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Abstract: Plasma parameters of radiofrequency discharge generated at low pressures in an argon-
oxygen mixture addressed for biomedical surface sterilization have been optimized. Numerical
results illustrate the density distributions of different species and electron temperatures during
the electrical discharge process. The current discharge acting in the abnormal range decreases at
higher oxygen gas flow rates. The temperature of electrons drops with pressure while it rises by
adding oxygen. Nevertheless, electron density displays an adverse trend, exhibited by the electron’s
temperature. The average particle density of the reactive species is enhanced in Ar/O2 compared to
He/O2, which ensures a better efficiency of Ar/O2 in sterilizing bacteria than He/O2. The impact
of oxygen addition on the discharge mixture reveals raised oxygen atom density and a reduction in
metastable oxygen atoms. A pronounced production of oxygen atoms is achieved at higher frequency
domains. This makes our findings promising for biomedical surface sterilization and leads to optimal
parameter discharges used for sterilization being at 30% of oxygen gas ratio and 0.3 Torr pressure.

Keywords: plasma parameters; numerical model; oxygen–argon mixture; radiofrequency; efficiency;
sterilization

1. Introduction

Sterilization of medical supplies and equipment has always been a critical issue in the
healthcare field with respect to attaining mandatory safety, effectiveness, and efficiency.
However, many current sterilization methods are unable to ensure effective sterilization or
even decontaminate medical devices. This is due to the heat deterioration of some materials
such as plastic or even to the biomolecule’s resistance to common sterilization methods [1].
Thus, medical device sterilization attracted a lot of interest in the last decades [2,3]. Non-
equilibrium plasma discharge is one of the promising solutions for handling inflammation
and preventing the spread of diseases derived from microorganisms and other biological
substances. This method ensures low temperature operation, non-carcinogen properties,
non-flammability chemical, higher efficiency, and lower costs compared to conventional
conditions [4–6].

Recently, the effectiveness and efficiency of non-thermal plasma relative to inactivated
bacteria such as Escherichia Coli have been proved [7–9]. Various conditions may highly
affect plasma sterilization such as applied pressure, operating power, time, rate of flowing
gas, and system geometry. RF Low pressure plasmas (0.9 mTorr to 10 Torr or 0.13 Pa to
1333 Pa) are weakly ionized (degree of ionization 10−6 to 10−1) glow discharge plasmas,
and they are abundantly used for the modification of various materials such as metals,
polymers, and biomedical surfaces.

Indeed, sterilization methods using low-pressure capacitively coupled RF-driven
plasma remain the most promising method. The action mechanism is related to spore
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etching by atomic oxygen (O), superoxide (O2
−), ozone (O3), radical’s hydroxyl (OH),

and further reactive oxygen species generated during plasma discharge. This induces a
direct destruction of spores or a removal of spore-shielding materials due to the interaction
between reactive species and macromolecules, such as proteins, lipids, and DNA, causing
cell death [10,11].

Helium and argon are generally used as feeding gases. This is due to their high
stability performance across a large range of experimental parameters. On the other hand,
new chemically active species may emerge by adding a small quantity of reactive gases,
such as O2, CF4, and N2 [12,13]. This results in additional technological benefits. For
instance, the presence of extra percentages of oxygen may generate numerous reactive
oxygen densities that oxidize the material’s surface and induces an oxidative power [14,15].
Therefore, low-pressure oxygen plasmas provide a complex combination of reactive species
bombarding the surface of the target, including excited and reactive oxygen species (ROS),
ions, and energetic radiations [16,17]. This effect initiates a quick erosion of biological
material and has a major role in microbial deactivation, while remaining relatively harmless
to the fundamental substrate [18,19].

The mechanisms of spore etching and erosion of electrodes are regulated by radicals
and active species generated by plasma discharges. These processes destroy the spore’s
membrane and removes the material that shields them from exposure to UV radiation.
Together, these effects will accelerate the process of sterilization [20]. In a recent study, H.
Dai et al. [21] found that argon–oxygen mixtures cause less damage to electrode surface
than air gas, which can reduce material loss due to erosion and improve electrode life.

