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Abstract: The current development of chemical looping combustion (CLC) technology is presented
in this paper. This technique of energy conversion enables burning of hydrocarbon fuels with
dramatically reduced CO2 emission into the atmosphere, since the inherent separation of carbon
dioxide takes place directly in a combustion unit. In the beginning, the general idea of the CLC
process is described, which takes advantage of solids (so-called oxygen carriers) being able to
transport oxygen between combustion air and burning fuel. The main groups of oxygen carriers (OC)
are characterized and compared, which are Fe-, Mn-, Cu-, Ni-, and Co-based materials. Moreover,
different constructions of reactors tailored to perform the CLC process are described, including
fluidized-bed reactors, swing reactors, and rotary reactors. The whole systems are based on the
chemical looping concept, such as syngas CLC (SG-CLC), in situ Gasification CLC (iG-CLC), chemical
looping with oxygen uncoupling (CLOU), and chemical looping reforming (CLR), are discussed as
well. Finally, a comparison with other pro-CCS (carbon capture and storage) technologies is provided.

Keywords: CLC; oxygen carriers; reactors; systems

1. Introduction

Carbon dioxide emission from anthropogenic sources, including the power industry,
has attracted more and more attention over the last 15 years. This interest brings rapid
development of so-called pro-CCS (carbon capture and storage) technologies, which offer
the ability to reduce significantly the emission of CO2 into the atmosphere. As a result, three
of these methods, such as pre-combustion capture, post-combustion capture, and oxy-fuel
combustion [1–4], have achieved satisfied technological maturity. Nevertheless, commercial
implementation on a large scale is still very limited, mainly due to the high energy-efficiency
penalty associated among others with ASU (air separation unit) operation [5]. This problem
does not concern, however, the innovative technique of chemical looping combustion
CLC [6], where solid particles are used to transport oxygen from combustion air to the
burning fuel.

The CLC process is usually conducted in a system of two reactors (Figure 1), which
consists of the fuel reactor (FR), where combustion takes place, and the air reactor (AR),
where oxygen carriers (OC) are regenerated. Thus, oxygen carriers are subjected to contin-
uous oxidation and reduction (Equations (1) and (2)) [7] while they circulate throughout
the combined CLC unit. There are two crucial benefits of OCs employment in a power
generation system, which are the elimination of conventional energy-consuming air separa-
tion units and the inherent separation of forming flue gases (mainly CO2 and H2O) from
the air supplied to the combustion process. As a result, the flue gas that leaves the fuel
reactor is free of atmospheric nitrogen and thus it becomes almost ready for geological
sequestration—CCS (carbon capture and storage) and/or commercial utilization—CCU
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(carbon capture and utilization) [8]. Concurrently, the exhaust gas from the air reactor
consists essentially of nitrogen and the remaining oxygen, which are both environmentally
friendly gases.

(2n + m)MexOy−1 + (n + 0.5m)O2 → (2n + m)MexOy ∆Ho (1)

CnH2m + (2n + m)MexOy → nCO2 + mH2O + (2n + m)MexOy−1 ∆Hr (2)

The combined reaction can be shown as Equation (3), where the total amount of heat
released in the CLC process is equal to the heat obtained from conventional combustion
with gaseous oxygen.

CnH2m + (n + 0.5m)O2 → nCO2 + mH2O ∆Hc = ∆Ho + ∆Hr (3)
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Therefore, it is obvious that subsequent CO2 storage [9,10] and/or utilization [11,12]
are inseparable from the CLC process since this is the only way to ultimately restrain the
greenhouse gas emission into the atmosphere. Generally, there are two major pathways
to utilizing CO2, which include direct and indirect methods. Technologies such as en-
hanced oil recovery (EOR) [13,14] and enhanced gas recovery (EGR) [15,16], where CO2 is
directly injected underground while enhancing oil or gas recovery, are fully mature and
commercially in use. CO2 can also be utilized in concrete building materials via mineral
carbonation, which additionally increases the mechanical strength of these materials. There
is also a continuous demand for CO2 in the food industry (e.g., dry ice, food preservative,
and drinks carbonation). However, CO2 conversion to fuels (methanol, ethanol, syngas,
and methane) and chemicals (formic acid and oxalic acid), which is already sufficiently
developed technology for full-scale demonstration, seems to be the most promising alterna-
tive for the near future. Detailed studies on CCSU (carbon capture, storage, and utilization)
technologies can be found elsewhere [17–22].

