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Abstract: In order to solve the problems of the large volume and high cost of a six-pole hybrid
magnetic bearing (SHMB) with displacement sensors, a displacement estimation method using a
modified particle swarm optimization (MPSO) least-squares support vector machine (LS-SVM) is
proposed. Firstly, the inertial weight of the MPSO is changed to achieve faster iterations, and the
prediction model of an LS-SVM-based MPSO is built. Secondly, the prediction model is simulated and
verified according to the parameters optimized by the MPSO, and the predicted values of MPSO and
PSO are compared. Finally, static and dynamic suspension experiments and a disturbance experiment
are carried out, which verify the robustness and stability of the displacement estimation method.

Keywords: six-pole hybrid magnetic bearing; modified particle swarm optimization; least-squares
support vector machine; displacement estimation method

1. Introduction

General bearings are supported by a mechanical structure, which causes a large
amount of friction between the stator and the rotor; many problems arise, such as consid-
erable noise, a complex structure, high cost, and the failure of the stator–rotor connection
due to mechanical friction [1]. The rotor and stator of a hybrid magnetic bearing (HMB) do
not make direct contact, resulting in increased longevity of hybrid magnetic bearings [2].
Traditional magnetic bearings have four magnetic poles, and two magnetic poles are driven
by one power amplifier, so a magnetic bearing requires two power amplifiers [3]. The rotary
shaft is supported by two radial magnetic bearings, and the rotary shaft connects with the
rotor of a motor [4,5]. Only one three-phase inverter is required for three-pole magnetic
bearings in [6], which greatly reduces the cost and power consumption of the magnetic
bearing system. To increase the stability of magnetic bearings, an accurate mathematical
model is established in [7]. Although the three-pole magnetic bearing has many advantages,
it also has nonlinearity and coupling problems [8]. To solve the nonlinearity and coupling
problems of three-pole magnetic bearings, six-pole magnetic bearings are presented [9].

A six-pole magnetic bearing can be detected by displacement sensors; however, a
displacement sensor is too big, and the cost of displacement sensors is too high [10]. A
displacement estimation method is proposed to control the magnetic bearing without
displacement sensors [11]. Displacement estimation methods currently used can mainly
be divided into the following categories: the parameter estimation method, the state ob-
servation method, and the neural network method. The parameter estimation method
is the method of indirectly estimating the rotor displacements by measuring inductance,
mainly including inductance detection [12], PWM carrier analysis [13], high-frequency
injection [14,15], and a saliency-tracking-based method [16]. This method requires addi-
tional circuitry to achieve special signal processing. The state observation method is the
method of calculating the rotor displacements by its state equation, e.g., the Kalman filter
method [17,18]. This kind of method requires an accurate mathematical model and also
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needs to design the controller. The neural network [19] method can also be used to realize
the self-sensing of rotor displacements. This method does not depend on the model and
parameters of the magnetic bearing. However, the neural network still has the problem of
over-learning, which causes it to easily fall into local optimum and slow convergence. The
least-squares support vector machine (LS-SVM), proposed by Vapnik and Suykens [20], has
the ability to express arbitrary nonlinear mappings, follows the principle of structural risk
minimization, and solves the problems of small sample size, nonlinearity, high dimension,
and local minimization. The high speed of training and convenient determination of model
parameters bring new possibilities for accurately predicting rotor displacements [21,22].

In this manuscript, a displacement estimation method using a modified particle swarm
optimization least-squares support vector machine is proposed, which solves the problems
of the large volume and high cost of six-pole hybrid magnetic bearings. The displacement
prediction model is built in Section 2. In Section 3, the prediction model is simulated
and verified according to the parameters optimized by the MPSO. In Section 4, static and
dynamic suspension experiments and a disturbance experiment are carried out. Finally,
the conclusion is drawn in Section 5.

