plant(m3/s), and s is the spillage (m3/s).

We momentarily put aside fbl(v) and trl(d) to write the HPF model with only two variables.
The dependence of gh with the forebay and tailrace levels is directly expressed in GS models
as equality constraints or even as PWL. In that way, the net head is expressed as:

hj = gh−Kjw2
j (3)

In (3), Kj is the constant used to represent the hydraulic loss function in the GU j
(s2/m5), which considers that the GU has an individual penstock. When this is not the
case, (3) also depends on the turbined outflow of other GUs of the same plant. Although
modeling (3) is the most common, the framework presented in this paper does not require
this restriction. On the other hand, gej in (1) includes several kinds of turbine and generator
efficiencies (hydraulic, mechanical, and electrical). Based on field tests and hill-curve data
from GU, a nonlinear function that depends mostly on wj and hj can express the global
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efficiency. We assume that the following polynomial function is available (although a
different function can be used):

gej = E0j + E1jwj + E2jhj + E3jw2
j + E4jh2

j (4)

Above in (4), Ekj is the kth constant in the global efficiency function of the GU j. By
including (2) and (3) in (1), the unit-based HPF final expression is presented below.

gj = 0.00981[E0j + E1jwj + E2j(gh−Kjw2
j ) + E3jw2

j + E4j(gh−Kjw2
j )

2
]wj(gh−Kjw2

j ) (5)

As it can be seen, the expression (5) is written as a function of gh and wj because (3)
only depends on wj. If this is not the case, then (5) must be written as a function of hj and wj.

Once the individual model is presented, the next step is to detail the plant-based
model, the focus of this work. To do so, initially, consider that a given plant has N GUs.
To facilitate the presentation, also consider that each GU has only one operating zone,
given by the range of the turbined outflow (Wjmin–Wjmax). Thus, to obtain the dimensional
reduction aimed by the plant-based model, the N individual HPF (5) must be replaced by a
function that depends on gh and the plant turbined outflow q instead of wj. As previously
mentioned, an analytical and precise plant-based HPF is not available since the hydraulic
loss and the global efficiency of the plant depend on the number of dispatched GUs for a
given operating state (i.e., gh and q). The alternative is to obtain a dataset of triples (PGkl,
Qk, GHl) based on the solution of the MINLP presented below. The MINLP considers as
input the parameters the value of Qk, for k = 1,...,K defined in (Qj

min–Qj
max) and l =1,...,L

values of GHl in the range (HBmin–HBmax).

PGkl = maximize
N

∑
j=1

gj (6)

s.t. :
N

∑
j=1

wj = Qk, ∀j = 1, . . . , N (7)

gj − 0.00981

 E0j + E1jwj + E2j(GHl −Kjw2
j )

+E3jwj(GHl −Kjw2
j ) + E4jw2

j

+E5j(GHl −Kjw2
j )

2

(GHl −Kjw2
j )wj = 0, ∀j = 1, . . . , N (8)

Wmin
j uj ≤ wj ≤Wmax

j uj, ∀j = 1, . . . , N (9)

uj ∈ {0, 1}. (10)

In this optimization problem, k is the index associated with the plant turbined outflow
Qk(m3/s), l is the index associated with the gross head GHl (m), PGkl is the power genera-
tion of the plant in (Qk, GHl), and uj is the binary indicating if the GU j is online (uj = 1) or
offline (uj = 0). Notice that we are using uppercase bold notation for fixed values. Thus,
K × L optimization problems are solved, and, therefore, we obtain K × L values of PGkl.

The objective function (6) maximizes the power generation by the plant. The constraint
(7) delimits that the sum of the turbined outflow of the GUs is equal to the turbined outflow
of the plant. The constraint (8) is the nonlinear nonconvex HPF related to the UG j. Finally,
(9) defines the limits of the turbined outflow of each GU, and (10) represents the integrality
constraints. The (6)–(10) formulation describes the bivariate case since the HPF depends on
Qk and GHl. Now consider the univariate case, where the gross head is fixed in HB0, so
we have a form dataset (PGk, Qk). The MINLP is now rewritten as:

PGk = maximize
N

∑
j=1

gj (11)
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s.t. :
N

∑
j=1

wj = Qk, ∀j = 1, . . . , N (12)

gj − 0.00981

 E0j + E1jwj + E2j(GH0 −Kjw2
j )

+E3jwj(GH0 −Kjw2
j ) + E4jw2

j

+E5j(GH0 −Kjw2
j )

2

(GH0 −Kjw2
j )wj = 0, ∀j = 1, . . . , N (13)

Wmin
j uj ≤ wj ≤Wmax

j uj, ∀j = 1, . . . , N (14)

uj ∈ {0, 1} (15)

The accuracy of the PWL depends on the number of points K × L, such as k = 1,...,K
and l =1,...,L (L = 1 in the univariate case) points used in the proposed framework. In
general, the quality of a PWL fitting increases with the increase in K and L. However, a fair
value of the total points is not simple to determine, in particular, due to the nonconvexity
of the HPF. Although the dataset obtained in the Formulations (6)–(10) and (11)–(15) can
be used in the algorithms presented in Section 3, it is possible to perform an optimized
selection of these data using the Ramer-Douglas-Peucker (RDP) algorithm, as is shown
in Section 4. The RDP increases the computational performance, as it is possible to find a
PWL model with equivalent precision using fewer points.