2. Oxygen Carriers

Solid oxygen carriers behave like red blood cells transporting oxygen in a “blood
circulation” of the CLC system where the air reactor acts as “lungs”, whereas the fuel
reactor resembles “tissue” in which the “organic matter conversion” takes place. Therefore,
they become indispensable for proper functioning of the “body” and as their oxygen
transport abilities run down the “metabolic” capacities of the whole CLC system disappear.

As described above, solid oxygen carriers (OC) are essential for chemical looping com-
bustion technology. The key features of oxygen carriers, which determine the performance
of CLC process include:

• Reactivity with combustibles and oxygen;
• Oxygen transport capacity (OTC);
• Chemical lifetime;
• Mechanical resistance (including melting temperature);
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• Tendency to carbon deposition on oxygen carrier surface;
• Toxicity and environmental impact;
• Price and availability.

Oxygen carriers can be classified into several categories. The first one is based on the
origin, which means natural OCs (e.g., ilmenite) and synthetic OCs (e.g., Cu0.95Fe1.05AlO4).
Another criterion takes into account the number of active compounds (e.g., NiO or (Mn,Fe)2O3)
and their structure (e.g., perovskites [23,24]). Finally, the ability of oxygen uncoupling in
an environment of a fuel reactor (CLOU-type OC) is taken into consideration. Recently,
very promising novel synthetic oxygen carriers based on geopolymer composites were
proposed [25]. The main advantages of geopolymer OCs are, among others, low cost, green
synthesis, non-toxicity, and CLOU feature [26]. Furthermore, a good mechanical resistance
makes them suitable for fluidized bed applications [27]. In the search for potential oxygen
carriers, steel converter slag was also tested with success under circulating fluidized bed
(CFB) conditions [28]. Usually, however, solid oxygen carriers are simply divided into five
groups, which are: Fe−, Cu−, Mn−, Co−, and Ni-based OC. Moreover, in addition to metal
oxides the supports of different kinds are used, which enriched their inherent properties,
among others are: Al2O3, MgAl2O4, TiO2, SiO2, ZrO2, and bentonite.

Key properties of basic oxygen carriers and hence their usefulness in the CLC systems
are presented in Table 1. A wide variety of different features can be seen in this chart;
therefore, it seems reasonable to use mixed oxygen carriers with selected supports, which
should be tailored individually for each chemical looping application. In addition to these
data, the comparison of oxygen transport capacity (OTC) is provided for all aforementioned
materials as well as for two natural oxygen carriers such as ilmenite and anhydrite (Figure 2).
Significant differences can be seen in this figure where the values of OTC vary up to an
order of magnitude in general. Much bigger differences relate to the market prices of
basic metals (Figure 3), provided by the London Metal Exchange LME (average data for
the years 2013–2017). It can be found, for instance, that cobalt is about a hundred times
more expensive than iron or manganese and even much more expensive than gypsum
compounds. Another crucial factor, which is melting temperature [29], varies from 1084 ◦C
for copper up to 1538 ◦C for iron [30]. The values of Tm for manganese, nickel, and cobalt
are 1244 ◦C, 1455 ◦C, and 1495 ◦C [30], respectively.
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An interesting issue involves the thermal balance over the CLC unit, since the process
of oxygen carriers regeneration that takes place in the air reactor appears to be much more
exothermic compared with the combustion reactions, which proceed concurrently in the
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fuel reactor. Furthermore, the standard heat of reduction reactions with methane and carbon
is negative only for Cu-based oxygen carriers [7]. This exposes another crucial function of
solid oxygen carriers, which naturally take part in the heat transfer not only to the working
fluid but also between the reactors in the CLC system. Safety and environmental issues
related to the use of solid oxygen carriers in power generation systems are discussed in
detail elsewhere [31,32].