The high-quality biomedical surface treatment needs further precision with respect
to reactive processes monitoring, while plasma interactions with biomolecules and mi-
croorganisms remain unexplained. During deposition, cleaning, selective etching, and
any other surface modification processes, the energy of ion bombardment as well as ion
flux requires accurate control. Several experimental and numerical studies have been
interested in Ar/O2 mixture plasmas at low pressure. This is to clarify the complexities of
plasma discharges induced by large fluxes of numerous neutral and ionized active species.
Khalaf et al. [22] conducted experiments to investigate the electrical properties of Ar/O2
gas mixture glow discharge to determine breakdown voltages for various percentages of
O2. Furthermore, Chen et al. [23] examined O2 concentration rate effects as a function
of electron energy distribution in Ar/O2 and He/O2 by using a particle collision model.
Zhang et al. [24] investigated energy efficiency in producing reactive oxygen species (ROS)
in He-O2 dielectric barrier discharge via one-dimensional fluid models. Moreover, Anjum
et al. [25] performed time-resolved measurements of several plasma characteristics in an
RF pulse-modulated capacity, connecting discharge driven into the Ar/O2 mixture.

In this work, a bidimensional model of radio frequency capacitively coupled discharge
in Ar/O2 mixture plasma is performed with COMSOL Multiphysics. The distributions of
different reactive species in the discharge among several kinds of chemical reactions and
electron temperature are presented at various instants of the discharge period. This will
clarify the mechanism governing the processes occurring in the plasma discharge. The influ-
ences of discharge parameters (gas pressure, RF power, and gas composition) on electrons,
ions and radical species density, and electron temperature were investigated. These showed
high dependency relative to microbial inactivation rates that estimate sterilization efficiency.
A detailed comparison of He/O2 and Ar/O2 mixtures is provided, as well as their role in
sterilizing microorganisms and influence on the material’s surface. This determines the
optimum conditions of antimicrobial effects of low capacitively coupled radiofrequency
discharge at low pressure via Ar/O2 mixtures in biomedical surface sterilization.

2. Description of the Simulation Model

Figure 1 shows the capacitively coupled plasma (CCP) low-pressure reactor using an
Ar/O2 mixture for biomedical surface sterilization. The reactor is symmetrically cylindrical,
including two parallel plate electrodes made of stainless steel separated by 0.03 m. The
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diameters of the upper and the lower electrodes are 0.02 m, while their thickness is equal
to 2 × 10−3 m. A sinusoidal signal generator delivers RF (13.56 MHz) voltage of 150 V to
Ar/O2 mixture plasma source comprising 20% oxygen under 0.3 Torr [26].
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Figure 1. Experimental setup of plasma sterilization using RF capacitively coupled plasma discharge.

2.1. Governing Equations

We studied the discharge in Ar/O2 via a two-dimensional fluid model in COMSOL
Multiphysics software by using plasma module® 5.4 [27]. The continuity equation, the
energy equation, and the Poisson equation assigned to the distribution of electric potential
are used to simulate characteristics of the discharge [28,29].

The time-dependent continuity equation for electrons, ions, and neutral particles is
given by the following:

∂n∗
∂t

+∇ · Γ∗ = S∗ (1)

where subscript * indicates electrons I, ions (i), and neutral particles (np). n, Γ, and S
represent the density, flux density, and source term correspondingly for different particles.

In drift–diffusion approximation, the particle flux densities are determined by the
following.

Γe = −neµeE− De∇ne (2)

Γi = sgn(q) niµiE− Di∇ni (3)

Γnp = −Dnp∇nnp (4)

µ and D correspond, respectively, to mobility and diffusion coefficients. sgn(q) is (1)
for positive ions, and (−1) for negative ions. We are concerned only with the diffusion
quantities for neutral particles in flux calculation.

The electric field is written as follows:

E = −∇V (5)

where V is the electric potential that satisfies Poisson’s equation.

∇2V =
e
ε0
[ne − ni] (6)

e and ε0 represent the elementary charge and vacuum permittivity, respectively.
The equation governing the energy density of electrons is as follows:

∂nε

∂t
+∇ · Γε = −eΓe.E + Sε (7)

where Sε is the energy lost through inelastic collision, and Γε is the electron energy flux
given by the following.
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Γε =
5
3
(−nεµεE− Dε∇nε) (8)

The electron diffusion coefficient and the energy mobility and diffusion coefficients
are determined using electron mobility.

De = µeTe, µε =
5
3

µe, Dε = µεTe (9)

The source terms in the above equations are governed by the chemistry of plasma
model and deduced through the rate coefficients [30].

S∗ =
M

∑
j=1

(xjk jNnne) (10)

Therefore, collisional energy loss overreactions are summed to obtain the electron
energy loss term.