3. Piecewise Linear Models

The construction of the PWL models proposed in this paper was carried out using
the methodologies [19,20] based on solving MILP or MIQP optimization problems. Thus,
according to Section 2, consider initially that (PGkl, Qk, GHl) or (PGk, Qk) is available
such that k = 1,...,K e l =1,...,L. Thus, we sought to determine a continuous PWL that
best approximates this set of points, minimizing an error established by an o-type norm.
Considering formulations as parametric models, that is, the objective is to obtain coefficients
that result in a set of multiple-choice hyperplanes [28], the objective function of the PWL
model optimization problem can be described for the univariate HPF, as follows:

min Θ =
K

∑
k=1

∣∣∣c1
HQk + dH − PGk

∣∣∣o (16)

In (16), c1
H is the slope or gradient 1 associated with Qk in the hyperplane H, and dH is

the linear coefficient associated with the hyperplane H. The objective function (16) aims to
minimize the o-type norm of the sum difference between the approximate power generation
of the hyperplane H and the exact value of the nonlinear HPF, PGk. Alternatively, for the
bivariate case, we can rewrite the objective function as follows:

min Θ =
L

∑
l=1

K

∑
k=1

∣∣∣c1
HQk + c2

HGHl + dH − PGkl

∣∣∣o (17)

In (17), c2
H is the slope or gradient 2 associated with GHl in the hyperplane H. After

the fitting process, c1
H, c2

H, and dH will define the hyperplane H of the PWL. The next
subsections deal with the MILP and MIQP optimization problems used to determine them.
The first subsection deals with the models and the algorithm for obtaining nonconvex and
concave univariate PWL. In the second subsection, the models for obtaining the concave
PWL are expanded to the bivariate case. The models presented in this work require the
numerical values of the domains of the variables to be properly limited so that the models
present a good computational performance. Furthermore, big-M parameters are extensively
used to model linear constraints. For reference, check [24].

Table 1 shows the summary of the models presented in this section. Checkmarks, “4”,
are for yes and “8” are for no.
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Table 1. Piecewise linear models.

Piecewise Linear Model

1 2 3 4 5 6 7

Error Minimization 4 4 8 4 8 4 8

Hyperplanes Minimization 8 8 4 8 4 8 4

Univariate 4 4 4 4 4 8 8

Bivariate 8 8 8 8 8 4 4

Concave PWL 8 8 8 4 4 4 4

3.1. PWL Models for the Univariate Case
3.1.1. PWL Model 1

The PWL model 1 seeks to determine a PWL function for the univariate plant-based
HPF. Consider the optimization problem (18)–(36) reformulated from [24]:

min
K

∑
k=1

∣∣∣c1
HQk + dH − PGk

∣∣∣o (18)

s.t. : PGk − (c1
HQk + dH) ≤ +Ma

k(1− δk,H), ∀k = 1, . . . , K; ∀H = 1, . . . , B− 1 (19)(
c1

HQk + dH

)
− PGk ≤ +Ma

k

(
1− δk,H

)
, ∀k = 1, . . . , K; ∀H = 1, . . . , B− 1 (20)

B−1

∑
H=1

δk,H = 1,∀k = 1, . . . , K (21)

δk+1,H+1 ≤ δk,H + δk,H+1, ∀k = 1, . . . , K; H = 1, . . . , B− 2 (22)

δk+1,1 ≤ δk,1, ∀k = 1, . . . , K− 1 (23)

δk,B−1 ≤ δk+1,B−1, ∀k = 1, . . . , K− 1 (24)

δk,H + δk+1,H+1 + γ H − 2 ≤ δ+k,H , ∀k = 1, . . . , K− 1; H = 1, . . . , B− 2 (25)

δk,H + δk+1,H+1 + (1− γ H)− 2 ≤ δ−k,H , ∀k = 1, . . . , K− 1; H = 1, . . . , B− 2 (26)

dH+1 − dH ≥ Qk

(
c1

H − c1
H+1

)
−M2

k(1− δ
+
k,H), ∀k = 1, . . . , K− 1; H = 1, . . . , B− 2 (27)

dH+1 − dH ≤ Qk+1

(
c1

H − c1
H+1

)
−M2

k+1(1− δ
+
k,H), ∀k = 1, . . . , K− 1; H = 1, . . . , B− 2 (28)

dH+1 − dH ≤ Qk

(
c1

H − c1
H+1

)
−M2

k(1− δ
−
i,H), ∀k = 1, . . . , K− 1; H = 1, . . . , B− 2 (29)

dH+1 − dH ≥ Qk+1

(
c1

H − c1
H+1

)
−M2

k+1(1− δ
−
k,H), ∀k = 1, . . . , K− 1; H = 1, . . . , B− 2 (30)

d1 = 0 (31)

c1
H ∈ [C1

H
, C1

H ], ∀H = 1, . . . , B− 1 (32)

dH ∈ [D
H

, DH ], ∀H = 1, . . . , B− 1 (33)

δk,H ∈ {0, 1}, ∀k = 1, . . . , K; ∀H = 1, . . . , B− 1 (34)

yH ∈ {0, 1}, ∀H = 1, . . . , B− 2 (35)

δ+k,H , δ−k,H ∈ [0, 1], ∀k = 1, . . . , K− 1; H = 1, . . . , B− 2 (36)

In the optimization problem, B is the maximum number of breakpoints which is the
first and last point of a line segment. The dimension of a hyperplane ∈ R2 (our univariate



Energies 2022, 15, 1699 8 of 23

case) has dimension 1 and therefore is a line segment Mk
a and Mk

2 are the non-negative
big-M parameters, δk,H is the binary variable that identifies which segment H each point k
is associated with, C1

H and C1
H are the minimum and maximum values of c1

H, DH and
DH are the minimum and maximum values of dH, δ+/−

k,H are continuous variables that
indicate whether there is a breakpoint between Qk e Qk+1, and yH is a binary variable that
indicates the gradient change between adjacent linear segments.