Table 1. Properties of oxygen carriers (based on [33–36]).

Fe2O3/Fe3O4 Mn3O4/MnO CuO/Cu NiO/Ni CoO/Co

Reactivity with CH4 low average high very high low
Reactivity with CO and H2 average high very high average low
Oxygen transport capacity low average high high high
CLOU effect no no 1 yes no no 2

Cost low average high very high very high
Melting temperature high average low high high
Health and environment safe safe harmful very harmful very harmful

1 yes, for Mn2O3 only; 2 yes, for Co3O4 only.
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3. Chemical Looping Systems

Several different systems based on chemical looping principles are developed concurrently
in order to burn fossil and other fuels in a clean and efficient manner. In a first approach, the
whole group of various systems with oxygen carriers [38–43] and so-called carbonate looping
systems (with CO2 carriers) [44,45] can be distinguished. Further classification is presented in
Figure 4, which takes into account a feature of oxygen carriers and place of fuel gasification. A
somewhat different idea is applied in the chemical looping reforming (CLR) systems [46,47],
where fuel conversion is oriented towards hydrogen production.
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3.1. SG-CLC System

Originally, the CLC concept was developed for the combustion of gaseous fuel [48,49].
Therefore, for the purpose of solid fuel combustion, the preliminary gasification in an
external unit was initially considered, and hence the fuel reactor might be fed directly with
a produced syngas. Thus, the proposed Syngas CLC (SG-CLC) system [38,39] exhibits the
technical ability of coal conversion in a chemical looping environment (Figure 5), however,
it still needs the detached unit for air separation, which is crucial from the economic point
of view.

Energies 2022, 15, 1563 5 of 20 
 

 

 

Figure 4. Classification of chemical looping systems. 

3.1. SG-CLC System 
Originally, the CLC concept was developed for the combustion of gaseous fuel 

[48,49]. Therefore, for the purpose of solid fuel combustion, the preliminary gasification 
in an external unit was initially considered, and hence the fuel reactor might be fed di-
rectly with a produced syngas. Thus, the proposed Syngas CLC (SG-CLC) system [38,39] 
exhibits the technical ability of coal conversion in a chemical looping environment (Fig-
ure 5), however, it still needs the detached unit for air separation, which is crucial from 
the economic point of view. 

 
Figure 5. SG-CLC system. 

The thermal decomposition of fuel and the gasification of char in a mixture of steam 
and oxygen proceed according to the following Equations (4)–(6): coal solid fuel → volatiles + char (4) char 2C + O → 2CO + Q (5) 

Figure 5. SG-CLC system.

The thermal decomposition of fuel and the gasification of char in a mixture of steam
and oxygen proceed according to the following Equations (4)–(6):

coal(solid fuel)→ volatiles + char (4)

char(2C) + O2 → 2CO + Q (5)

char(C) + H2O→ CO + H2 −Q (6)
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whereas subsequent combustion of volatiles and syngas both being in contact with solid
oxygen carriers can be described by the reactions (7) and (8):

CO + H2 + volatiles + nMexOy → CO2 + H2O + nMexOy−1 (7)

CO + H2O→ CO2 + H2 + Q (8)

Concurrently, the reduced oxygen carriers undergo regeneration (Equation (9)) in the
air reactor, before they are returned to the combustion zone, which makes the chemical
loop complete.