2. Displacement Prediction Model
2.1. Least-Squares Support Vector Machine

A support vector machine (SVM) is a classification and regression tool based on
statistical learning theory. The rotor displacement prediction problem in this paper is an
application of SVM in nonlinear regression. In LS-SVM, for a given set of training samples,
Q = {(xk, y), k = 1,2, . . . ,N}, where xk∈Rn is an n-dimensional input variable and y∈R is a
one-dimensional output variable. In the SVM regression method, the nonlinear mapping
function ϕ(x) is used to map the nonlinearity of the sample to high-dimensional feature
space; thus, the original problem is transformed into a function estimation problem in
high-dimensional space: y(x) = wT ϕ(x) + b, where w is the weight and b is the bias.

According to the principle of structural risk minimization, the optimization problem
is defined as:

minJ(w, e) = 1
2 wTw + 1

2 γ
N
∑

k=1
ek

2

s.t. yk = wT ϕ(xk) + b + ek

(1)

where γ is the regularization parameter and ek is the fitting error of the loss function.
The solution of the optimization problem with Lagrange function is as follows:

L(w, b, e, α) = J(w, e)−
N

∑
k

αk

(
wT ϕ(xk) + b + ek − yk

)
(2)

where αk is a Lagrangian multiplier.
According to the KTT (Karush–Kuhn–Tucker) condition, the partial derivative of (2) is

obtained and equal to zero:

∂L
∂w = 0→ w =

N
∑

k=1
αk ϕ(xk)

∂L
∂b = 0→

N
∑

k=1
αk = 0

∂L
∂e = 0→ αk = γek
∂L
∂α = 0→ wT ϕ(xk) + b + ek − yk = 0

(3)

The kernel function is defined as K(xi,xj) = ϕ(xi)·ϕ(xj) according to the Mercer condition.
Thus, the prediction model of the LS-SVM can be expressed as follows:

y(x) =
N

∑
k=1

αkK(xk, x) + b (4)
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For kernel functions, linear kernel functions, polynomial kernel functions, radial basis
kernel functions, and Sigmoid kernel functions are commonly used. In this paper, the radial
basis kernel function K = exp(−

∣∣∣∣x− xk
∣∣∣∣2/2σ2) is used for kernel function, where σ is

the kernel width of the radial basis kernel function.

2.2. Modified Particle Swarm Optimization

The particle swarm optimization algorithm is used to search for the spatial opti-
mal solution, and the implementation requires the iteration and update of the position
and speed of each particle. Let the population size be Np, and in the D-dimensional
space, the position of the i-th particle in space is expressed as xi,t = (x1

i,t, x2
i,t, x3

i,t, . . . , xd
i,t);

vi,t = (v1
i,t, v2

i,t, v3
i,t, . . . , vd

i,t)
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,i tv  are expressed as: ￼ represents the velocity of the i
,i tx  particle; ￼ represents 
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,i tp  particle; ￼ is the individual optimal position; 

,g tp  ￼ is the global 

optimal position. Then, the speed and position update formula of the PSO algorithm at t 
+ 1 can be expressed as: 

( ) ( ),, , , , ,, 1 1 2

,, 1 , 1

d d d d d d dv v c rand p x c rand p xg ti t i t i t i t i ti t
d d dx x vi ti t i t

ω= ∗ + ∗ ∗ − + ∗ ∗ −+

= ++ +

  (5)

where p1,2, ,i N=  is the serial number of the particles; c1, c2 are acceleration constants; and 
rand is the random real number of the interval (0, 1). 

In order to achieve better parameters for the LS-SVM, the particle swarm optimiza-
tion is modified. Linearly decreasing inertial weight is commonly used, and inertial 
weight decreases linearly with the iterations. The relation curves for the specific inertial 
weights and iterations are shown in Figure 1. 
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is the global optimal position. Then, the speed and position update formula of the
PSO algorithm at t + 1 can be expressed as:

vd
i,t+1 = ωd

i,t ∗ vd
i,t + c1 ∗ rand ∗ (pd

i,t − xd
i,t) + c2 ∗ rand ∗ (pd

g,t − xd
i,t)

xd
i,t+1 = xd

i,t + vd
i,t+1

(5)

where i = 1, 2, · · · , Np is the serial number of the particles; c1, c2 are acceleration constants;
and rand is the random real number of the interval (0, 1).