The objective function (18) minimizes a chosen metric that, in this case, consists of
the absolute error (o = 1) or the square error (o = 2); note that in the latter case, the model
becomes a MIQP, which can considerably decrease the computational performance. The
constraints (19) and (20) evaluate the approximation value at Qk. The constraint (21)
ensures that each point k belongs to exactly one segment. The constraints (22)–(24) ensure
the ordering of points in such a way that a point must be associated with the same or the
next segment, where (23) and (24) ensures the ordering of the first and last data points, and
(22) ensures the ordering of the other points. The PWL continuity is enforced through the
constraints (25)–(30), which ensure that the breakpoint location, rH, is equal in adjacent
segments regardless of the gradient change. In short, if cH − cH+1 > 0, it implies that yH = 1
and the constraints (27) and (28) are activated, which indicates that the gradient decreases
between the two segments. Otherwise, if cH − cH+1 < 0, yH = 0, the constraints (29) and
(30) are activated, which implies that the gradient increases between the two segments.
Finally, if cH = cH+1, there is no breakpoint at that location, and the function remains with
the same gradient. The constraint (31) ensures at least one equation for which the plant
power generation will be 0 whenever the plant turbined outflow is 0. Finally, the constraints
(32)–(36) define the domain of variables.

The MILP optimal solution is given by the coefficients (c1
H, dH)/∀ H. However, since

the resulting PWL is nonconvex, it is required that the location of each breakpoint, rH, is
known to delimit the domain for which each segment H is valid. These values are implicitly
modeled in the optimization problem to ensure continuity and reduce the number of
variables. The breakpoints’ location can be calculated as:

r1 = Q1 (37)

rH =

{ dH+1−dH
c1 H−c1

H+1
, ∀H = 2, . . . , B− 1, c1

H 6= c1
H+1

Qk +
Qk+1−Qk

2 , ∀H = 2, . . . , B− 1, c1
H = c1

H+1

}
(38)

rB = QK (39)

Above, r1 and rB are the first and last breakpoint locations. For the other points, the
location is calculated as in (38). Notice that if c1

H = c1
H+1, the model enforces dH = dH+1,

which means that the two segments are affine with no discontinuity between (Qk e Qk+1);
thus, rH can be chosen arbitrarily among these points.

3.1.2. PWL Model 2

The PWL model 2 has the same characteristics as Model 1 but with different strategies
to establish the ordering and continuity of the function. Consider the optimization problem
(40)–(56) reformulated from [25]:

min Θ =
K

∑
k=1

∣∣∣c1
HQk + dH − PGk

∣∣∣o (40)

s.t.: (19)–(21), (31)–(34)

δk,H = δk−1,H + δF
k,H − δ

L
k,H , ∀k = 1, . . . , K; ∀H = 1, . . . , B− 1 (41)

K

∑
k−1

δF
k,H = 1, ∀H = 1, . . . , B− 1 (42)
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K

∑
k−1

δL
k,H = 1, ∀H = 1, . . . , B− 1 (43)

k

∑
k′=1

δF
k′,H ≥

k

∑
k′=1

δF
k′,H+1, ∀k = 1, . . . , K; ∀H = 1, . . . , B− 2 (44)

k

∑
k′=1

δL
k′,H ≥

k

∑
k′=1

δL
k′,H+1, ∀k = 1, . . . , K; ∀H = 1, . . . , B− 2 (45)

δF
k,H ≤ δk,H , ∀k = 1, . . . , K; ∀H = 1, . . . , B− 1 (46)

δL
k,H ≤ δk,H , ∀k = 1, . . . , K; ∀H = 1, . . . , B− 1 (47)

Qkc1
H+1 + dH+1 −

(
Qkc1

H + dH

)
= p+k,H − p−k,H , ∀k = 1, . . . , K− 1; ∀H = 1, . . . , B− 2 (48)

Qk+1c1
H + dH −

(
Qk+1c1

H+1 + dH+1

)
= q+k+1,H+1 − q−k+1,H+1, ∀k = 1, . . . , K− 1; ∀H = 1, . . . , B− 2 (49)

p+k,H ≤Ma
k

(
1− uk,H

)
, ∀k = 1, . . . , K− 1; ∀H = 1, . . . , B− 2 (50)

q+k+1,H+1 ≤Ma
k

(
1− uk,H

)
, ∀k = 1, . . . , K− 1; ∀H = 1, . . . , B− 2 (51)

p−k,H ≤Ma
k

(
1− vk,H

)
, ∀k = 1, . . . , K− 1; ∀H = 1, . . . , B− 2 (52)

q−k+1,H+1 ≤Ma
k

(
1− vk,H

)
, ∀k = 1, . . . , K− 1; ∀H = 1, . . . , B− 2 (53)

uk,H + vk,H = δL
k,H , ∀k = 1, . . . , K− 1; ∀H = 1, . . . , B− 2 (54)

uk,H , vk,H , δF
k,H , δL

k,H ∈ {0, 1}, ∀k = 1, . . . , K; ∀H = 1, . . . , B− 1 (55)

p+/−
k,H , q+/−

k,H ∈ [0, Ma
k ], ∀k = 1, . . . , K; ∀H = 1, . . . , B− 1 (56)

In this optimization problem, p+/−
k,H and q+/−

k,H are non-negative slack variables,
uk,H is a binary variable that takes on the value 1 if p+

k,H = q+
k+1,H+1 = 0, vk,H is a binary

variable that takes on the value 1 if p−k,H = q−k+1,H+1 = 0, δF
k,H is a binary variable that

assumes 1 if the point k is the first point in the segment H, and δL
k,H is a binary variable that

assumes 1 if point k is the last point of the segment H. Model 2 is identical to the model 1
concerning the objective function and constraints (19)–(21) and (31)–(34). The constraint
(41)–(47) ensures the ordering, whereas (44)–(45) ensures the first and last points ordering
of the data set. The ordering of the remaining points is handled via (46)–(47). The continuity
of the HPF is enforced through the constraints (48)—(54). In this case, if a point is the last
of the segment, (54) activates one of the binaries uk,H or vk,H that makes p+

k,H and q+
k,H = 0

or p−k,H e q−k+1,H+1 = 0. Thus, this ensures continuity through (48) and (49) by ensuring
that, at this point, both functions result in a non-negative or non-positive value. Finally, the
constraints (55) and (56) define the variables domain.