Sε =
P

∑
j=1

(xjk jNnne∆ε j) (11)

where k j, xj, and ∆ε j indicate the rate coefficient, the species mole fraction, and the energy
loss, correspondingly, for a given reaction j. Nn represents neutral density.

The temperature of gas Tg is considered constant at 300 K, while the temperature of
electrons Te is calculated via the equation of energy. Electron temperature Te, mean electron
energy ε, and nε are correlated with each other:

nε = εne =
3
2

KBneTe (12)

where KB denotes the Boltzmann constant.
The resolution of this fluid model needs the knowledge of mobility and diffusion

coefficients necessary for density and energy flux equations, as well as reaction rates of
the creation or losses of charged species under different collision processes (ionisation,
attachment, detachment, excitation, elastic, and super elastic collisions) needed for the
source term of the continuity equation.

The electron transport coefficients are calculated by solving the zero-dimensional
Boltzmann equation by means of the collision cross-sections for electron–Ar and electron–
O2 systems. Ion transport coefficients are calculated with the Monte Carlo method that
uses certain interaction potentials and collision cross-sections [31].

2.2. Chemical Model

The Ar/O2 model incorporates ground-state species of argon atoms (Ar), oxygen
molecules (O2), oxygen atoms (O), and ozone molecule (O3). Furthermore, excited species
above the ground state level such as argon atoms (Ar*), oxygen atoms O*(1D), and oxygen
molecule O2

*(1∆g) at 11.55, 1.97, and 0.977 eV, respectively, have been considered. Moreover,
argon ions (Ar+), positive oxygen molecule ions O2

+, positive oxygen ions O+, negative
oxygen ions O−, and electrons (e) have been included. Table 1 lists various species included
in the plasma model.

In total, 44 different reactions and 11 various plasma species are intervening in a
mixture of oxygen–argon. The chemical reactions used in our model are given by G. Park
et al. [32]. A detailed overview of the possible reactions considered for oxygen and argon
in the model of Ar/O2 is listed in Tables 2 and 3 respectively.

A comparative study is conducted in this work between Ar/O2 and He/O2 mixtures
to reveal their impact in plasma decontamination. The model of He/O2 considers ion
helium He+, dimer ions helium He2

+, excited atoms helium He*, dimer excited He2*,
and the species of oxygen (Table 2). The chemical reactions of different ions and neutral



Energies 2022, 15, 1589 5 of 18

species considered for helium in He/O2 are listed in Table 4 with their corresponding rate
coefficients [32,33].

Table 1. Various species incorporated in the plasma model.

Neutral Species Excited Species Ions Electrons

Ar Ar* (in metastable level) Ar+ e−

O2 O2*(1∆g) O2
+

O O*(1D) O+

O3 O−

* Excited state of atoms.

Table 2. List of reactions for Oxygen in Ar/O2 mixture.

No. Reaction Rate Coefficient

Principal Reaction for Oxygen

R1 e + O2 Ü O2 + e 4.7 × 10−14 Te
0.5 (m3 s−1)

R2 e + O2 Ü O− + O 8.8 × 10−17 exp (−4.4/Te) (m3 s−1)
R3 e + O2 Ü 2O + e 4.2 × 10−15 exp (−5.6/Te) (m3 s−1)
R4 e + O2 Ü O2

+ + 2e 9 × 10−16 Te
0.5 exp (−12.6/Te) (m3 s−1)

R5 e + O− Ü O + 2e 2 × 10−13 exp (−5.5/Te) (m3 s−1)
R6 e + O2

+ Ü O + O(1D) 2.2 × 10−14 Te
−0.5 (m3 s−1)

R7 e + O2 Ü O− + O+ + e 7.1 × 10−17 Te
0.5 exp (−17/Te) (m3 s−1)

R8 e + O Ü O + O+ + 2e 5.3 × 10−16 Te
0.9 exp (−20/Te) (m3 s−1)

R9 e + O Ü O+ + 2e 9 × 10−15 Te
0.7 exp (−13.6/Te) (m3 s−1)

R10 e + O3 Ü O2
− + O 1 × 10−15 (m3 s−1)

R11 O− + O2
+ Ü O + O2 2 × 10−13 (200/Tg)0.5 (m3 s−1)

R12 O− + O Ü O2 + e 5 × 10−16 (m3 s−1)
R13 O− + O2

+ Ü 3O 1 × 10−13 (m3 s−1)
R14 O− + O− Ü 2O 2 × 10−13 (300/Tg)0.5 (m3 s−1)
R15 O+ + O2 Ü O + O2