In order to achieve better parameters for the LS-SVM, the particle swarm optimization
is modified. Linearly decreasing inertial weight is commonly used, and inertial weight
decreases linearly with the iterations. The relation curves for the specific inertial weights
and iterations are shown in Figure 1.
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Figure 1. The relation curve of inertial weight and iterations under linear decreasing.

Linearly decreasing the inertial weight can significantly improve the optimization
performance of the particle swarm optimization. However, the particle swarm optimization
under a linearly decreasing inertial weight easily falls into the local convergence. Therefore,
in the implementation of the particle swarm optimization, a certain amount of constant
perturbation is added to make the inertial weight suddenly increase at an iteration, so
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as to prevent local convergence. The formula of particle swarm optimization adding
perturbation constants is described in Equation (6):

vd
i,t+1 = ωd

i,t ∗ vd
i,t + c1 ∗ rand ∗ (pd

i,t − xd
i,t) + c2 ∗ rand ∗ (pd

g,t − xd
i,t)

xd
i,t+1 = xd

i,t + vd
i,t+1

ωd
i,t = ωmax −ωk ∗ t + At

At ∈ {0, 0.1}

(6)

where ωmax is the initial maximum inertial weight, ωk is the declining slope of the inertial
weight. At is the inertial weight perturbation constants, and at the 15% perturbation
probability, the At is 0.1; otherwise, At is 0.

The relationship curves for the specific inertial weights and iterations are shown
in Figure 2.
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The following two-point improvement method can be used:
Changing the inertial weight of dynamic adaptation: At 35% probability, the inertial

weight obtained by the linear decreasing particle swarm optimization with increasing
perturbation is multiplied by a fixed range coefficient r. The coefficient is in the range of
0.8~1.2. The formula is updated as follows:

vd
i,t+1 = ωd

i,t ∗ vd
i,t + c1 ∗ rand ∗ (pd

i,t − xd
i,t) + c2 ∗ rand ∗ (pd

g,t − xd
i,t)

xd
i,t+1 = xd

i,t + vd
i,t+1

ωd
i,t= (ωmax −ωk ∗ t) ∗ r + At

At ∈ {0, 0.1}

(7)

Random individuals are introduced to maintain the particle population diversity:
According to the update of the particle group, the particle swarm optimization brings
all individuals close to the optimal particles, resulting in the loss of diversity. A random
individual in the solution space is replaced accordingly with the particles obtained by
the 25% group algorithm. In general, the introduction of a smaller probability of ran-
dom individuals does not affect the actual iterative computational trend of the particle
swarm optimization.
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2.3. Self-Sensing Modeling Based on MPSO LS-SVM

When building a prediction model of the LS-SVM, the selection of the kernel width
σ2 and the regularization parameter of kernel function γ determines the performance of
the prediction model. Therefore, the prediction and generalization ability of the model
can be improved by choosing the appropriate parameters. In order to predict the rotor
displacement of magnetic bearing, the MPSO algorithm is used to optimize the parameters
σ2 and γ to achieve the optimal prediction effect.

For the six-pole radial HMB, the specific steps for building its prediction model by
using the MPSO LS-SVM are shown in Figure 3. The specific process is as follows:

(1) Determine the input and output variables of the rotor displacement prediction model
for the six-pole radial HMB.

(2) Acquire and preprocess sample data for input and output variables.
(3) Use the MPSO LS-SVM to optimize the performance parameters σ2 and γ. The

implementation methods are as follows:

(a) Initialize the parameters. The parameters in the MPSO need to be initialized:
population size NP = 20, maximum iteration of the algorithm Tmax = 80, learn-
ing factors c1 = c2 = 2, the initial maximum inertial weight ωmax = 0.75, and the
declining slope of the inertial weight coefficient ωk = 0.001. The initial values
of the parameters (σ2, γ) are obtained by initializing the particle swarm at
random. The initial displacement prediction model of the magnetic bearings is
established by taking the current parameter values as the performance values
of LS-SVM when the iteration is 0.

(b) Determine whether the particles meet the requirements. The fitness function
of the MPSO algorithm adopts the mean square error of the model prediction
value and the actual value, and the expression is as follows:

F =
1

Np

Np

∑
i=1
|yi − ŷi|

2

(8)

where Np is the total number of training samples, and yi and ŷi are the actual
value and model predictive value of the rotor displacement.