3.1.3. PWL Model 3

The PWL Model 3 adapts the alternative formulation of [25] to minimize the number
of breakpoints and, consequently, the number of segments for a given error.

min Θ =
B−1

∑
H=1

H ·WH + 1000
K

∑
k=1

Fk (57)

s.t.: (21), (31)–(34), (41), (44)–(56)

s.t. : PGk − (c1
HQk + dH) ≤ εk + Ma

k(1− δk,H), ∀k = 1, . . . , K; ∀H = 1, . . . , B− 1 (58)
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(
c1

HQk + dH

)
− PGk ≤ εk + Ma

k

(
1− δk,H

)
, ∀k = 1, . . . , K; ∀H = 1, . . . , B− 1 (59)

εk − Fk = Er, ∀k = 1, . . . , K (60)

K

∑
k=1

δF
k,H −WH = 0, ∀H = 1, . . . , B− 1 (61)

K

∑
k=1

δL
k,H −WH = 0, ∀H = 1, . . . , B− 1 (62)

WH+1 −WH ≤ 0, ∀H = 1, . . . , B− 1 (63)

WH ∈ [0, 1], ∀H = 1, . . . , B (64)

εk ∈ [0, Ma
k ], ∀k = 1, . . . , K (65)

Fk ≥ 0, ∀k = 1, . . . , K (66)

In this optimization problem, WH is a binary variable that is 1 if H ∈ B is selected,
Fk is a non-negative slack variable that only assumes a value greater than zero if the
stipulated error Er cannot be achieved, and εk is the absolute error at point k. The objective
function (57) minimizes the number of breakpoints plus the sum of non-negative slack
variables. In conjunction with the constraint (60), the problem aims to minimize the number
of breakpoints for a given stipulated error Er without using the slack variable (Fk = 0),
zeroing the second term of the objective function. If Er cannot be achieved, then Fk > 0.
The constraints (61) and (62) make δF

k,H and δL
k,H to be 0 for each inactive segment. The

constraint (63) excludes some symmetric solutions. Lastly, constraints (64)–(66) delimit the
domain of the introduced variables.

This formulation requires that a maximum value of breakpoints B large enough is
defined so that an optimal solution lies within the range from 2 to B breakpoints.

There are cases where, depending on the region where the maximum error is observed,
a maximum absolute error is required instead of having a low mean absolute error. If the
error observed is in regions of interest of the HPF, it is possible to modify the constraint (60)
and we can find a PWL as the slowest maximum absolute error for each point k.

εk − Fk = Er · PGk, ∀k = 1, . . . , K (67)

With the support of the slack variable Fk, it is possible to establish an algorithm
(Algorithm 1) with a searching heuristic to obtain the lowest possible number of breakpoints
for the lowest error achieved.

Algorithm 1. The searching heuristic for the lowest number of breakpoints for a given error.

1. Choose the total number of points K.
2. Get the plant-based HPF data set (PGk, Qk).
3. Choose the maximum number of breakpoints B.
4. Determine the metric-constraint (60) or (67).
5. Choose an initial value of Er and tolerance tol.
6. While Fk ≤ tol.Solve PWL Model 3.
7. Do Er = Er–0.01 (for 1% reduction per run)
8. Return the last set [c1

H, dH], ∀H=1, . . . ,B-1 which ∀Fk ≤ tol

3.1.4. PWL Model 4

This section discusses the generalizations necessary to obtain a concave PWL. Unlike
the nonconvex PWL functions in which it is necessary to use binary variables to indicate
the domain of each segment within the GS problem, a given value of a concave function
according to [28] can be given by:

PGk = f (Qk) = minimum
{

Qkc1
H + dH

}
, ∀H = B− 1 (68)
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The objective function can be rewritten as:

min Θ =
K

∑
k=1

∣∣∣minimum
{

Qkc1
H + dH

}
− PGk

∣∣∣o (69)

A well-known property of concave functions is that:

Qkc1
H + dH ≥ PGk, ∀H = 1, . . . , B− 1 (70)

Constraints (70) are equivalent to removing the term Ma
k(1− δk,H) of (19).

c1
H − c1

H+1 ≥ 0, ∀H = 1, . . . , B− 1 (71)

The concave formulation has strong symmetry, which results in identical equations
from the permutation of the coefficients c1

H e dH. The symmetry constraint (71) inhibits
the existence of symmetric functions. However, it is worth noticing that the presence of
constraint (71) might burden the model computationally so that it is advisable to treat the
repeated coefficients externally. The presence of (70) makes the PWL models presented
so far have solutions restricted to concave PWL. However, it makes several constraints
in models 1, 2, and 3 unnecessary or redundant. Thus, the final formulation can be
expressed as:

min Θ =
K

∑
k=1

∣∣∣c1
HQk + dH − PGk

∣∣∣o (72)

s.t.: (20), (21), (31)–(34) and (71)

PGk −
(

c1
HQk + dH

)
≤ 0, ∀k = 1, . . . , K; ∀H = 1, . . . , B− 1 (73)

Furthermore, relaxations of linear programming models that use big-M can have
their performance improved if the following constraints are added to the model according
to [28]:

c1
HQk + dH ≥ 0, ∀k = 1, . . . , K; ∀H = 1, . . . , B− 1 (74)

PGk ≤
B−1

∑
H=1

(
c1

HQk + dH

)
, ∀k = 1, . . . , K; ∀H = 1, . . . , B− 1 (75)

3.1.5. PWL Model 5

This model restricts the PWL of Model 3 to concave functions.

min Θ =
B−1

∑
H=1

H ·WH + 1000
K

∑
k=1

Fk (76)

s.t: (21), (31)–(34), (41), (44)–(47), (59)–(63), (71), (73)–(75)

PGk − (c1
HQk + dH) ≤ εk, ∀k = 1, . . . , K; ∀H = 1, . . . , B− 1 (77)

The optimization problem above returns a concave PWL with the number of approx-
imations less than B, given the stipulated mean absolute error Er. It is also possible to
establish an algorithm (Algorithm 2) that seeks the lowest number of breakpoints for the
lowest error reached, as carried out for the MLP 3.
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Algorithm 2. The searching heuristic for the lowest number of breakpoints for a given error for
the concave case.

