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Abstract: Renewable energy sources have begun to arouse interest worldwide. The UN Sustainable
Development Agenda has defined access to affordable, reliable, sustainable and modern energy as
one of its main goals. This paper contains a description of the research on the assessment of the
validity of employing surveying methods to capture topographic data in order to select locations
suitable for small hydropower plants. For the purpose of this study, a section of a natural watercourse
with the surrounding area was measured by means of the photogrammetric method using unmanned
aerial vehicles (UAVs) and, for comparison, by means of the precise positioning method using the
GNSS system with the RTN kinematic technique (GNSS RTN). Publicly available measurement
data from airborne laser scanning (LIDAR) were also used for the analyses. In order to assess the
accuracy of the methods employed, the discrete data describing the relief were analysed, and then
continuous data in raster form were analysed. The analyses were performed with the use of an
automatic method of height comparison and analysis of cross-sections on DEM and DSM. In the
last stage of the work, the hydrological parameters were analysed, i.e., the slope of the land and the
watercourse flow values determined based on the DEM captured from various surveying methods.
What is unique about this work is: (1) the use of spatial data with a high resolution acquired from
UAVs to search for locations for the construction of small hydroelectric power plants and assessment
of their usefulness in this regard; (2) assessment of the accuracy and quality of the hydrological and
morphological parameters of the area important for the selection of the location for the construction
of small hydropower plants, performed based on spatial data depicting the actual area of the land
measured in the field; (3) assessment of the quality of the hydrological modelling necessary to find
the location. The performed surveys and analyses allowed for the identification of the advantages
and disadvantages of the surveying methods employed to capture data on the topography of land as
well as indications of the optimal data source.

Keywords: small hydropower plants; renewable energy sources; modern surveying methods;
location selection; spatial data

1. Introduction

Increasing environmental pollution and climate change have led to the development
of renewable energy sources [1–3]. One of these is water, which currently provides 19% of
the planet’s electricity [4–6]. Hydroelectric power plants, and especially small hydropower
plants, are considered to be one of the most attractive energy sources, since they interfere
less with the natural environment than large hydropower structures [7–10].
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In Poland, a hydroelectric power plant with a capacity of less than 5 MW is defined as
a small hydropower plant, whereas in most European Union countries, power plants with
a capacity of up to 10 MW are considered to be small [11–13]. The first hydropower plants
were built as early as in the nineteenth century [14,15]. Since then, a significant development
in this sector all over the world can be observed [4,16–18]. In Poland, however, only 12% of
the water resources are utilised to produce energy [4]. In other European countries, this
ratio is much higher, e.g., reaching 80% in Germany [3]. According to [4], Poland has a very
large potential for the development of hydropower, which it will use in the future.

In order to best use the energy potential of a small hydropower plant, an appropriate
location for its construction should be selected. GIS analyses are very helpful in choosing
the location, which significantly accelerates the work, as stated in Odiji et al. [19], Oth-
man et al. [20], Al-Juboori and Guven [21], and Bezabih [22]. These analyses have already
been used to search for potential locations for hydropower plants around the world, e.g., in
Thailand [23], Korea [24], South Africa [25], Iran [26], Italy [27,28], Turkey [29], Ireland [30],
India [31,32], Brazil [11] and in the United States [33,34].

GIS tools and multi-criteria analyses are used not only to find locations suitable for
small hydropower plants, but also for other renewable energy sources, such as wind or
solar energy [35–38], and even biomass energy [39,40].

When choosing sites for small hydropower plants, multiple factors should be taken
into account, including environmental (ecological) [28,41,42], economic [18,28,43], so-
cial [23,41], topographic [5,43–47], geological [13,48], technical [41,49], hydrological [5,45–47]
and legal (administrative) ones [50,51]. The literature review carried out for the purposes
of this study revealed that, in different parts of the world, different criteria are used to
select a location for a hydropower plant. Moreover, these criteria are segregated differently.
Therefore, the most important criteria are listed and systematised in Table 1 below.

The criteria presented in Table 1 will not always be equally relevant to select a location
for a specific investment, as stated in [52]. There, the authors presented a method of weight-
ing individual criteria with regard to their significance. The conducted literature review
demonstrated that despite the fact that different criteria were used in different countries, the
analyses always considered topographic factors representing the morphological features
of the land, such as slope, slope exposure or height. Based on topographic parameters,
hydrological parameters are determined, i.e., the water network or the direction of water
flow in a given area, which are necessary to determine the energy potential of a given
water investment.

As it is stated in [53], there are numerous factors influencing the choice of locations for
the construction of hydroelectric power plants, but the most important are the topography
and its characteristic features, because they determine the possible energy potential of
a small hydropower plant. GIS tools, which enable easy and quick site analysis, can be
used to determine the morphological features of the area [5,52]. They also allow for the
determination of the characteristic features of the relief, i.e., height above sea level, slope,
length of the watercourse or the direction of the runoff [11,29]. So far, site analyses for the
purpose of selecting locations for hydropower plants have mainly been based on the digital
elevation model (DEM) in the raster form, created from satellite images with a low field
resolution—of the order of several metres [11,26,27,54]—or with the use of remote sensing
data, based on which, by means of image classification, elements such as water reservoirs
were identified [55–58].