+ 2 × 10−17 (300/Tg)0.5 (m3 s−1)
R16 O− + O2 Ü O3 + e 5 × 10−21 (m3 s−1)
R17 O3 + O2 Ü 2O2 + O 7.3 × 10−16 exp (−11400/Tg) (m3 s−1)
R18 O3 + O Ü 2O2 1.81 × 10−17 exp (−2300/Tg) (m3 s−1)
R19 e + O2 + O2 Ü O2

− + O2 2.26 × 10−42 (300/Tg)0.5 (m3 s−1)
R20 O + O2 + O2 Ü O3 + O2 6.9 × 10−40 (300/Tg)1.25 (m3 s−1)
R21 e + O2 Ü O + O*(1D) + e 5.0 × 10−14 Te

0.22 exp (−8.4/Te) (m3 s−1)
R22 e + O Ü O*(1D) + e 4.2 × 10−15 exp (−2.25/Te) (m3 s−1)
R23 e + O*(1D) Ü O + e 8 × 10−15 (m3 s−1)
R24 e + O*(1D) Ü O+ + 2e 9 × 10−15 Te

0.7 exp (−11.6/Te) (m3 s−1)
R25 O*(1D) + OÜ 2O 8 × 10−18 (m3 s−1)
R26 O*(1D) + O2 Ü O + O2 7 × 10−18 exp (67/Tg) (m3 s−1)
R27 O*(1D) + O2 Ü O + O2*(1∆g) 1 × 10−18 (m3 s−1)
R28 e + O2 Ü O2*(1∆g) + e 1.7 × 10−15 exp (−3.1/Te) (m3 s−1)
R29 e + O2*(1∆g) Ü O2 + e 5.6 × 10−15 exp (−2.2/Te) (m3 s−1)
R30 O2*(1∆g) + O2 Ü 2O2 2.2 × 10−24 (Tg/300)0.8 (m3 s−1)
R31 O2*(1∆g) + O Ü O + O2 7 × 10−22 (m3 s−1)
R32 O− + O2*(1∆g) Ü O3 + e 3 × 10−16 (m3 s−1)
R33 O− + O2*(1∆g) Ü O2

− + O 1 × 10−16 (m3 s−1)
R34 O2*(1∆g) + O3 Ü 2O2 + O 6.01 × 10−17 exp (−2853/Tg) (m3 s−1)

Tg (K) and Te (eV)
* Excited state of atoms.
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Table 3. List of reactions for Argon in Ar/O2 mixture.

No. Reaction Rate Coefficient

Principal Reaction for Argon

R35 e + Ar Ü Ar + e 3.9 × 10−19 exp (−4.6/Te) (m3 s−1)
R36 e + Ar Ü Ar* + e 5.0 × 10−15 exp (−12.64/Te) (m3 s−1)
R37 e + Ar Ü Ar+ + 2e 2.3 × 10−14 Te

0.59 exp (−17.44/Te) (m3 s−1)
R38 e + Ar* Ü Ar+ + 2e 6.8 × 10−15 Te

0.67 exp (−4.2/Te) (m3 s−1)
R39 e + Ar* Ü Ar + e 4.3 × 10−16 Te

0.74 (m3 s−1)

Principal Reaction between Argon and Oxygen

R40 O2 + Ar* Ü O2 + Ar 1.0 × 10−15 (m3 s−1)
R41 O + Ar* Ü O + Ar 4.1 × 10−17 (m3 s−1)
R42 O2 + Ar* Ü 2O + Ar 1.01 × 10−16 (m3 s−1)
R43 O2 + Ar+ Ü O2

+ + Ar 4.9 × 10−17 (300/Tg)0.78 (m3 s−1)
R44 O + Ar+ Ü O+ + Ar 6.4 × 10−18 (m3 s−1)

Tg (K) and Te (eV)
* Excited state of atoms.

Table 4. List of reactions for helium in He/O2 mixture.