1. Choose the total number of points K.
2. Get the plant-based HPF data set (PGk, Qk).
3. Choose the maximum number of breakpoints B.
4. Determine the metric-constraint (60) or (67).
5. Choose an initial value of Er and tolerance tol.
6. While Fk ≤ tol.Solve PWL Model 5.
7. Do Er = Er–0.01 (for 1% reduction per run)
8. Return the last set [c1

H, dH ], ∀H=1, . . . ,B-1 which ∀Fk ≤ tol

3.2. PWL Models for the Bivariate Case
3.2.1. PWL Model 6

The PWL model 6 is intended to be used in the bivariate plant-based HPF, and it is an
expansion of model 4. In the bivariate case, in addition to the coefficient, c1

H, associated
with turbined outflow Qk, it is necessary to calculate the coefficients c2

H associated with
the gross head GHl. Note that, in the bivariate case, the HPF consists of hyperplanes
H ∈ R3 with its domain delimited by two variables, and therefore each approximation is
the equation of a plane. The formulation to obtain the bivariate concave PWL is expressed
as follows:

min Θ =
L

∑
l=1

K

∑
k=1

∣∣∣c1
HQk + c2

HGHl + dH − PGkl

∣∣∣o (78)

s.t: (31)–(33), (63),(64),(71)

PGkl − (c1
HQk + c2

HGHl + dH) ≤ 0, ∀k = 1, . . . , K; ∀l = 1, . . . , L; ∀H = 1, . . . , NH (79)(
c1

HQk + c2
HGHl + dH

)
− PGkl ≤Ma

kl

(
1− δkl,H

)
, ∀k = 1, . . . , K; ∀l = 1, . . . , L; ∀H = 1, . . . , NH (80)

NH

∑
H=1

δkl,H = 1,∀k = 1, . . . , K; ∀l = 1, . . . , L (81)

c2
1 = 0, (82)

c1
HQk + c2

HGHl + dH ≥ 0, ∀k = 1, . . . , K; ∀l = 1, . . . , L; ∀H = 1, . . . , NH (83)

PGkl ≤
NH

∑
H=1

(
c1

HQk + c2
HGHl + dH

)
, ∀k = 1, . . . , K; ∀l = 1, . . . , L; ∀H = 1, . . . , NH (84)

c2
H ∈ [C2

H
, C2

H ], ∀H = 1, . . . , NH (85)

δkl,H ∈ [0, 1], ∀k = 1, . . . , K; ∀l = 1, . . . , L; ∀H = 1, . . . , NH (86)

In the optimization problem, NH is the maximum number of hyperplanes, C2
H, and

C2
H are the minimum and maximum values of c2

H. The objective function (78) minimizes
the chosen metric, the absolute error (o = 1) or the square error (o = 2). The constraints (79)
and (80) evaluate the approximation value at the point (Qk, HBl). The constraint (79) also
imposes concavity requirements. Constraint (81) ensures that each point belongs to only
one plane. The constraints (82) add a second requirement (first, being (31)) to ensure that
there is a plane only Q-dependent so that the HPF returns a power generation 0 for any
situation where Q = 0. The constraints (83) and (84) improve the model’s computational
performance. Finally, (85)–(86) delimit the domain of variables.
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3.2.2. PWL Model 7

The PWL model 7 expands the PWL model 5 to the bivariate case. In this model, the
objective is to minimize the number of planes for a certain pre-established error.

min Θ =
NH

∑
H=1

H ·WH + 1000
L

∑
l=1

K

∑
k=1

Fkl (87)

s.t: (31)–(33), (71), (79)–(86)

δkl,H = δkl−1,H + δF
kl,H − δ

L
kl,H , ∀k = 1, . . . , K; ∀l = 1, . . . , L; ∀H = 1, . . . , NH (88)

L

∑
l=1

K

∑
k=1

δF
kl,H −WH = 0, ∀H = 1, . . . , NH (89)

L

∑
l=1

K

∑
k=1

δL
kl,H −WH = 0, ∀H = 1, . . . , NH (90)

l

∑
l′=1

k

∑
k′=1

δF
k′l′,H ≥

l

∑
l′=1

k

∑
k′=1

δF
k′l′,H+1, ∀k = 1, . . . , K; ∀H = 1, . . . , NH− 1 (91)

l

∑
l′=1

k

∑
k′=1

δL
k′l′,H ≥

l

∑
l′=1

k

∑
k′=1

δL
k′l′,H+1, ∀k = 1, . . . , K; ∀H = 1, . . . , NH− 1 (92)

δF
kl,H ≤ δkl,H , ∀k = 1, . . . , K; ∀H = 1, . . . , NH (93)

δL
kl,H ≤ δkl,H , ∀k = 1, . . . , K; ∀H = 1, . . . , NH (94)

εkl − Kkl = Er, ∀k = 1, . . . , K; ∀l = 1, . . . , L (95)

Fkl ≥ 0, ∀k = 1, . . . , K; ∀l = 1, . . . , L (96)

At last, it is also possible to establish a search algorithm (Algorithm 3) for the formula-
tion (87)–(96).

Algorithm 3. The searching heuristic for the lowest number of breakpoints for a given error for
the bivariate concave case.