MexOy−1 + 0.5O2 → MexOy (9)

3.2. iG-CLC System

For the improved concept called iG-CLC (in situ gasification CLC) [40,41], it was
assumed that the gasification process would take place inside the fuel reactor, whereas
the recirculated CO2 might be used as a gasification agent (Figure 6). Thereby, a huge cost
associated with both the construction and the operation of an external air separation unit can
be eliminated. A weak point appears, however, in a low rate of gasification reactions (6, 10),
which slow down the whole combustion process with the use of oxygen carriers.
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It is also worth mentioning that the exothermic reaction (5) is replaced in the presented
system by a Boudouard reaction (10) which, similar to the reaction (6) and the devolatiliza-
tion process (Equation (4)), has an endothermic nature. In the following stages, the burn out
of combustible gases and the oxidation of oxygen carriers run according to the above-given
Equations (7)–(9), respectively.

char(C) + CO2 → 2CO−Q (10)

3.3. CLOU System

New opportunities appeared with the second generation of oxygen carriers (CLOU-type
OC), which have the ability to release gaseous oxygen in an environment of the fuel reactor
((Equation (11)). Thus, the initial gasification became less important and the CLOU (chemical
looping with oxygen uncoupling) combustion [42,43] (Equations (4), (12) and (13)) starts
to resemble essentially the oxy-fuel combustion technology. Therefore, the recirculated
carbon dioxide or the mixture of CO2 and H2O (in case of “wet” recirculation) fulfils
the function of fluidizing gas in the unit (Figure 7) rather than the gasification agent as
described previously.

2MxOy ↔ 2MexOy−1 + O2 (11)

char(C) + O2 → CO2 + Q (12)

volatiles + O2 → CO2 + H2O + Q (13)
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It can be claimed thereby that the intensive investigations focused on inexpensive
oxygen carriers with increased O2 transport capacity, improved reactivity, and high me-
chanical strength are currently of great importance for further accelerated development of
the chemical looping combustion technology.

3.4. CLR System

Another interesting concept based on the chemical looping idea is oriented towards
hydrogen production and it is widely known as chemical looping reforming (CLR) [46,47].
Two different techniques can be found under this name, which are Dry CLR and Steam CLR,
where the fuel reactor is supplied with CO2 or H2O, respectively (Figure 8). Concurrently,
oxygen is provided to the fuel reactor with the use of solid oxygen carriers and hence the
whole gasification process can be described by the Equations (4) and (14) together with
Equation (10) in the case of Dry CLR or Equation (6) for the steam-reforming method.

volatiles + char + nMexOy → CO + H2 + nMexOy−1 (14)
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In the second stage, the products of aforementioned Equations (6), (10) and (14) are
directed from the fuel reactor to the shift reactor (SR), where CO is converted into CO2
according to the following Equation (15):

CO + H2 + H2O→ CO2 + 2H2 (15)

Moreover, two additional options are considered for the regeneration of oxygen
carriers, which take into account the use of steam (Equation (16)) or CO2 (Equation (17))
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instead of air (Equation (9)) that is usually utilized for this purpose in the air reactor (see:
Figure 8).

MexOy−1 + H2O→ MexOy + H2 (16)

MexOy−1 + CO2 → MexOy + CO (17)

The biggest challenge seems to be, however, the selective oxygen carriers, which
react very easily with carbon (conversion to CO) rather than with hydrogen and initially
generated carbon monoxide. A very narrow group of such materials includes, among
others, some ferrites (e.g., CaFe2O4 or BaFe2O4) [50,51]. It is also worth mentioning that
the gasification reactions can be accelerated by the catalysts (e.g., Ni-Fe composites) [52,53]
introduced directly into the fuel reactor, which is distinguished as a catalyst-assisted CLR
technique. The results of the experimental investigations on CLR can be found in [54–57].

4. Chemical Looping Reactors

Generally, three basic constructions of reactors are considered in order to put the idea
of chemical looping combustion into practice, which are as follows:

• Dual fluidized-bed reactors [33,58,59];
• Swing reactors or fixed (packed) bed reactors [60,61];
• Rotary (rotating bed) reactors [62,63].