No. Reaction Rate Coefficient

Principal Reaction for Helium

R1 e + He Ü He* + e 4.2 × 10−15 Te
0.31 exp (−19.8/Te) (m3 s−1)

R2 e + He* Ü He + e 2 × 10−16 (m3 s−1)
R3 e + He Ü He+ + 2e 1.5 × 10−15 Te

0.68 exp (−24.6/Te) (m3 s−1)
R4 e + He* Ü He+ + 2e 1.28 × 10−13 Te

0.6 exp (−4.78/Te) (m3 s−1)
R5 e + He2* Ü He2

+ + e 9.75 × 10−16 Te
0.71 exp (−3.4/Te) (m3 s−1)

R6 e + He2
+ Ü He* + He 5 × 10−15 Te

−0.5 (m3 s−1)
R7 e + He2

+ Ü He + He 2 × 10−14 (m3 s−1)
R8 e + He2

+ + HeÜ 3He 2 × 10−39 (m3 s−1)
R9 e + e + He2

+ Ü 2He + e 5 × 10−29 Te
−4.5 (m6 s−1)

R10 He* + He* Ü He+ + He + e 2.7 × 10−16 (m3 s−1)
R11 He* + 2He Ü He2* + He 1.3 × 10−45 (m6 s−1)
R12 He+ + 2He Ü He2

+ + He 1 × 10−43 (m6 s−1)

Principal Reaction between Helium and Oxygen

R13 e + O2 + He Ü O2
− + He 1 × 10−43 (m6 s−1)

R14 O2 + He* Ü O2
+ + He + e 2.54 × 10−16 (3000/Tg)−0.5 (m3 s−1)

R15 O2 + He + O Ü O3 + He 6.27 × 10−46 (m6 s−1)
R16 O + O + He Ü O2 + He 1.3 × 10−45 (m3 s−1)
R17 O2*(1∆g) + He Ü O2 + He 8 × 10−27 (m3 s−1)

Tg (K) and Te (eV)
* Excited state of atoms.

2.3. Boundary Conditions and Computational Model

Plasma is maintained between two symmetric parallel plate electrodes separated by
0.03 m and measuring 0.01 m in length. One electrode is electrically grounded while the
other is powered by an oscillating RF source resulting in a sinusoidal voltage waveform.

Vr f = Vm sin(2π f t) (13)

Vm is the maximum voltage and f is the frequency fixed at 13.56 MHz.
The electron flux normal to electrodes and reactor walls resulting in an overall gain of

the number of electrons due to secondary emission effects is introduced.

− n·Γe =

(
1
2

ve,thne

)
−∑

p
γp
(

Γp·n
)

(14)
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While the electron energy flux towards the electrodes and walls is provided by the
following.

− n·Γε =

(
5
6

ve,thnε

)
−∑

p
εpγp

(
Γp·n

)
(15)

n represents the normal vector to the surface, γp represents the secondary emission
coefficient, Γp is the positive ions flux density, εp the mean energy of secondary electrons,
and ve,th is the thermal velocity [34]. This can be written as follows:

ve,th =
√

8KBTe/πme (16)

where me is the mass of the electron.
Herein, the secondary emission coefficient γp is assumed to 0.05, and the secondary

electron temperature on the electrode is set to 1 eV.
Heavy species, i.e., positive ions, atoms, and metastable atoms, are lost to the wall

due to surface reactions. For negative ions, no surface reactions are needed due to the
incapability of escaping from the ambipolar field or reaching reactor walls. Indeed, negative
ions could be removed from the plasma only via recombination with positive ions. The
following surface reactions presented in Table 5 are incorporated in the model. The sticking
coefficients are provided by COMSOL Multiphysics and are used to calculate the loss
coefficient rate for neutral particles to the wall surface [35].

Table 5. Surface reactions.

Reaction Formula Sticking Coefficient

1 O2*(1∆g) Ü O2 1
2 O2

+ Ü O2 1
3 O*(1D) Ü O 1
4 O+ Ü O 1
5 O + O Ü O2 1 × 10−3

6 Ar+ Ü Ar 1
7 Ar* Ü Ar 1

* Excited state of atoms.

The densities of neutral species of oxygen and argon molecules are initially fixed at
fractional values, while the initial electron density in the plasma was fixed at 1015 m−3. Gas
temperature is maintained at 300 K. The initial mean electron energy throughout the entire
domain is set at 4 eV while the initial electric potential is fixed to 0 V.

To simulate the electrical and energetic characteristics of the RF discharge in the mix-
ture of Ar/O2, a two-dimensional axisymmetric model was adopted. The numerical model
was performed using a capacitively coupled plasma module in COMSOL Multiphysics®

5.4. The Galerkin finite element method was used to solve strongly coupled differential
equations and the parallel sparse direct solver (PARDISO) was applied for solving the
time-dependent solution [36]. The simulation takes 82310 s on an Intel® Core (TM) i7-PC
(Windows10, 1.99 GHz, 16 GB RAM, and 64-bit operating system).