The related research and studies initially focused on proposing algorithms that, based
on the DEM in the raster form, would model the direction of water flow in a given
area [59–61]. Subsequent analyses focused on the search for low-resolution raster im-
age processing algorithms to determine the flow directions that best described the flow
patterns [62,63]. This was necessary because, according to Paz and Collischonn [27], the
DEM resolution had a significant effect on errors in determining parameters significant for
defining the energy potential or other parameters used in hydrological modelling [64,65].
These errors are greater for rasters with a lower field resolution.
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Table 1. Multi-criteria analysis of the elements essential to select the location for the construction of small hydroelectric power plants; source: own elaboration.

Environmental/Ecological
Criteria

in the Context of
Minimising the Impact of
Building Structures on the
Surrounding Environment

Economic Criteria
in the Context of

Increasing the Efficiency
of Small Hydropower

Plants

Social Criteria
in the Context of the

Profits from the
Construction of the Power
Plant for the Local Society

Topographic and
Geological Criteria

Technical (Engineering)
Criteria

in the Context of
Increasing the Efficiency

of Small Hydropower
Plants

Hydrological Criteria

Legal and Administrative
Criteria

in the Context of
Constraints Related to the

Possibility of Building
and Locating Structures

• Maintaining
minimum flow of the
water course

• Minimisation of
flooded area

• Maintaining stability
of slopes

• Low movement of
earth masses

• The least possi-ble
disturbance of the
water-course
ecosystem

• Maintaining direction
of watercourse flow

• Maintaining water
quality in watercourse

• Valuation of
investment costs,
costs of maintenance
and operation of a
water plant in a given
period of time

• The assessment
should take the
following costs into
account:

• Direct costs:
• Preparatory work
• Environment

protection
• Construction work
• Hydraulic equipment
• Electrical equipment
• Transmission lines

modernisation costs
• Indirect costs:
• Administrative and

engineering costs
• Unexpected expenses

• Increased
employment

• Local development of
technical
infrastructure (road,
electricity,
telecommunications
networks)

• Extension of public
utility buildings

• Economic
development of local
market

• Tourism development

• Terrain height
• Slope
• Land cover (use)
• Slope exposure
• Size of the area to be

flooded
• Watercourse length
• Distance from the

river
• Geological

composition of rock
formations in the area
(susceptibility to
landslides)

• Maximum power of a
hydropower plant
(maximum water flow
rate)

• Maximum annual
electricity production

• Minimum length of
the transmission line
(the longer the energy
flow, the greater the
energy losses)

• Maximum ratio of
annual electricity
capacity (maximum
land slope)

• Direction of
watercourse flow

• Watercourse flow rate
• Energy potential

(calculated from flow)
• Tank size

• Legal and
administrative
restrictions depending
on legal provisions in
a given area

• Restrictions related to
environmental
protection zones
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Due to the fact that the DEM field resolution affects the accuracy of determining the
parameters necessary to search for potential construction sites for small hydropower plants,
the analyses in this study were carried out on images with much higher resolution. The
first aim of the study was to verify whether spatial data with very high field resolutions, of
the order of several centimetres, were needed to find locations for the construction of small
hydroelectric power plants, or whether data with much lower accuracy, of the order of 1 m,
would be sufficient. So far, for the purposes of determining hydrological parameters, only
DEM models with maximum spatial resolutions of 1 m have been analysed and compared,
firmly stating that they yielded better results than models with resolutions of several dozen
metres [64]. It has never been analysed before as to whether it is necessary and needed to
use DEM models with spatial resolutions higher than 1 m for this purpose.

The second aim of the study was to verify whether the higher quality of spatial data
depicting the topography of the area surrounding the watercourse would significantly
affect the values of the determined topographic and hydrological parameters important to
find locations for the construction of hydropower plants.

The analyses were limited to topographic and hydrological criteria only, as the other
criteria are used differently in different parts of the world. Moreover, it will not always be
possible to clearly determine the accuracy of their determination, as they will not depend
on exact data.

These analyses were performed on a DEM created from a field survey using modern
surveying methods. The survey was carried out by means of the increasingly popular low-
altitude aerial photogrammetry method using unmanned aerial vehicles (UAVs), which
significantly facilitated and accelerated the work [66–70]. The second measurement method
used was the airborne laser scanning method (LIDAR), which allowed for obtaining
different DEM resolutions depending on the land cover [71–74]. LIDAR is also useful
for measuring and modelling land around water-covered areas, as proven by Endreny
and Wood [65].

The heights and the real land surface measured by the Global Navigation Satellite Sys-
tems (GNSS) Real Time Network (RTN) method were used as reference data to determine
the accuracy of the relief and hydrological modelling parameters. The survey using the
GNSS RTN technique was necessary because the data from LIDAR and UAV only allow
surveys of the land cover (digital surface model (DSM)), not the surface itself (DEM).

The diagram of the conducted analyses is illustrated in Figure 1.
In the first stage of the research, the area surrounding the watercourse was surveyed

using two methods. The first surveying method employed—GNSS RTN—allowed for
the measurement of the land around the watercourse, i.e., the surface without any land
cover, which consisted of vegetation growing near the river (trees, bushes, grasses). The
second surveying method using UAVs allowed only for the measurement of the area
together with the land cover. The data from the third method (LIDAR) also allowed only
for the measurement of the area together with its land cover. The survey performed with
two methods (UAV, GNSS RTN) was necessary because UAV data and LIDAR data required
the noise, i.e., the entire land cover, to be removed in order to determine the features of the
relief. It was possible to remove the land cover with the use of automatic algorithms that
were characterised by various errors. Therefore, in order to assess the accuracy with which
the land cover can be removed, leaving the DEM alone for analysis, it was necessary to
measure the relief actually present in the field using the GNSS RTN method.