Each aforementioned design certainly has its advantages and disadvantages. Similarly,
one has a facility for gaseous fuel combustion while the other can be easily adapted to burn
solid fuels. Nevertheless, every construction should meet three common criteria, which
finally affect the operation efficiency of the CLC unit. The first one concerns maintaining
the oxygen carriers-to-fuel ratio by means of an appropriate recirculation rate (fluidized-
bed reactors), oxidation–reduction sequence (swing reactors), and rotational speed (rotary
reactors). Another issue involves the sufficient residence times of oxygen carriers in both air
and fuel reactors, which influence the combustion process as well. The last question relates
to the efficient capture of CO2, which is executed by the effective sealing of the sections
with fuel conversion and oxygen carriers regeneration. This prevents gas (particularly CO2)
from leaking between AR and FR as well as from char slipping into the air reactor.

4.1. Dual Fluidized-Bed Reactor

Most of the CLC reactors presented in the literature are dual fluidized-bed (DFB)
reactors [33,58,59] of peculiar design. This is due to the high efficiency of fuel conversion
of these reactors and their ability to burn solid fuels. Other advantages of this kind of
reactor is the suitability for scaling-up [64,65], high throughout output capacity, and smooth
operation [66]. On the other hand, the construction of DFB reactors is more sophisticated
and hence the operation appears to be more demanding compared with other designs
mentioned above. Moreover, the mechanical attrition caused by moving particles may lead
to serious problems, which are common for circulating fluidized bed units in general.

A dual fluidized-bed reactor consists of two combined reactors, which are the fuel
reactor and the air reactor (Figure 9). The fuel reactor is fed with fuel being burnt with the
help of oxygen carriers, which are further regenerated in the air reactor. Solids circulation
becomes possible due to the cyclone separator and two loop-seals installed between the
reactors. Usually, the air reactor is operated under fast-fluidized bed (FFB) conditions,
whereas the fuel reactor works in a regime of bubbling fluidized bed (BFB), however, there
are known constructions with FFB [67,68] or BFB [69] in both reactors. Moreover, CLC
reactors are often equipped with a so-called carbon stripper (CS) system and/or oxygen
polishing (OP) system, both shown in Figure 9. The carbon stripper [70–72] is used to
return unburned char back to the fuel reactor, whereas oxygen polishing [73,74] enables to
burn out all combustibles remaining in the exhaust gases.
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Whitty et al. [75] preformed CLOU experiments in a 200 kWth dual-fluidized bed
reactor. Authors point to the main challenges as balancing oxygen supply to the fuel reactor,
heat generation, and temperatures, as well as global and internal circulation rates. Low CO2
capture efficiency was noticed on a 1 MWth pilot-scale CLC unit with two interconnected
CFB reactors using ilmenite as oxygen carrier and hard coal as fuel [76]. Authors found
that unconverted char left the fuel reactor and burned in the air reactor. The reason for this
is that no carbon stripper was used during these investigations. A different operational
strategy based on the fuel reactor staged fluidization without a carbon stripper is proposed
by Shen et al. [77,78]. It was proved that internal distributors in a multistage fuel reactor
sufficiently improve carbon conversion and CO2 capture efficiencies. The main difficulties
with biomass fuel utilization in CLC reactors are mentioned by Gogolev et al. [79]. The au-
thors indicate the bed agglomeration, oxygen carrier deactivation, fouling, and corrosion as
the most harmful effects associated with biomass alkali release. The problem of gas leakages
between fluidized bed reactors via a loop seal was investigated by Lindmuller et al. [80]
on a 25 kWth CLC facility. Loop seal design ideas and operation condition proposals are
suggested in this work. Very useful guidelines were provided by Zhao et al. [81], who
described long-term operational experiences from the interconnected fluidized bed reactors
of different scales. Further details on the performance of a 50 kWth coal-fueled chemical-
looping combustor can be found in [82]. Another excellent work of Lyngfelt et al. [83] was
published recently, which summarizes over 10,000 hours of chemical looping combustion
tests carried out around the world. The authors identify a major difficulty with the scaling-
up of the CLC process to commercial use, which is the lack of incentives for CO2 capture
and the risk in general. Therefore, the multipurpose dual fluidized bed (MDFB) concept
for maximum flexibility is proposed among others. Operational experiences and practical
challenges of the fluidized-bed units are also presented in other research works [84–98].