Figure 2 shows the computational domain implementing two-dimensional reactor
geometry and meshes. In the simulation domain, a nonuniform triangular mesh containing
Nz × Nr = 235 × 155 = 36,425 elements is used in the model. Triangular elements vary in
axial and radial directions from 268 µm to 2.5 µm close to the anode, cathode, and wall
surfaces to improve the stability of the simulation model and to obtain accurate resolution.
Mesh quality can be evaluated by COMSOL Mesh Statistics window, which gives us a
visual indication of the quality of the mesh and helps us to determine whether we need to
adjust the mesh size in any way.
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Figure 2. Computational domain.

3. Results and Discussions

The following results are obtained for an interelectrode distance of 0.03 m, a 0.3 Torr
pressure, and a 150 V radiofrequency voltage. The used oxygen content in the gas mixture
is about 20%.

As a first step, we compare model calculations with experimental measurements of
electron temperature to explore reaction rates in the discharge and to show the accuracy of
the model. Figure 3 shows the calculated and measured electron temperature as a function
of pressure in pure argon and in (Ar + 10% O2) mixture with 60 MHz RF generator and
0.06 m interelectrode distances [37]. The numerical results show a great agreement with
experimental measurements.
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Figure 3. Variation of electron temperature with pressure in RF glow discharge. The solid and
dotted lines represent the model calculations in pure argon and in the (Ar + 10% O2) mixture. The
experimental measurements were carried out with Langmuir probes [37].

Figure 4 demonstrates the spatial distribution of different species densities. The atomic
oxygen, excited argon atom, excited oxygen atom, and ozone are the main dominant species
in the discharge [38].

The dissociative attachment reaction (R2: e + O2 Ü O− + O), which is the essential
for producing oxygen atom, has a greater rate coefficient than the three-body attachment
reaction (R19: e + O2 + O2 Ü O2

− + O2). This demonstrates the high-density number of
the oxygen atom O compared to O2

− ions in the mixture.
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Figure 4. Distribution of different particles density at 0.3 Torr total gas pressure, RF voltage (150 V,
13.56 MHz), and 20% O2. (*) Excited state of atoms.

The 2D densities distribution of atomic oxygen, excited oxygen atom and ozone, rep-
resenting the most important antibacterial agents, and the exited argon atom are illustrated
in Figure 5.
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Figure 5. Density distribution of (a) atomic oxygen (O), (b) excited oxygen atoms O*(1D), (c) exited
argon atoms (Ar*), and (d) ozone O3 at 0.3 Torr total gas pressure, RF voltage (150 V, 13.56 MHz), and
20% O2.

The distribution of electron density in different instants of cycle RF is illustrated in
Figure 6. The plasma sheaths exhibit a significant temporal dynamic throughout the total
RF cycle, and electron density oscillates within these two sheaths. However, ions and
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excited species can only respond to the average time of the electrical field and remains
unable to pursue the associated evolution of the applied RF voltage in time owing to inertia
(see, Figure 4).
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Figure 6. Electron density distribution at different instants of cycle RF (t): (a) t = T/4, (b) t = T/2,
(c) t = 3T/4, and (d) t = T, at 0.3 Torr total gas pressure, RF voltage (150 V, 13.56 MHz), and 20% O2.

The distributions of electron temperature at various instants of cycle RF are represented
in Figure 7. Significant heating of electrons took place in the sheaths, whereas bulk plasma
had comparatively little heating. Indeed, most electrons gain energy during acceleration in
the electric field, and the absorption of power occurs when electron velocity increases [39].

The different phases of the RF discharge show that the electron temperature in the
positive cycle discharge is higher and larger than in the negative cycle. This can be
attributed to the oscillating motion of electrons caused by the electric field. Additionally,
the modulation ratio of various species is different in the entire cycle [40].

We studied the characteristics of current–voltage discharge at varying O2 percentages
in (Ar/O2) gas mixture (see Figure 8). The discharge current grows as the applied voltage
increases, where working pressure remains constant at 0.3 Torr. Consequently, electrical
discharge occurs in the abnormal glow zone, where the largest area of electrodes surface
is involved [41]. Here, the electrical breakdown voltage (minimum voltage at which the
transition from an insulator to a conducting level occurs) increases by increasing O2 in
the mixture.