In the second stage of the research, a digital surface model (DSM) and a digital
elevation model (DEM) were created from the measured point cloud from UAV data in
Agisoft software. In the next stage of the research, the quality of spatial data describing
the actual surface of the studied area (DEM) was analysed. For this purpose, the first stage
of the research involved the analysis of the discrete data describing the relief and then of
the continuous data in raster form. In order to assess the accuracy of the DEM and other
parameters, a method was used comparing the heights of points captured from LIDAR and
UAV with the heights measured directly in the field using the GNSS RTN method. A similar
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approach to assess the quality of the DEM has already been used by Gołuch et al. [75],
Liu [76] and Estornell et al. [77].
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Figure 1. Diagram of the conducted analyses.

The quality analysis performed for discrete and continuous data was necessary because
only discrete data (single point measurement) were obtained during field surveys. For the
hydrological analyses necessary to determine land features essential for the location of
small hydropower plants, it is the continuous surface of the entire area surrounding the
watercourse that is essential, and not individual measurement points. Therefore, with the
use of appropriate interpolation algorithms, a continuous surface (raster data) representing
the area from the measurement points was created. The interpolation algorithms used
allowed only for the approximation of the actual surface with a certain accuracy, and not to
describe it precisely. Therefore, in order to reliably evaluate the accuracy, an evaluation
was performed for discrete and continuous data. The analyses were conducted using the
automatic method of comparing heights and the analysis of cross-sections on DEM and
DSM (Figure 1).

A comparative analysis of the cross-sections and slopes created from the DEM and
DSM was necessary, as it made it possible to indirectly assess the quality of the DEM and
DSM models used in the research and to directly assess the quality of the determined
topographic parameters created on the ground surface data processed to a continuous
(raster) form.

During the last stage of the work, the hydrological parameters determined based
on the DEM captured from various surveying methods were analysed in order to finally
assess the need to use high-resolution spatial data for the selection of locations for small
hydropower plants.
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GIS analyses were used for the research. The use of GIS spatial analyses to search for
sites for the construction of small hydropower plants is not unusual, as it has previously
been the subject of research [38,53,54,78]. However, it is unique to use spatial data with a
high resolution acquired from UAVs for this purpose and to assess their usefulness in this
regard. So far, GIS spatial analyses in hydrological modelling have been performed mainly
based on data captured from satellite images with a low field resolution (images with a
ground sample distance of several metres) and LIDAR data with spatial data acquisition
accuracy of one metre. The use of other, more precise measurement methods, i.e., UAV and
GNSS RTN, for this purpose will allow for the assessment of their effectiveness and for the
verification of the correctness of the procedures applied. Another innovative aspect of this
study is the assessment of the accuracy and quality of the hydrological and morphological
parameters of the area relevant for the selection of the location for small hydropower
plants, performed on spatial data presenting the actual area of the land alone, measured
in the field. So far, all analyses of this type were performed based on the land surface
created only as a result of noise filtration in the form of land cover (trees, bushes, grasses),
without examining the effect of the filtration accuracy on the quality of the hydrological
parameters acquired. Another novelty in the study was the assessment of the quality of the
hydrological modelling itself, necessary to find the location. This assessment was carried
out based on the survey of the actual course of the watercourse in the field performed using
the GNSS RTN method and the water network automatically generated by the software
based on the DEM.

2. Materials and Methods

For the purposes of this study, a section of a natural watercourse was measured, i.e.,
the Czysta River flowing through Kozia Wola in Konecki county in Poland (Figure 2).
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Figure 2. Location of the analysed area, (a) general location, (b) detailed location.

A natural lowland watercourse was selected as the subject of the research. The
objective was to check whether the algorithms used will also be helpful for small flows
and slopes. It was assumed that if the algorithms determining the parameters necessary
to search for the location for hydroelectric power plants are successful for small values
of slopes and flows, they will be even more correctly determined for higher values. The
measurement covered approximately 500 m of the Czysta River flowing through Kozia
Wola in Poland (Figure 2). The slope of the river in the analysed area was only about 3.5‰.

In Poland, average flows are not defined for small watercourses such as the Czysta
River. Average flows are determined only for the main watercourses. The Czysta River is
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the left tributary of the larger Drzewiczka River with an average flow of 6 m3/s [79]. For
the needs of the analyses, due to the lack of a specific flow for the Czysta River, the average flow
of the watercourse was assumed to be as for the Drzewicza River: at the level of 6 m3/s [79].

2.1. Field Work and Data Used

The watercourse and the surrounding area were surveyed by the photogrammetric
method using unmanned aerial vehicles (UAVs). During the field work, DJI Matrice 210
RTK v2 (SZ DJI Technology Co., Shenzhen, China) was used to obtain photos for the
orthomosaic elaboration (Figure 3). The pass was carried out in good weather conditions
(clear sky) at an altitude of 85 m above ground level. The duration of the pass was about
20 min. The photos were taken with the X5S camera (SZ DJI Technology Co., Shenzhen,
China) with a resolution of 5280 × 3956 px. The size of the ground sample distance was
about 4 cm. A total of 192 photos were taken during the pass. The research covered an area
of approximately 6 ha (Figure 3).
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Figure 3. Orthophotomosaic illustrating the subject of the analyses and the surrounding area; source:
orthophotomosaic created by Szymon Sobura.