4.2. Swing Reactor

Another type of reactor that can be employed for chemical looping combustion is
a swing reactor (fixed/packed bed reactor) [60,61]. Simple design and easy operation
are the main advantages of this construction. Moreover, the ability of chemical looping
performance under elevated pressure [99,100] seems to be an additional benefit as well. A
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weak point of swing reactors is, however, the readiness for gaseous fuel combustion only,
therefore, in the case of solid fuels they need to be gasified in advance (see: SG-CLC system).

The single module of the swing reactor consists of two columns placed in parallel,
both filled up with solid oxygen carriers (Figure 10). While the first column (FR) is fed with
fuel, the second one acts as the air reactor. After the bed in the fuel reactor is depleted and
the oxygen carriers in AR are re-oxidized, the roles are reversed. Thus, the CLC process
becomes cyclical. Between the following stages, the columns are purged, which consumes
energy and causes interruptions. Therefore, the system of several smaller modules rather
than one large unit is recommended for the continuous and smooth operation of the whole
CLC system.
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Han and Bollas [101] explored the use of a reverse-flow in a fixed-bed reactor fueled
with methane and syngas. The authors found that periodic reversal of gas flow direction
enhances the contact between the fuel and unconverted oxygen carriers, improves tem-
perature distribution in a bed and conversion uniformity, as well as suppresses carbon
deposition on NiO oxygen carriers. It was also emphasized that fixed-bed design avoids
the issue of attrition and gas–solid separation typically found in circulating fluidized bed
units. The problem with excessive carbon deposition on ilmenite oxygen carriers was also
mentioned by Gallucci et al. [102]. The experimental results showed, however, that the
use of wet syngas as fuel and the increase in operating pressure enables to eliminate this
unfavorable phenomenon. It was concurrently demonstrated that pressurized CLC can
be easily accommodated in fixed-bed reactors. In another work [103], a fixed-bed reactor
was employed for the tests with bimetallic Cu–Fe–Si oxygen carriers at various operating
conditions. The authors state that optimized OC to fuel ratio is the key to avoiding solids
agglomeration caused by copper at higher temperatures. The combustion of CO and CH4
with the use of ilmenite as the oxygen carrier in packed fluidized bed reactor was recently
investigated by Nemati and Ryden [104]. The results show that random packings in a
packed fluidized bed can significantly improve fuel conversion in comparison with an
ordinary bubbling bed without packings. The authors believe that this improvement results
from more efficient gas–solid mass transfer due to the reduced bubble size. Detailed results
from experimental tests on fixed bed reactors are reported in [105–110].
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4.3. Rotary Reactor

Rotary reactors [62,63] are not investigated often compared with dual fluidized-bed
reactors and swing reactors, despite a relatively high efficiency of fuel conversion. The
biggest challenge in construction and operation of rotary reactors appears to be, however,
the sealing of the following sections and parts being in continuous motion. These difficulties
lead primarily to lower efficiency of CO2 capture as well as lower purity of exhaust gases.
Moreover, this type of CLC unit is destined for gaseous fuel only.