(c) Update the position and velocity of particles. According to Equation (8), the
fitness of each particle is calculated, and the position and velocity of the particle
are updated according to Equation (7) to obtain the next-generation particle.

(d) Determine whether or not to terminate the iteration. If the calculated optimal
value is less than the preset convergence precision or the current iteration
times have reached the preset maximum times, the iteration is stopped, and
the result is the output; otherwise, go to step (b) and let t = t + 1.

(4) Obtain the displacement prediction model by training the LS-SVM according to the
optimal performance parameters σ2 and γ obtained in step 3.

Therefore, the rotor displacements of the six-pole radial HMB can be predicted by the
detected currents so as to achieve the self-sensing of the rotor displacements. In this paper, in
order to achieve the best prediction effect, the kernel width σ2 and the regularization parameter
γ were optimized using the MPSO and the optimal parameters (σ2, γ) = (1.12, 1200).
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Figure 3. Flow chart of establishing the model.

3. Simulation Test
3.1. Determine the Input and Output Variables of the Prediction Model

In this six-pole radial HMB, the suspension force is adjusted by changing the control
current in the radial control coil, which makes the rotor suspend stably. Therefore, the
control currents {ia, ib, ic} are determined as the input variable of the prediction model, and
the output variables are the rotor displacements {xb, yb}. Since the LS-SVM used in this
paper can only deal with the single-output problem, two prediction models are needed to
predict the rotor displacements xb and yb, respectively.

3.2. Data Acquisition and Preprocessing

Obtaining effective sample data is a prerequisite for training the LS-SVM to establish
a prediction model. Assuming that the rotor moves at a distance of 0.5 mm near the
equilibrium position, take the sinusoidal signal with a frequency of 100 Hz and amplitude
value of 0.5 as excitation and collect sample data under the PID closed-loop control system
of magnetic bearing; the control currents {ia, ib, ic} form an input sample set, and the
rotor displacements {xb, yb} constitute the output sample set. Four hundred sets of data
are selected, half of which are randomly selected as training samples to obtain the initial
prediction model for offline training of the LS-SVM, and the other half of which are
used as test samples to test the prediction accuracy of the prediction model. In order
to prevent ill-conditioned data in the calculation process, all the data are processed by
the normalized method.

3.3. Model Evaluation

The MPSO and the PSO are compared and analyzed in Matlab. The parameters of
the PSO algorithm are set as follows: population quantity Np = 20, termination iterations
Tmax = 80, and learning factor c1 = c2 = 2. In the MPSO, the initial maximum inertial weight
ωmax = 0.75, and the declining slope of the inertial weight coefficient ωk = 0.001.
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The fitness curves of the MPSO and PSO are shown in Figure 4. The line with the
yellow circle in Figure 4 represents the predicted values of the MPSO, while the line with
the black star in Figure 4 represents the predicted values of the PSO. The fitness of the
MPSO is obviously smaller than the fitness of the PSO, and the fitness of the MPSO is close
to 0 in a short time, but the fitness of the PSO does not stabilize for a long time. This result
indicates that the MPSO provides a better predictive performance.

Figure 4. Mean square error curves of MPSO and PSO.

3.4. Model Prediction Effect

The control diagram of the six-pole hybrid magnetic bearing (SHMB) displacement
estimation model is shown in Figure 5. The displacement prediction model turns the
control current {ia, ib, ic} to displacement {x, y}. After comparing with the desired dis-
placement {x*, y*}, the displacement {ex, ey} enters the PID controller, and they convert
to the desired currents {ix*, iy*}. The desired currents change to the three-phase desired
currents {ia*, ib*, ic*}. After comparing the three-phase desired currents with the control
current, the SHMB is controlled by the control current output from the three-phase inverter.

Figure 5. Control diagram of SHMB displacement estimation system based on MPSO LS-SVM model.

In order to test the prediction ability of the proposed rotor displacement prediction
model under different working conditions, according to the displacement estimation
method proposed above, the suspension test and anti-interference of Matlab are used
to verify the reliability and stability of the six-pole hybrid magnetic bearing without
displacement sensor.