Before the pass, 11 ground control points (GCPs) were surveyed. The points were
evenly distributed in the research area. The survey was performed using the GNSS RTN
kinematic technique with the GPS TRIMBLE R6 receiver (Trimble Inc., Sunnyvale, CA, USA).
The value of the position dilution of precision (PDOP) coefficient for the measured points
fell within the range of 1.3–2.1. Adjustment data for real-time GNSS observations were
taken from the VRSNet system.

Data processing was performed in Agisoft Metashape software (Agisoft LLC, St.
Petersburg, Russia). For georeferencing, photos with a determined RTK position and one
ground control point were used. The survey and data processing were performed using
the method presented in [80]. In this method, thanks to the integration of the RTK system
with the UAV, the coordinates of the centre of the projections were saved in the metadata
in the target coordinate system. After loading the photos into the Agisoft Metashape
photogrammetry software, the first stage of processing was carried out immediately, in
which the block of photos is aligned. The approximate elements of the external orientation
of the photos did not need to be postprocessed because they already have their coordinates
determined by the RTK survey. In the aerotriangulation process, only one ground control
point was used in accordance with the recommendations of Wywiał [80] in order to precisely
fit the model to the physical land surface. According to [80], the use of the GCP allows for
increasing the height accuracy of the model from 0.19 m to 0.04 m. The spatial accuracy
(X, Y, Z) of the model fit calculated in the Agisoft Metashape software was 2.2 cm. In
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order to identify the actual error in determining the coordinates of the points on the
orthophotomosaic, 10 control points (not participating in the alignment) were measured in
the field using the GNSS RTN method. Then, using the coordinates of the points captured
from the GNSS RTN survey and the coordinates determined based on the orthophotomosaic,
the root mean square error (RSME) was calculated for the spatial data (in the horizontal
and vertical planes), which was 7.6 cm. As a result of the study, an orthophotomosaic
and a point cloud (in a regular grid every 0.5 m) showing the surface of the analysed area
were obtained.

Based on the measurement data from the UAV, it is possible to create a model of the
surface only (DEM) as well as of the surface with land cover (DSM). During the survey, the
surface is measured together with the land cover (noise). Thus, in order to obtain the model
of the surface only (DEM), filtration of the noise, i.e., of the land cover, has to be performed.
The DEM and DSM models for the analysed area were created in the Agisoft software
based on the measured point cloud presenting the relief of the analysed area together with
its cover.

At the same time, the analyses were performed using the measurement data available
in Poland from airborne laser scanning (LIDAR) in the form of a cloud of measurement
points with specific XYZ coordinates from the ISOK system (National Protection IT Sys-
tem). The density of the point distribution in the analysed area was uneven and was
4–6 points/m2 [81]. According to the assumptions of Head Office of Geodesy and Cartogra-
phy (GUGiK), the vertical accuracy (mean error) of the airborne laser scanning (ALS) point
cloud on paved areas should be 0.1–0.15 m [81], while the horizontal accuracy should be
0.4–0.5 m [82]. In fact, as proven in Pawłuszek et al. [83], the vertical accuracy of the data
from the National Protection IT System varies and depends on the land cover. For bushy
areas, the mean error in determining the height on the DEM is about 0.25 m [83].

Based on the measurement data from LIDAR (as in the case of UAVs), the surface is
surveyed together with its cover. Thus, in order to obtain the model of the surface only
(DEM), the noise in the form of land cover must be filtered. The current software allows for
the creation of a model of only the surface from LIDAR data after filtering the noise, i.e.,
the land cover. In this work, the authors used DEM and DSM in the raster form, which was
made available by the Head Office of Geodesy and Cartography.

In order to assess the quality of data describing the land surface surveyed using
photogrammetric methods, an additional survey of the land surface was performed by
the precise positioning method using the GNSS system with the RTN kinematic technique
(GNSS RTN) with the GPS TRIMBLE R6 receiver. The value of the position dilution of
precision coefficient for the measured points was lower than the permissible value in
Poland of 6.5. Adjustment data for real-time GNSS observations were taken from the
“VRSNet” system. During the field work, about 170 points representing the relief were
surveyed. According to Ćwiąkała et al. [84], the surveying accuracy of field details using
the GNSS RTN technique was: 0.02 m for horizontal details (XY—in the horizontal plane)
and 0.04 m for vertical details (Z—in the vertical plane). Figure 4 illustrates the points
measured using the GNSS RTN method, representing the actual relief of the analysed area.
The measurement points were not evenly distributed due to the difficult field conditions.
The analysed area, in particular in the southern part, was very wet.

2.2. Methods

At the beginning of the work, the quality of the spatial data describing the surface of the
studied area was analysed. For this purpose, the spatial data captured from surveys using
photogrammetric (UAV and LIDAR) and surveying (GNSS RTN) methods were compared.
The data from the GNSS RTN method were used as reference data for comparison, as they
represented the real land surface.