Furthermore, the current of the discharge decreases as the O2 gas rate increases while
preserving the gas voltage and pressure constant. Indeed, the enhancement of proportion
of O2 raises the quantity of negative ions that consequently reduces electron density during
the discharge process. Thus, plasma resistance becomes important, and the discharge
current is reduced [42]. An increasingly higher electric field is needed.
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Figure 7. Electron temperature distribution at different instants of cycle RF (t): (a) t = T/4, (b) t = T/2,
(c) t = 3T/4, and (d) t = T, at 0.3 Torr total gas pressure, RF voltage (150 V, 13.56 MHz), and 20% O2.
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Figure 8. The current–voltage curve at various O2 gas rates, f = 13.56 MHz, and working pressure
0.3 Torr.

The effect of the addition of the O2 ratio to Ar/O2 gaseous mixtures on the electrical
characteristics approves that the best current value was at a ratio of 30%.
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In Figure 9, the variations of voltage and power as a function of current are represented.
As input power increases, the current and voltage rise monotonously until he discharge
becomes an arc. The slope of the current–voltage curve is not linear in this region [43].
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Figure 9. The discharge voltage and input power as a function of current at 30% O2 gas rate,
f = 13.56 MHz, and working pressure 0.3 Torr.

The impact of the applied voltage on electron density and temperature has been also
studied (see Figure 10). Herein, the use of elevated voltage increases electron energy, which
enhances ionization and excitation and generates significant electron density. The behavior
of the electron temperature under voltage variation is found to be similar to that observed
for electron density.
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Figure 11. (a) Electron density and (b) electron temperature as a function of input power in Ar/O2 
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Figure 10. Density and temperature of electrons as a function of applied voltage in Ar/O2 mixture
(O2 = 20%), f = 13.56 MHz, and working pressure 0.3 Torr.

The changes in electron density and electron temperature in an Ar/O2 mixture with
RF input power for variable pressure gas were also studied (see Figure 11). The number of
electron collisions augments with working pressure. As a result of the energy exchange be-
tween the electrons and gas particles, electron density increases with a reduction in electron
temperature [44]. Moreover, the electron’s mean free path diminishes with rising pressure.
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Figure 11. (a) Electron density and (b) electron temperature as a function of input power in Ar/O2 at
different working pressures (P = 0.2 Torr, 0.3 Torr, and 0.5 Torr) and (20%) O2.

The electron temperature was found to be decreasing as a function of power. However,
as the pressure increased to 0.3 Torr and 0.5 Torr, the electron temperature displayed a
slight decrease to about 1.2 eV for 0.3 torr and 0.8 eV for 0.5 torr. This drop in electron
temperature with power is assigned to the necessity to balance electron generation and
loss, which needs a lower ionization rate and lower electron temperature to compensate
for increased density occurring with several electron collisions during oscillation at high
power supplies [45]. As pressure increases, the variation of electron density is lower, which
results in lower decreases in electron temperature [46].

The dependency of (ne) and (Te) relative to the O2 flow rate is illustrated in Figure 12.
Here, the electron’s temperature increases with increasing oxygen percentage in the mixture.
This behavior is due to the smaller ionization cross-section of O2 compared to that of
Ar. Therefore, the energy lost by electrons via ionizing collisions with O2 molecules
is reduced and the electron’s temperature increases. However, the density of electrons
decreases for high O2 percentages. This phenomenon could be attributed to the dominantly
dissociative electron’s attachment of O2 to form O− associated with the augmentation of
the electronegativity of gas O2 defined by the density’s ratio ([O−]/[e−]) at higher oxygen
percentages [47,48].
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Figure 13. (a) Density and (b) electron temperature as a function of input power in Ar/O2 and He/O2 

at (20%) O2 and (0.3 Torr) pressure. 

Figure 12. Density and temperature of electrons in Ar/O2 mixture for different O2 percentages at
0.3 Torr total gas pressure and RF voltage (150 V, 13.56 MHz).
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A comparison is made between He/O2 and Ar/O2 mixtures to emphasize their
effectiveness in the decontamination and sterilization of biomedical surfaces. Figure 13a
shows an increase in the density of electrons in both mixture gases for an input power
varying between 0.1 and 1000 W. The higher electron density in Ar/O2 generates reactive
species that are essential for initiating antimicrobial activations. This could be assigned to
the lower excitation and ionization energy levels of argon gas (11.6 and 15.8 eV, respectively)
compared to helium gas (19.8 and 24,6 eV, respectively). Electron temperature decreased
for both gases mixtures with increasing power. This behavior is important in He/O2, which
displays greater electron temperature than in Ar/O2.
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Figure 12. Density and temperature of electrons in Ar/O2 mixture for different O2 percentages at 0.3 

Torr total gas pressure and RF voltage (150 V, 13.56 MHz). 