A rotary reactor (Figure 11) is made of three coaxial rings, from which internal and
external rings are fixed to each other while the central ring revolves incessantly in one
initially set direction. Moreover, the whole unit is divided into four sections, including the
air section, fuel section, and two curtain sections. The central ring is packed with solid
oxygen carriers. Fuel and air together with purging gas are fed into the appropriate sections
of the internal ring, whereas flue gas and exhaust gases are taken off from the external ring,
respectively. Thereby, the concept of the rotary reactor combines certain features of both
the dual-fluidized bed reactor (continuous operation, oxygen carriers “circulation”) and
swing reactor (fixed/packed bed).
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Iloeje et al. [111] noticed that one of the main operational problems associated with
solid oxygen carriers’ circulation in DFB constructions, which is the mechanical attrition,
is naturally eliminated in rotary reactors. In another work [112], the authors evaluated
the rotary reactor design for copper, nickel, and iron-based oxygen carriers. Researchers
define practical challenges as proper selection of reactor geometry, rotating speed, and
gas flow rates, which influence efficient fuel conversion and CO2 separation. The authors
claim, however, that low rotation speed and appropriately selected seals can minimize
gas leakages during reactor operation. The problem with air slipping to the fuel section
was also observed by Hakonsen and Blom [113] in their prototype rotating bed reactor,
which finally results in low purity of captured CO2. Other results presented by Zhao and
Ghoniem [114] confirm that the geometry of the rotary reactor and the operating conditions
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will depend preliminary on the oxygen carrier properties. The OC kinetics together with
the inlet gas temperature and the operating pressure are identified as the most important
factors in this work.

5. Competitiveness of CLC Technology

Chemical looping combustion technology offers almost pure carbon dioxide at the
outlet of the reactor, without any additional installations for gas separation. Therefore,
dramatic reduction in CO2 emission into the atmosphere becomes possible with lower oper-
ating and capital expenditures (OPEX and CAPEX, respectively) related to the whole power
system [115,116]. Near-zero emission takes place when captured CO2 is subsequently
stored or utilized, which is described at the begging of this paper, however, even negative
CO2 emission is possible if only biomass is used as fuel [117,118]. Thus, the CLC technique
with its inherent separation appears to be competitive for other pro-CCS technologies,
which need advanced air separation units (oxy-fuel combustion and pre-combustion cap-
ture) or post-processing CO2 capture unit (post-combustion capture). The comparison of
selected factors determined for both the CLC reactor and conventional circulating fluidized
bed (CFB) boiler integrated with post-combustion CO2 scrubber using monoethanolamine
(MEA) is presented in Table 2 [119,120]. Moreover, the authors claim that the results of
analyses carried out for the CFB-MEA case and the OXY-CFB case are very similar. The key
difference between a reference case (conventional CFB unit) and other examined pro-CCS
technologies is the CO2 capture facility, which significantly affects the net efficiency and
other indices of the so-called near-zero emission power plants. A considerable discrepancy
(more than 5 percentage points) between the net efficiencies of the CLC reactor and the
CFB-MEA unit can be seen, which results mainly from the operation of the CO2 scrubbing
system. Consequently, the energy penalty affects the cost of electricity production, which
is also shown in this chart. Another issue is the CO2 avoidance cost, which is higher by
16 EUR/tCO2 for the CFB-MEA unit which means a significant increase of about 43%.

Table 2. Comparison of chemical looping combustion technology (CLC) with the amine absorption
method (MEA30%) with reference to a 630 MWe power unit with a fluidized bed boiler (CFB) (based
on [119,120]).

CFB Unit (Reference) MEA 30% CLC

Net power, MWe 630 630 630
Net efficiency, % 44.9 34.9 40
Coal consumption, t/h 198 255 222
CAPEX, M EUR 1215 2064 1785
OPEX, M EUR 156 220 206
Cost of electricity, EUR/MWh 63 98 88
CO2 avoidance cost, EUR/tCO2 - 53 37
CO2 capture rate, % - >90 >90