In the first stage of the work, the “cloud to cloud” comparison was made, i.e., the focus
was only on the discrete point heights analyses captured from various surveying methods.
Due to the fact that the accuracy of the digital elevation model was affected by the ground
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coverage, the field details around the watercourse were divided into three groups, i.e.,
slopes around the watercourse, grass (meadows) and forested areas. The terrain heights
at the points measured in the field using the GNSS RTN technique (reference data) were
compared with the terrain heights at the points read from the point clouds (UAV and
LIDAR). Due to the fact that the density of the points from the LIDAR and UAV methods
was different, two comparisons were carried out.
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The first comparison consisted of calculating the difference in heights between the
terrain height at the point measured in the field using the GNSS RTN technique and the
terrain height at the nearest point from the LIDAR and UAV clouds (Figure 5A). The second
comparison consisted of calculating the difference in heights between the terrain height
at the point directly measured in the field using the GNSS RTN technique and the mean
terrain height at the points from the cloud for a given buffer zone, i.e., a zone distant from
the measured point by a given distance (Figure 5B). The buffer zone radius around the
points measured using the GNSS RTN technique was assumed for LIDAR data at the level
of 0.25 m, and for the UAV data at the level of 0.5 m due to the lower density of points.

Then, the quality of the spatial data describing the surface of the studied area was
analysed. For this purpose, in the first stage, the value of the variance was calculated using
Equation (1) for the height difference

(
σ2

dHMIN

)
determined based on the terrain height at

the points measured directly in the field using the GNSS RTN technique and the terrain
height at the points from the UAV and LIDAR clouds located at the closest distance from
the point measured using the GNSS RTN technique in the given buffer zone (Figure 5A).

σ2
dHMIN

=
∑n

i=1
(

HRTNi − HdMIN i

)2

n − 1
(1)

where

σ2
dHMIN

—estimator of variance of height difference,
HRTNi —terrain height at the point measured by the GNSS RTN technique,
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HdMIN i
—terrain height at the point measured by the UAV and LIDAR technique lying at

the closest distance from the point measured by the GNSS RTN technique,
i—next item observation,
n—number of observations.
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In the next stage of the work, using Equation (2), the variance value was calculated
for the height difference (σ2

dHMEAN
) determined based on the terrain height at the points

measured in the field using the GNSS RTN technique and the mean terrain height at the
points from the UAV and LIDAR clouds lying in the given buffer zone around the point
measured using the GNSS RTN technique (Figure 5B).

σ2
dHMEAN

=
∑n

i=1
(

HRTNi − HMEANi

)2

n − 1
(2)

where:

σ2
dHMEAN

—estimator of variance of height difference,
σ2

dHMEAN
—terrain height at the point measured by the GNSS RTN technique,

σ2
dHMEAN

i—mean height of the points measured by the UAV and LIDAR technique lying in
the buffer zone around the point measured by GNSS RTN technique,
i—next item observation,
n—number of observations.

The estimated value of the variance according to Equations (1) and (2) demonstrated
the size of the dispersion between the heights at the points measured by the UAV and
LIDAR methods and the actual terrain height measured by the GNSS RTN method.

Then, using Equation (3), the accuracy of the estimated value of the variance was
calculated for the compared heights σ

(
σ2

dH
)

of the points measured in the field using the
GNSS RTN technique and determined based on the UAV and LIDAR point clouds. The
value calculated in accordance with Equation (3) allowed for the assessment of the accuracy
of estimating the value of the dispersion between the actual terrain heights and the heights
measured by the UAV and LIDAR methods.

σ
(

σ2
dH

)
=

√
2

n − 1
∗ σ2

dHMEAN/MIN
(3)
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where:

σ
(
σ2

dH
)
—precision of the estimated value of the variance of height difference,

σ2
dHMEAN/MIN

estimator of variance of height difference,

n—number of observations.

In the next stage of the work, using Equation (4), the value of the standard deviation
was calculated for the height difference (σdH) determined based on the terrain height at the
points measured in the field using the GNSS RTN technique and the heights determined
from the UAV and LIDAR point clouds. The value of the standard deviation was calculated
for both points closest to the point measured using GNSS RTN in the given buffer zone, as
well as the mean height of the points lying in the buffer zone around the point measured
using the GNSS RTN technique.

σdH =
√

σ2
dHMEAN/MIN

(4)

where:

σdH—estimator of standard deviation of height difference,
σ2

dHMEAN/MIN
—estimator of variance of height difference.

The estimated value of the standard deviation in accordance with Equation (4) demon-
strated the precision with which the heights at the points measured by the UAV and LIDAR
methods were determined. In this example, the value of the standard deviation calculated
according to Equation (4) may be a measure of the quality of the discrete data describing
the land surface.

In the last stage of the work, using Equation (5), the accuracy of the estimated value
of the standard deviation was calculated for the compared heights (σdH) of the points
measured in the field using the GNSS RTN technique and determined based on the UAV
and LIDAR point clouds.

σ(σdH) =
√

σ
(
σ2

dH
)

(5)

where:

σ(σdH)—precision of the estimated value of the standard deviation of height difference,
σ
(
σ2

dH
)
—precision of the estimated value of the variance of height difference.

The values of the parameters calculated with the use of Equations (1)–(5) allowed for
a full assessment of the accuracy of determining the heights at the points measured by the
UAV and LIDAR methods. This was necessary because the accuracy (quality) of discrete
data describing the land surface could directly affect the quality of the elevation model,
which will be used for the hydrological modelling of the watercourse flow.