1. Choose the total number of points K and L.
2. Get the plant-based HPF data set (PGkl, GHl, Qk).
3. Choose the maximum number of hyperplanes NH.
4. Determine the metric-constraint (95) or (67).
5. Choose an initial value of Er and tolerance tol.
6. While Fkl ≤ tol.Solve PWL Model 7.
7. Do Er = Er–0.01 (for 1% reduction per run)
8. Return the last set [c1

H, c2
H, dH ], ∀H=1, . . . ,B-1 which Fkl ≤ tol

3.3. Solution Quality Evaluation

After obtaining the PWL through the PWL model, it is necessary to measure the
respective quality. The objective function of some of the proposed formulations returns the
error, but only concerning the points used as a reference in obtaining the approximations.
Thus, the PWL test for a larger data set is proposed to test the segments or planes obtained.
This accuracy evaluation is performed by using the maximum absolute (97) and the mean
absolute error (98).

MAX_A = max
(
|Pn − PGn |
|PGn|

)
, ∀n ∈ N (97)

MAE =
1
N

N

∑
n=1

|Pn − PGn|
|PGn|

(98)
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In the optimization problem, n is the index for data point being tested, N is the number
of data points, PGn is the power generation at point n, Pn is the power generation at
point n obtained by employing the PWL, MAE is the mean absolute error, and MAX_A
is the maximum absolute error. Therefore, we employ a large number of N points for
accuracy assessment.

4. Optimized Data Selection through the Ramer-Douglas-Peucker Algorithm

The data obtained in Section 2 can be directly used in the PWL models presented in
Section 3. The increase in the number of data and a maximum number of hyperplanes
considerably increases the number of variables and constraints, bringing computational
limitations to the model. In this aspect, using the Ramer-Douglas-Peucer algorithm [26,27]
is suggested for optimized selection of points and consequent reduction of the number of
data without excessively affecting the precision of the PWL obtained. The Rammer-Douglas-
Peucker algorithm reduces the number of points on a curve approximated by several points.
The algorithm eliminates points from a curve as long as a tolerance ε is maintained to
control this elimination. Thus, the plant-based HPF can reduce the number of points that
constitute them. Note that if ε is low enough, the algorithm will only eliminate unnecessary
points from the curve, more precisely those that describe a region with strong linearity.

For example, consider the univariate HPF of a Hydropower plant (HP) with a dis-
cretization of K = 25 values of Qk and ε = 2 MW with the gross head GH fixed in 110 m.
Figure 1 shows the selection of points with equidistant discretization without using the
algorithm (a) and (b) the selection of points with the RDP algorithm.

Figure 1. Data points selected for the univariate function: (a) without the RDP algorithm; (b) with
the RDP algorithm.

The algorithm reduced the number of points to 15 in this example. Note that the
exclusion of points occurs mainly in the more linear regions, thus not harming the accuracy
of the PWL obtained.

A convenient way to use the algorithm is to choose a massive amount of data and
let the algorithm itself select the points. Consider now the bivariate plant-based HPF of
the same HP with a selection of 50 points of Qk and 50 points in GHl, which originates
2500 points PGkl. Still, consider that ε = 2 MW. The application of the algorithm reduces
the number of points to describe the curve from 2500 to 791 according to Figure 2.

Thus, RDP applications can be an important tool for data processing before using
them in the proposed PWL models.
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Figure 2. Data points selected for the bivariate: (a) without the RDP algorithm; (b) with the RDP algorithm.

5. Experimental Results

The models were implemented in python, embedded with GUROBI version 8.1.1. The
codes were run on an Intel 2.5 GHz machine with 8 GB of RAM. The data sets were taken
from two Hydropower Plant (HP) in Brazil: Santo Antônio Hydropower Plant (SAHP) and
Machadinho Hydropower Plant (MAHP).

SAHP is the fifth-biggest hydropower plant in Brazil, with a total capacity of 3568 MW.
The SAHP possesses 50 bulb turbines allocated into two groups: 24 four-blade with
73.29 MW and 26 five-blade with 69.59 MW, each group with a specific hydraulic effi-
ciency curve. Table 2 describes the operating limits for the GUs.

Table 2. Operating limits for the GUs of SAHP.

wmin/max GHmin/max gmin/max

Group 1 180/620 9/25.15 23.60/73.29
Group 2 180/568 9/20.69 22.40/69.59

On the other hand, the MAHP has three identical GUs with a 380 MW capacity. Table 3
shows the operating limits for the MAHP GUs.

Table 3. Operating limits for the GUs of MAHP.

wmin/max GHmin/max gmin/max

Group 1 280/435 87.20/107.10 290/380

Section 5.1 analyzes the PWL models 1, 2, and 4 for fitting univariable discrete data
with a predetermined number of breakpoints. In Section 5.2, the nonconvex and concave
PWL functions are evaluated for the number of breakpoints minimization by employing the
PWL models 3 and 5 (Algorithm 1 and Algorithm 2, respectively). Finally, in Section 5.3, we
analyze the approaches intended for the bivariate case with a predefined number of planes.

5.1. PWL Models 1, 2 and 4

The optimization model (11)–(15) was first used to obtain K = 1000 points (Qk, PGk)
with GH = 100 m for MHP and GH =15 m for SAHP. The RDP algorithm was then used
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for optimal discretization. The resulting dataset was then applied to models 1, 2, and 4
to obtain the PWL. The number of breakpoints B was fixed at 10, which resulted in nine
segments. Finally, the evaluation was verified using the objective function value (sum of
the absolute difference, where o = 1), the maximum absolute error, and mean absolute error
(97) and (98) for N = 1000 points (Qn, PGn).

When applied to the 1000 initial points, the RDP algorithm selected 27 and 17 points
(Qk, PGk), respectively, for MHP and SAHP with ε = 0.5 MW. Figure 3a shows the points
selected from the nonlinear HPF by the RDP algorithm and the behavior of model 1.
Figure 3b illustrates the approximation behavior for the 1000 test points.