The displacement prediction curves of the rotor of the six-pole hybrid magnetic
bearing are shown in Figure 6. The rotor suspends from the coordinates (0, −0.5) mm. The
black curve shows the actual measured value when the rotor suspends without load; the
red curve shows the predicted value based on the MPSO; and the blue curve shows the
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predicted value based on the PSO. The abscissa is time, and the ordinate is displacement
x and y. It can be seen from Figure 6a that the maximum predicted value based on the
MPSO in the x direction is −0.37 mm, the maximum predicted value based on the PSO in
the x direction is −0.3 m, and the maximum actual measured value in the x direction is
−0.38 mm. It can be seen from Figure 6b that the maximum predicted value based on the
MPSO in the y direction is 0.18 mm, the maximum predicted value based on the PSO in
the y direction is 0.14 mm, and the maximum actual measured value in the y direction is
0.21 mm. The predicted value based on the MPSO is closer to the actual measured value
than the predicted value based on the PSO in both the x and y directions; therefore, the
prediction ability of the MPSO model is better than the PSO.

The displacement prediction curves of the rotor of the six-pole hybrid magnetic bearing
when the rotor is disturbed are shown in Figure 7. The rotor suspends from the coordinates
(0, −0.5) mm; when the rotor suspends in the equilibrium position, the step signal is added
at 0.05 s. It can be seen from Figure 7a that the predicted value based on the PSO in the
x direction returns to 0 after 0.03 s, and the predicted value based on the MPSO in the x
direction returns to 0 after 0.028 s, which is a reduction of 6.7%. It can be seen from Figure 7b
that the predicted value based on the PSO in the y direction returns to 0 after 0.02 s, and
the predicted value based on the MPSO in the y direction returns to 0 after 0.016 s, which is
a reduction of 20%. The predicted value of the MPSO and the actual measured value are
closer. Therefore, the MPSO is more resistant to interference than the PSO.
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4. Experiment Research

In order to verify the accuracy of the above results and further analyze the performance
of the six-pole magnetic bearing, an experimental platform was designed and manufactured,
as shown in Figure 8. Many experiments are discussed below to demonstrate the robustness
and stability of the displacement estimation method. The designed maximum carrying
capacity was 220 N, and the parameters of the prototype are shown in Table 1.

Figure 8. Experiment platform.
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Table 1. Prototype Parameters.

Parameters Value

Air gap length δ0 0.5 mm
Saturation induction density Bs 0.8 T

Radial magnetic pole area Sr 288.0 mm2

Maximum ampere-turns of a radial coil (Nrir)max 160.0 At
Magnetomotive force of permanent magnet Θm 320.0 At

Width of magnetic poles WHrP 16.0 mm
Axial width of permanent magnet Wm 3.0 mm

Outer diameter of rotor d1 144.0 mm
Inner diameter of rotor d2 118.0 mm

Axial length of rotor l1 23.0 mm
Outer diameter of stator yoke d3 82.0 mm
Inner diameter of stator yoke d4 58.0 mm

Thickness of stator l2 10.0 mm
Magnetic pole inner radius r1 58.5 mm

Outer diameter of PM d5 72.0 mm
Inner diameter of PM d6 58.0 mm

In this paper, CCS3.3, an integrated development software widely used in DSP, was
used to complete the compilation, debugging, and operation of dual-chip radial-axial six-
pole HMB. The software VB6.0 was used to develop a man–machine interaction interface
and for the online monitoring of experimental data and the online adjustment of the related
control parameters. The six-pole radial HMB was driven by an inverter, and the power
module used an insulated gate bipolar transistor (IGBT) three-phase full-bridge circuit. The
on and off of the six IGBTs changed the amount of current in the three-phase control coil so
as to effect adjustments of the rotor position.

Figure 9 shows the suspension experiment of the magnetic bearing: the blue waveform
shows the suspension waveform in the x direction; the red waveform shows the suspension
waveform in the y direction; the abscissa is the time coordinates, 200 ms per lattice; and the
ordinate is the displacement coordinates, 200 µm per lattice. The rotor starts suspension in
the fourth grid after about 90 ms. The position of the rotor changes in the x and y directions,
stabilizing at the determined position, which is the equilibrium position, indicating that
the magnetic bearing can achieve stable suspension in a very short time.