In the second stage of the work, the heights were compared based on the data pro-
cessed to a continuous form, i.e., the analyses were performed on raster data. The DEM
(interpolated land surface) and the DSM (interpolated land surface with the cover) in
the high-resolution raster form (ground sample distance—0.04 m) were used, created in
Agisoft software for data from the method using the UAV, as well as the DEM and the
DSM downloaded from the Head Office of Geodesy and Cartography website, created
from the LIDAR data as part of the National Protection IT System project [82]. The data
collected from the Head Office of Geodesy and Cartography were in the GRID structure
with a mesh size of one metre [81]. At this stage, the terrain heights at the points read from
the raster created from the point cloud (HDEMUAV/LIDARi ) were compared with the heights
at the points directly measured in the field using the GNSS RTN technique (HRTNi ). The
heights were compared in the QGIS software. It was a fully automatic process using the
SAGA GIS “add raster values to points” overlay. Then, using Equation (6), the value of the
variance was calculated for the height difference

(
σ2

dH
)

determined based on the heights of
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points measured in the field using the GNSS RTN technique and the heights determined
from the UAV and the LIDAR point clouds processed into the raster form.

σ2
dH =

∑n
i=1

(
HRTNi − HDEMUAV/LIDARi

)2

n − 1
(6)

where:

σ2
dH—estimator of variance of height difference,

HRTNi —terrain height at the point measured by the GNSS RTN technique,
HDEMUAV/LIDARi —height of the point from the DEM raster created from the UAV and
LIDAR data,
i—next item observation,
n—number of observations.

After calculating the value of the variance using Equation (4), the value of the standard
deviation for the height difference was calculated. Then, using Equations (3) and (5),
the accuracy of the estimated value of the standard deviation was calculated for the
compared heights σ(σdH) at the points measured in the field using the GNSS RTN technique
and determined based on the digital elevation model created from the UAV and LIDAR
point clouds.

The second accuracy analysis for the raster data (discrete data converted to a contin-
uous form) was necessary because the terrain model (DEM, DSM) from the LIDAR data,
which was used for hydrological analyses, was taken from the Head Office of Geodesy and
Cartography. Therefore, it was necessary to verify the accuracy with which it determined
the actual land surface in the analysed area. The analysis of the model accuracy for the
UAV data also had to be carried out, because the software used provided only the mean
error of the model creation, without distinguishing between individual field details (slopes,
grasses, forests).

The raster accuracy analysis was performed using Equations (3)–(6). The estimated
value of the variance, calculated in accordance with Equation (6), demonstrated the size of
the dispersion between the point heights read from the rasters and the actual terrain height
measured by the GNSS RTN method. The estimated value of the standard deviation in
accordance with Equation (4) presented the accuracy of determining the height at the points
based on the rasters from the UAV and LIDAR methods. The standard deviation parameter
in this example will be a measure of the quality of the continuous model representing the
land surface.

In the third stage of the work, a DEM was created in the SAGA GIS software, based
on the terrain heights measured at characteristic points using the GNSS RTN technique.
Creating a DEM from the points measured directly in the field using the GNSS RTN
technique was necessary for the final verification of the hydrological parameters calculated
based on the elevation model in a continuous form (raster), created from the UAV and
LIDAR data. Several algorithms were used to interpolate the land surface, including
“inverse distance”, “triangulation”, “natural neighbour” and “nearest neighbour”. A
description of the algorithms used can be found in [85]. Then, the heights at the points
read from the DEM rasters (created with the algorithms “inverse distance”, “triangulation”,
“natural neighbour”, and “nearest neighbour”) were compared with the terrain heights
at the points directly measured in the field using the GNSS RTN technique. The height
comparison was made in the QGIS software using the SAGA GIS “add raster values to
points” overlay. Then, using Equation (7), the variance value was calculated for the height
difference

(
σ2

dH
)

determined based on the heights at the points measured in the field using
the GNSS RTN technique and the heights automatically read from the DEM rasters.

σ2
dH =

∑n
i=1
(

HRTNi − HDEMRTN i

)2

n − 1
(7)
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where:

σ2
dH—estimator of variance of height difference,

HRTNi —terrain height at the point measured by the GNSS RTN technique,
HDEMRTN i —height of the point from the DEM raster created from data of GNSS RTN,
i—next item observation,
n—number of observations.

After calculating the value of the variance using Equation (4), the value of the stan-
dard deviation for the height difference (σdH) was calculated. Then, with the use of
Equations (3) and (5), the accuracy of the estimated value of the standard deviation was
calculated for the compared heights σ(σdH) of the points measured in the field using the
GNSS RTN technique and determined based on the DEM created from the GNSS RTN sur-
vey. The analysis of the raster accuracy with the use of the above Equations was necessary
to select the optimal algorithm for interpolating the land surface. The estimated value of
the variance, calculated according to Equation (7), demonstrated the size of the dispersion
between the point heights read from the rasters and the actual terrain height measured
by the GNSS RTN method. The estimated value of the standard deviation according to
Equation (4) presented the accuracy of determining the point heights based on the rasters
created with various algorithms. The standard deviation parameter in this example will be
a measure of the quality of the continuous model representing the land surface.

Then, in order to accurately compare the DEM rasters, cross-sections through the
watercourse bed were also made. The cross-sections were generated automatically in the
QGIS software at an average distance of 25 m. Figure 6 illustrates only selected cross-
sections, which are visualised later in the work.
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In the fourth stage of the work, cross-sections were generated in the QGIS software
through the watercourse bed for the processed point cloud from the UAV, LIDAR methods
to a continuous form—the DEM and DSM rasters created using the “inverse distance”
method from the GNSS RTN survey. Then, slope cross-sections were also generated
along the same measurement lines. The analysis of the cross-sections and slopes was
performed separately for the DEM (land surface) and the DSM (land surface with the
cover). Subsequently, using SAGA GIS software, based on previously created DEMs, a
slope map was generated for better visualisation of the area.
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In the last stage of the work, using the Hydrology library of the SAGA GIS software,
DEM raster cells were determined, in which the water flow accumulated in a given area.
Knowing the places where water accumulates in a given area, we can determine the
direction of its flow. In addition, we can also visualise the water network in a given area.