Figure 3. PWL function obtained by model 1 in MHP: (a) Selected points by the RDP algorithm and
PWL approximation for the selected points. (b) Nonlinear HPF and Linear HPF obtained by using
the PWL for 1000 test points.

Note that there is a region below 280 m3/s in the nonlinear HPF in which no points
were selected since it refers to the GU forbidden zone. In this case, a turbined outflow
between 0 and 280 m3/s cannot be supplied by the plant since even if the plant uses a
single GU, this value would still be below the operating limits.

Figure 4 shows the curves obtained for the same data set for the PWL model 4 (con-
cave approach).

Figure 4. PWL functions obtained by the PWL model 4 in MAHP. (a) Selected points by the RDP
algorithm and PWL approximation for the selected points (b) HPF obtained for the PWL with
1000 test points.

Table 4 summarizes the three formulations applied to the MAHP.
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Table 4. PWL function evaluation for the MAHP.

DATA Model 1 Model 2 Model 4

MAE (%) 0.064 0.063 0.742
MAX_A (%) 0.908 0.829 6.473

Running Time (s) 1.419 4.074 112.489

Regarding the models that generate nonconcave PWL functions, model 2 showed
slightly better accuracy results. Model 1 proved to be superior in terms of time simulation
time, which is expected, considering that model 2 presents a greater number of variables and
constraints. However, it should be noted that if the linearization process is not embedded
in the GS model, the simulation time factor may be negligible since it will be performed
only once (offline). It is important to point out that the PWL model 2 did not always show
better accuracy than model 1, and, therefore, it is advisable to run both models every time
and choose the one that best fits the data.

It is worth mentioning that accuracy might improve for a different number of B and if
the RDP tolerance ε is narrowed. This action, however, would increase the running time of
the model.

As a consequence of the concavity requirement, the PWL model 4 presented an error
higher than the nonconvex models; however, it can be applied in GS models without binary
variables. For group 2 of SAHP, model 2 yielded the behavior as seen in Figure 5.

Figure 5. PWL function obtained by model 2 in SAHP for the group 1 generating units. (a) Selected
points by the RDP algorithm and PWL approximation for the selected points. (b) Nonlinear and
linear HPF obtained by using the PWL for 1000 test points.

Tables 5 and 6 summarize the results for the three models applied to both groups
of SAHP.

First, in general, the results were better for SAHP than MAHP. That is explained by
the behavior of the nonlinear HPF of the latter. The more GUs a hydropower plant has, the
more linear the plant-based HPF is expected to be, which directly impacts both precision
and performance. The great linearity also explains the large exclusion of points in the
intermediate (more linear) region.

Table 5. PWL evaluation for the SAHP Group 1.

DATA Model 1 Model 2 Model 4

MAE (%) 0.043 0.040 0.098
MAX_A (%) 0.986 1.199 10.265

Running Time (s) 21.505 24.908 1.353
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Table 6. PWL evaluation for the SAHP Group 2.

DATA Model 1 Model 2 Model 4

MAE (%) 0.040 0.045 0.094
MAX_A (%) 1.336 0.822 8.855

Running Time (s) 14.902 17.193 1.258

The running time of model 2 was higher than model 1, again, explained by the high
number of constraints and variables. In terms of accuracy, model 1 and 2 presented a
very close mean absolute error for both groups, with model 2 presenting a slightly better
accuracy for the mean and maximum absolute error in group 1 of SAHP. Once more, the
variance in terms of accuracy justifies the use of both models.

Both groups of SAHP showed a better mean absolute error than the MAHP but with a
worse maximum absolute error. This performance is explained by the lower operational
limit of the generating units of SAHP, where any difference in lower values of the curve
incurs a bigger maximum absolute error. It is also worth noticing that the objective function
minimized the mean absolute error for the given examples.

Despite reducing the number of variables and constraints concerning nonconvex mod-
els, we noticed in some simulations that the computational performance could sometimes
be worse in concave models. This aspect is because the concavity condition constrains the
breakpoints’ location. On the other hand, the accuracy will always be equal (if nonlinear
HPF is concave) or lower than those obtained in nonconvex models, mainly due to the
error increasing in the nonconcave regions of the HPF.

5.2. PWL Models 3 and 5

For this type of analysis, the optimization model (11)–(15) is first used to obtain
K = 1000 points (Qk, PGk) with the GH = 100 m for MAHP and 15 m for SAHP. The RDP
algorithm was then used for optimal discretization. The maximum number of breakpoints
was stipulated as the maximum number of points obtained by the RDP (27 in MAHP and
17 in SAHP). Additionally, we considered Er = 0.25 for the initial absolute error. Finally,
Algorithm 1 and Algorithm 2 were applied to obtain the minimum breakpoints.

Figure 6 illustrates the progression of Algorithm 1 to reduce the maximum absolute er-
ror, using model 3 for MAHP. As can be seen, the error started at 25% with two breakpoints,
reaching the optimal maximum absolute error at 0.7% with 17 breakpoints.

Figure 6. Algorithm 1—PWL model 3. Finding the minimum number of breakpoints for a given error
for MAHP.
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Table 7 summarizes the results obtained for both models.

Table 7. PWL functions evaluation for Algorithms 1 and 2 for MAHP.

DATA Algorithm 1 Algorithm 2

B 17 5
MAE (%) 0.067 0.979

MAX_A (%) 0.700 7.352
Running Time (s) 195.117 2.389

Since we chose the maximum absolute error as the metric, it was observed that at the
optimal number of 17 breakpoints, the maximum absolute error was better than at the fixed
value of 10 breakpoints in Section 5.1. Tables 8 and 9 summarize the results for Algorithm 1
for SAHP.