Figure 9. The waveform of rotor floatation.

Figure 10 shows the suspension experiment at different speeds: the blue waveform
shows the displacement waveform in the x direction; the red waveform shows the displace-
ment waveform in the y direction; the abscissa is the time coordinates, 20 ms per lattice;
and the ordinate is the displacement coordinates, 200 µm per lattice. To the left of 120 ms,
the displacement waveform is shown at 3600 rpm; to the right of 120 ms, the displacement
waveform is shown at 1800 rpm. It can be seen from Figure 10 that both the maximum



Energies 2022, 15, 1610 11 of 13

amplitude of the displacement waveform in the x and y directions are 100 µm, which is far
shorter than the length of the gas gap. The rotor suspension is stable at different speeds.

Figure 10. Rotor displacement at different speeds.

When the system reaches a steady state, a y-direction disturbance is applied to the
rotor, and the weight is suspended at one end of the rotor for the purpose of applying
a 50 N disturbance power to the rotor. The sample data collected based on the experi-
mental platform is used for model training. The experimental waveforms detected by the
PSO prediction model and the MPSO prediction model are shown in Figure 11, where
Figure 11a,c indicate the rotor displacement in the x direction, and Figure 11b,d indicate the
rotor displacement in the y direction when disturbed. As can be seen from Figure 11, the
displacement in the x direction shifts slightly when the rotor in the y direction is disturbed,
while the recovery time of the prediction model based on the MPSO is approximately 40 ms
shorter than the prediction model based on the PSO, and the rotor displacement offset of
the prediction model based on the MPSO is approximately 70 µm less than the prediction
model based on the PSO. The experimental results show that the prediction model based
on the MPSO has good prediction ability, as well as good anti-interference performance.

Figure 11. Displacement waveforms of anti-interference experiment based on the PSO and MPSO.
(a) displacement waveform in the x direction of PSO. (b) displacement waveform in the y direction
of PSO when disturbed. (c) displacement waveform in the x direction of MPSO. (d) displacement
waveform in the y direction of MPSO when disturbed.
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Comparing the simulation results of Figure 7 with the experimental results of Figure 11,
the experimental results deviate from the simulation results due to rotor gravity and other
uncontrollable problems; however, the two verification methods can demonstrate the
accuracy of the model and methods proposed in this paper.

5. Conclusions

This manuscript proposes a displacement estimation method using an MPSO LS-SVM.
By changing the inertial weight of the MPSO to jump out of the local search and conduct a
global search, the optimal parameters are obtained. The simulation results show that the
prediction ability of the MPSO model is better than the PSO model and the MPSO model
is more resistant to interference than the PSO model. The experiment results show that
the magnetic bearing using an MPSO LS-SVM suspends stably in both static and dynamic
situations and has good anti-interference capacity and load capacity.
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Nomenclature

SHMB Six-pole hybrid magnetic bearing
LS-SVM Least-squares support vector machine
MPSO Modified particle swarm optimization
PSO Particle swarm optimization
ia, ib, ic The input variable of the prediction model
xb, yb The output variable of the prediction model
x, y The rotor position coordinates
w The weight of the LS-SVM
b The bias of the LS-SVM
γ The regularization parameter of the LS-SVM
ek The fitting error of the loss function of the LS-SVM
αk Lagrangian multiplier of the Lagrange function
σ The kernel width of the radial basis kernel function
vi,t The velocity of the i-th particle of PSO
xi,t The position of the i-th particle of PSO
pi,t The individual optimal position of PSO
pg,t The global optimal position of PSO
c1, c2 The acceleration constants of PSO
rand The random real number of the interval (0, 1)
t Iterations
ωd

i,t The inertial weight
ωmax The initial maximum inertial weight
ωk The declining slope of the inertial weight
Tmax The maximum iteration of the algorithm
At The inertial weight perturbation constants
r The fixed range coefficient
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