Then, using the method presented in [86], consisting of the reclassification of the raster
using the mean value of the watercourse flow in a given area, the values of the actual
watercourse flow in each cell of the raster were defined by determining the actual course of
the Czysta River. Hydrological parameters were determined on the DEM acquired from
all surveying methods, and also based on the actual area of the land only, measured by
the GNSS RTN method. Thus, it was possible to assess the quality of the hydrological
and morphological parameters of the land, important for the selection of the location for
the construction of small hydropower plants, made based on the spatial data depicting
the actual area of the land alone measured in the field, and not only the area created by
the filtration of the noise in the form of land cover. It allowed for the examination of the
influence of the accuracy of the performed filtration on the quality of the hydrological
parameters obtained. Moreover, the measurement of the actual course of the watercourse
in the field using the GNSS RTN technique and its comparison with the water network gen-
erated in the software based on the DEM enabled the quality assessment of the performed
hydrological modelling.

3. Results

This chapter presents the results of the accuracy analysis of the spatial data describing
the land surface captured using the LIDAR, UAV and GNSS RTN methods. The results
and analysis of the differences in the calculated parameters of hydrological modelling used
in the search for potential locations for the construction of small hydropower plants are
also presented.

3.1. Analysis of the Accuracy of Spatial Data Describing Land Surface and Selection of an
Interpolation Algorithm for Modelling Land Surface for Data from the GNSS RTN Method

Table 2 presents the results of the first comparison of point heights based on discrete
data. Columns 9 and 5 (Table 2) summarise the calculated differences in heights between
the point measured in the field using the GNSS RTN technique, and the height of the nearest
point from the LIDAR and UAV clouds (Figure 5A). Columns 7 and 11 (Table 2) summarise
the differences in heights between the height of the point measured directly in the field
using the GNSS RTN technique and the mean height of the points from the cloud for a given
buffer zone (Figure 5B). Then, using Equations (1), (2), and (4), the variance and standard
deviation values were calculated for the compared height differences, depending on the
land cover (slope, grass, forest). Successively, using Equations (3) and (5), the accuracy of
determining the variance and standard deviation was estimated. The results are presented
in Table 2.

The calculated values of the variance (σ2
dH) and the standard deviation (σdH) of the

height differences vary depending on the land cover. The values of the variance and
standard deviation for both surveying methods (UAV, LIDAR) are the highest for forested
areas. For the remaining types of land cover, the mean errors in determining the height
from the LIDAR and UAV clouds differ depending on the method used. UAV data have
lower error values for slopes (σdHMIN = 0, 2 ± 0.1 [m], σdHMEAN = 1.6m ± 0.9 [m]) and
grasses (σdHMIN = 0.1 ± 0.1 [m], σdHMEAN = 1.9m ± 1.3 [m]), while LIDAR data have the
lowest error values for forested land (σdHMIN = 5.3 ± 3.7 [m], σdHMEAN = 3.3 m ± 2.3 [m]).
The general error in determining the heights for all analysed points, without distinguishing
the type of land cover, by the first method using the points closest to the measurement point
is σdHMIN = 3.1 ± 1.6 [m] for the UAV data, and σdHMIN = 3.3 ± 1.7 [m] for the LIDAR
data. On the other hand, by means of the method using the average point height from
the cloud located in the given buffer zone, the general error is σdHMEAN = 2.7 ± 1.4 [m]
for the UAV, and σdHMEAN = 3.4 ± 1.8 [m] for the LIDAR. Therefore, when analysing the
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results, it can be concluded that regardless of the comparison method (the method of
the closest point and the method of mean heights in the buffer zone), the mean error in
determining the heights is lower for the UAV method. However, this does not mean that
the UAV method is better for each type of land cover, because the mean error for forested
areas measured by the LIDAR method is smaller. To sum up, it should be stated that the
height measurement using the LIDAR method gives more accurate results for forested
areas, and in the remaining areas, the UAV surveying method is more accurate. When
analysing Table 2, it can also be noticed that there are significantly more outliers (marked
in red in Table 2) for the LIDAR points. This is confirmed by the value of the total variance
(a measure of data scatter) for the LIDAR data, which is: σ2

dH MIN = 11.0 ± 2.9 [m] and
σ2

dHMEAN
= 11.7 ± 3.3 [m]. The value of the variance, regardless of the comparison method

(the closest point method and the method of mean heights in the buffer zone) is at a similar
level. This is confirmed by the conclusion drawn earlier that the LIDAR surveying method
should be used in forested areas, and in other cases the UAV method should be used. The
dispersion of the height values (the variance value) by the LIDAR method is smaller only
for forested areas, and in other cases (grasses and slopes), the UAV method has a lower
dispersion of accuracy.