Table 8. PWL function evaluation for Algorithms 1 and 2 for SAHP G1.

DATA Algorithm 1 Algorithm 2

B 19 4
MAE (%) 0.349 0.077

MAX_A (%) 0.341 2.589
Running Time (s) 88.092 2.534

Table 9. PWL function evaluation for algorithm 1 and 2 for SAHP G2.

DATA Algorithm 1 Algorithm 2

B 19 4
MAE (%) 0.401 0.042

MAX_A (%) 0.306 2.410
Running Time (s) 168.702 2.355

Algorithm 1, using PWL model 3, found an optimal solution of 0.341% and 0.306%
for SAHP groups 1 and 2, respectively, with 19 breakpoints in both. Like MAHP, the mean
absolute error was penalized when using the maximum absolute error as the stipulated
error. Algorithm 2, using PWL model 5, found 2.589% and 2.410% maximum absolute error
with four breakpoints.

5.3. Analysis of Models 6 and 7

The PWL models 6 and 7 are proposed to the bivariate case. The optimization model
(6)–(10) was first used to obtain the dataset, with K = 100 and L = 100, which resulted
in 10,000 points (Qk, GHl, PGk). The RDP algorithm was used for optimal discretization
of the points. The number of NH planes was set at 10 for formulation 6. Finally, the
evaluation was performed similarly to Sections 5.1 and 5.2, but the PWL was tested for
10,000 data points.

For formulation 7, the maximum number of planes was stipulated as the maximum
number of points obtained by the RDP and the initial error Er = 0.25 (25%) for the maximum
absolute error. Then, algorithm 3 was applied to obtain the minimum number of planes.

Applying the PWL model 6 for MAHP, we observed the following curve in Figure 7.
Table 10 summarizes the results obtained with model 6.
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Figure 7. PWL functions for MAHP. (a) Planes obtained through the RDP selected points. (b) HPF
obtained for the PWL with 10,000 test points.

Table 10. PWL model 6 results.

DATA PWL Model 6

MAHP SAHP G1 SAHP G2

MAE (%) 0.888 0.521 0.127
MAX_A (%) 6.356 4.097 4.456

Running Time (s) 1.108 0.204 2.391

As seen, in general, with more variables it is usual to observe a worsening of the
precision. However, the mean absolute error was reasonable even for the bivariate case.
The model convergence improved considerably since adding one more gradient added
some malleability when obtaining the approximations. Using Algorithm 3, we noticed the
following progressions for group 1 of SAHP.

The performance of Algorithm 3 applied to SAHP is presented in Figure 8, which
stopped at 2.970% maximum absolute error to the reference points. Additionally, it resulted
in 4.680% when applied to the 10,000 test points.

Figure 8. Algorithm 3—PWL model 7. Finding the minimum number of planes for a given error for
SAHP G2.
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Table 11 summarizes the results obtained with model 6.

Table 11. PWL model 7 results.

DATA PWL Model 7

MAHP SAHP G1 SAHP G2

NH 12 31 8
MAE (%) 1.583 0.304 0.324

MAX_A (%) 5.225 4.474 4.677
Running Time (s) 12.321 52.365 59.052

It was observed that just as in the univariate case, the maximum absolute error was
improved at the cost of worsening the average absolute error.

Even in the bivariate case, the computational time was good due to the freedom in the
number of hyperplanes chosen. Note that despite the algorithm being an iterative process,
the computational time to determine the optimal number of hyperplanes for a given error
was relatively fast, considering that Model 7 has a short running time.

6. Conclusions

To sum up, this paper proposed a framework to obtain piecewise linear approxima-
tions for plant-based HPF supported by recent mathematical contributions in the literature.
The keyword for the proposed framework is “controllability”; the framework allows the
control of the number of hyperplanes and, consequently, the number of variables and
constraints of the PWL model by using two possibilities: minimizing the error for a fixed
number of hyperplanes or minimizing the number of hyperplanes for a given error. Firstly,
using the Rammer-Douglas-Peucker (RDP) algorithm for the pre-selection of the dataset
led to gains in model performance by reducing the number of variables and constraints.
Regarding the univariate nonconvex models, the mean absolute error was below 0.1%
with few breakpoints, having a massive data grid as a test base. On the other hand, the
univariate concave models had a mean absolute error below 1% even in the bivariate cases.
For a plant with a large number of GUs such as UHSA, the mean absolute error was below
0.4%, explained by the linearity of the plant-based HPF. The maximum absolute error was
used as an input parameter in the models for minimizing the number of hyperplanes, less
than 5% for most cases. By having the number of breakpoints/hyperplanes free, the models
have a high computational performance, allowing iterative algorithms to determine the
optimal number of breakpoints/hyperplanes with less than 4 min of simulation time. For
future work, the linear HPF reflects the nonlinear HPF; thus, a better representation of the
nonlinear HPF can provide more meaningful approximations. One way to improve the
representation of nonlinear HPF is to represent the hydraulic efficiency better. Nonconvex
models have their field of use and are more accurate despite a more restricted use. It would
be interesting to expand the nonconvex model to the bivariate case. Therefore, studying
ways to establish continuity in parametric models and modeling the constraints as linear
constraints is necessary.
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Abbreviations

CH Convex Hull
GS Generation Scheduling
GU Generating Unit
HP Hydropower Plant
HPF Hydroelectric Production Function
LACC Logarithmic Aggregation Convex Combination
LP Linear Programming
MAE Mean Absolute Error
MAHP Machadinho Hydropower Plant
MAX_A Maximum Absolute Error
MILP Mixed-Integer Linear Programming
MINLP Mixed-Integer Nonlinear Programming
MIQP Mixed-Integer Quadratic Programming
NLP Nonlinear Programming
PWL Piecewise Linear
RDP Rammer-Douglas-Peucker
SAHP Santo Antônio Hydropower Plant
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