A comparison is made between He/O2 and Ar/O2 mixtures to emphasize their effec-

tiveness in the decontamination and sterilization of biomedical surfaces. Figure 13a shows 

an increase in the density of electrons in both mixture gases for an input power varying 

between 0.1 and 1000 W. The higher electron density in Ar/O2 generates reactive species 

that are essential for initiating antimicrobial activations. This could be assigned to the 

lower excitation and ionization energy levels of argon gas (11.6 and 15.8 eV, respectively) 

compared to helium gas (19.8 and 24,6 eV, respectively). Electron temperature decreased 

for both gases mixtures with increasing power. This behavior is important in He/O2, which 

displays greater electron temperature than in Ar/O2. 
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Figure 13. (a) Density and (b) electron temperature as a function of input power in Ar/O2 and He/O2 

at (20%) O2 and (0.3 Torr) pressure. 
Figure 13. (a) Density and (b) electron temperature as a function of input power in Ar/O2 and He/O2

at (20%) O2 and (0.3 Torr) pressure.

Figure 14 represents the densities of reactive oxygen species (ROS) as a function of
input power. As input power increases, the density of atomic oxygen becomes important.
This is crucial for ensuring good plasma sterilization. Ar/O2 has higher reactive oxygen
species densities than He/O2. This agrees with previous experimental results revealing the
high impact of Ar/O2 in sterilizing bacteria than compared to He/O2 [49].
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elevated oxygen gas rates. This diminution of plasma electron density is associated with 
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Figure 14. Variations of average particles densities of He/O2 and Ar/O2 with power (P = 0.3 Torr,
f = 13.56 MHz). (*) Excited state of atoms.

We studied the average particles densities of He/O2 and Ar/O2 for varied oxygen
percentages (see, Figure 15). The atomic oxygen and ozone densities of He/O2 and Ar/O2
are augmented by increasing oxygen gas rates, whereas metastable oxygen atoms decrease.
The atomic oxygen and ozone of Ar/O2 increased due to the rise of electron temperature
(see Figure 9). When the oxygen gas ratio is equal or higher than 30%, the density of atomic
oxygen is saturated. Calculated results confirm previous experimental results [50].
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Figure 15. Average particles densities of Ar/O2 and He/O2 for different O2 percentage at 0.3 Torr
pressure and 13.56 MHz frequency. (*) Excited state of atoms.

The oxygen ratio dependence of electron current density is studied at two frequencies
13.56 MHz and 100 MHz (see Figure 16). Herein, the electron current density drops for
elevated oxygen gas rates. This diminution of plasma electron density is associated with a
drop in electron current density. This results in larger O atom generatio, which improves
plasma sterilization [51].
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4. Conclusions

In a radio frequency (RF), low pressure capacitively coupled Ar/O2 mixture, plasma
parameters such as average particles densities (ne), and electron temperature (Te) have been
examined. The electrical discharge is found located in the abnormal glow discharge zone.
The current decreases by increasing O2 gas ratio in Ar/O2 mixtures. Electron temperature
(Te) increases with voltage and decreases with higher working pressure. This is contrary
to electron density (ne), which is enhanced in both conditions. A pronounced O atom
generation rate is found for a higher driving frequency. The atomic oxygen, the ozone, and
the excited oxygen atom and molecules, which are efficient for sterilization process, remain
the dominant species in the plasma discharge even at 20% O2. As the admixture of oxygen
increased, electron density decreased due to attachment reaction mechanisms. The atomic
oxygen and ozone densities of Ar/O2 increased, ensuring better sterilization. The effect
of the addition of the O2 ratio to the Ar/O2 gaseous mixture on electrical characteristics,
electron density, electron temperature, and density of different species in the mixture
discharge resulted in an optimal discharge at 30% gas ratio. On the other hand, the average
particles densities of the reactive species in He/O2 are nearly one order of magnitude lower
than those in Ar/O2. These findings reveal the Ar/O2 has high ability in sterilizing bacteria
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than He/O2. Calculated results of mixture Ar/O2 are confirmed by previous experimental
results in the literature.
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