The comparison of the SG-CLC concept with the pre-combustion CO2 capture tech-
nology can be found in [116]. The net efficiency of 39.7% was determined for the CLC
unit, which is about 2.6 percentage points more compared with the plant with the pre-
combustion CO2 capture. Furthermore, the CO2 capture efficiency significantly exceeds the
level of 90% in both evaluated cases. As a reference, a conventional integrated gasification
combined cycle (IGCC) of the same fuel input energy (1127 MWth) was established, for
which the net efficiency reaches 44.3% as it is not burdened by any CO2 capture systems.
Very promising results can be also found in [121], where the achieved net efficiency penalty
is less than one percentage point for the integrated system of the CLOU reactor and CHP
plant in comparison with the conventional reference plant with the same fuel input. Fur-
thermore, the use of biomass as fuel allows the combined production of heat and power
with the so-called negative emission of CO2. The potential of biomass combustion in the
CLC plant with CCS is also noticed by Keller et al. [122]. In this study, chemical looping
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combustion is benchmarked against a CFB process with post-combustion CO2 capture by
amine scrubbing. The authors estimate, among other things, that for the plant of 50 MWth
HHV fuel input, a cost reduction in the entire CLC-CCS chain can reach 17% over the
CFB reference plant with an amine-scrubbing post-combustion capture process. Another
interesting evaluation of a poly-generation solar-assisted natural gas-fired CLC plant with
waste heat utilization using absorption chilling for cooling purposes was carried out by
Ogidiama et al. [123]. The authors claim that exhaust heat utilization significantly improves
the overall efficiency of the combined power and cooling plant, which can exceed 63%. Fur-
thermore, the integration with the solar system results in higher flexibility of the entire CLC
plant. Other comprehensive techno-economic analyses of chemical looping combustion
technologies can be found elsewhere [124–133]. The most recent study on a 550 MWe brown
coal-fired CLC power plant is provided by Sayeed et al. [134]. The net efficiency penalty of
slightly more than five percentage points was obtained for a deeply integrated CLC system
in comparison with a conventional supercritical pulverized coal-fired power station of the
same net output. In conclusion, the authors state that for a considered commercial-scale
CLC power plant with 90% CO2 capture, an increase in the cost of electricity can be lower
than 35%, which enables to meet the USDOE’s (United States Department of Energy) target.

6. Conclusions

A rising technology of chemical looping combustion (CLC) has untapped potential
to be used in zero CO2 emission power generation systems. The inherent separation that
takes place in the CLC reactors results in a highly reduced internal load of the plant, and
hence the CLC technology can compete with other pro-CCS technologies such as oxy-fuel
combustion, pre-combustion capture, and post-combustion capture. However, it is still not
mature enough for commercial implementation.

Key properties of currently considered oxygen carriers are provided, from which the
CLOU feature seems to be crucial regarding direct solid fuel combustion. Innovative OCs as
geopolymer composites are also mentioned. Various kinds of chemical looping systems are
presented including those with external and internal gasification as well as one with direct
combustion of solid fuels. Moreover, different designs of CLC reactors are shown including
dual fluidized-bed construction, which gives the best prospects for further development of
chemical looping combustion technology.

It is also noticed that ultimate utilization of the generated CO2 is essential for this
concept, however, geological sequestration seems to be also necessary due to the global
volume of greenhouse gas emissions. The greatest capabilities have EOR and EGR tech-
nologies, but the production of carbon-based fuels and other chemicals appears to be of
great importance at present.
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Nomenclature

AR Air reactor
ASU Air separation unit
BFB Bubbling fluidized bed
CAPEX Capital expenditures
CCS Carbon capture and storage
CCSU Carbon capture, storage, and utilization
CCU Carbon capture and utilization
CFB Circulating fluidized bed
CLC Chemical looping combustion
CLOU Chemical looping with oxygen uncoupling
CLR Chemical looping reforming
CS Carbon stripper
DFB Dual fluidized bed
EGR Enhanced gas recovery
EOR Enhanced oil recovery
FFB Fast fluidized bed
FR Fuel reactor
IGCC Integrated gasification combined cycle
iG-CLC Incsitu gasification chemical looping combustion
MDFB Multipurpose dual fluidized bed
MEA Monoethanolamine
OC Oxygen carrier
OP Oxygen polishing
OPEX Operating expenditures
OTC Oxygen transport capacity
OXY Oxy-fuel combustion
SG-CLC Syngas chemical looping combustion
SR Shift reactor
USDOE United States Department of Energy
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