Table A1, constituting Appendix A, contains the results of the second comparison of the
point heights determined on the data processed into a continuous form (raster). Column 2
(Table A1) summarises the point heights measured directly in the field using the GNSS RTN
technique (HRTNi ). Columns 3 and 5 (Table A1) summarise the point heights automatically
read from the DEM rasters created from the UAV and LIDAR point clouds (HDEMUAV/LIDARi ).
Columns 7 and 8 (Table A1) summarise the point heights automatically read from the DSM
rasters created from the UAV and LIDAR point clouds (HDSMUAV/LIDARi ). Columns 4 and 6
(Table A1) summarise the differences between the heights at the points read from the DEM
rasters created from the UAV and LIDAR point clouds with the point heights measured
directly in the field using the GNSS RTN technique

(
dHRTN−DEMi

)
. Column 8 (Table A1)

summarises height differences between the heights of the points read from DSM rasters
created from the UAV and LIDAR point clouds with the point heights measured directly in
the field with the use of the GNSS RTN technique

(
dHRTN−DSMi

)
. Then, using Equation (6),

the value of the variance for the height differences
(
σ2

dH
)

determined based on the point
heights measured in the field with the GNSS RTN technique and the heights determined
from the UAV and LIDAR point clouds converted to raster form were calculated. Then,
using Equations (3)–(5), the standard deviation of height differences (σdH) and the accuracy
of its determination (σ(σdH)) were estimated. Based on the performed calculations, it was
found that the value of the standard deviation for the DEM in the raster form captured
from the survey by the UAV method was σdH = 0.17 ± 0.6 [m], and that by the LIDAR
method was σdH = 0.39 ± 0.13 [m] (Table A1). The mean value of the height difference
(MEANdH) of the points read from the DSM for the UAV and LIDAR methods was 1.40 m
(Table 2). Taking into account the studied area (non-urbanised, covered with vegetation), it
can be concluded that the accuracy of determining the height on the created DEM model in
the raster form is high. Comparing the values of the mean errors or for the continuous data
(Table A1) and discrete data (Table 2), it can be noticed that the errors are much smaller
for the land surface interpolated to the continuous form (raster) than for the discrete data.
Therefore, it can be concluded that the terrain model created in the continuous form (DEM,
DSM) yields a better accuracy of height determination than the heights determined for
individual points from the UAV and LIDAR clouds. This is very important information as
all hydrological analyses are performed on the terrain model processed to a raster form. As
the analyses demonstrated, the low accuracy of the height determination for discrete data
(single points from the cloud) did not directly translate into the accuracy of the model itself.
When interpolating the terrain at the stage of creating the DEM terrain model, outliers are
rejected, which are much more difficult to identify and reject during the discrete analysis
(of single points). As a result, the error for the continuous data (raster) is smaller.
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Table 2. Comparison of point heights measured in the field using the GNSS RTN technique with
point heights read from LIDAR and UAV point clouds; source: own elaboration.

Field Detail Point No.
GNSS
RTN UAV Cloud LIDAR Cloud

HRTN
[m]

HdMIN
[m]

dHdMIN
[m]

HMEAN
[m]

dHMEAN
[m]

HdMIN
[m]

dHdMIN
[m]

HMEAN
[m]

dHMEAN
[m]

1 2 3 4 5 6 7 8 9 10 11
94 252.6 252.4 0.2 252.5 0.1 252.7 −0.1 256.3 −3.7
95 251.4 251.5 −0.1 244.5 6.9 251.6 −0.2 251.6 −0.2
88 252.7 252.5 0.2 252.7 0.1 252.7 0 258.6 −5.9
87 251.8 251.9 −0.1 251.9 −0.1 251.8 0 251.9 −0.1
65 253.7 253.5 0.2 253.5 0.2 253.8 −0.1 253.8 −0.1
66 252.7 253 −0.3 252.9 −0.1 252.9 −0.2 252.9 −0.1
59 254.3 254.2 0.1 254.1 0.2 254.3 −0.1 254.5 −0.2
60 252.8 252.6 0.2 252.9 0 252.7 0.1 252.7 0.1
38 253.8 253.6 0.1 253.6 0.2 254.1 −0.3 254.1 −0.3
39 252.9 253.1 −0.3 252.9 0 253.6 −0.7 253.5 −0.6
32 254.7 254.5 0.2 254.6 0.2 254.8 −0.1 258.7 −4.0
31 252.8 253.4 −0.6 252.8 0 253.3 −0.5 253.2 −0.4
23 253.8 253.7 0.1 253.7 0.2 253.9 −0.1 256.9 −3.0
22 252.8 253 −0.3 252.8 0 253.6 −0.8 253.6 −0.8
16 253.8 253.6 0.2 253.6 0.2 254.5 −0.6 − −
17 252.9 252.9 0.1 252.8 0.2 254.4 −1.4 − −
9 254.3 254.3 0 254.2 0.1 254.5 −0.2 254.5 −0.2
10 253.1 253 0.1 253.1 0 254.3 −1.2 −
3 254.4 254.2 0.2 254.2 0.1 254.5 −0.2 257.7 −3.3
4 253.2 253 0.1 253.1 0.1 252.7 −0.1 260.6 −7.4

σ2
dH [m] σ2

dHMIN
= 0.0 σ2

dHMEAN
= 2.5 σ2

dHMIN
= 3.3 σ2

dHMEAN
= 8.8

σdH [m] σdHMIN = 0.2 σdHMEAN = 1.6 σdHMIN = 1.8 σdHMEAN = 3.0
σ
(
σ2

dH

)
[m] σ

(
σ2

dHMIN

)
= 0.0 σ

(
σ2

dHMEAN

)
= 0.8 σ

(
σ2

dHMIN

)
= 1.1 σ

(
σ2

dHMEAN

)
= 3.1

Slopes

σ(σdH) [m] σ
(

σdHMIN

)
= 0.1 σ

(
σdHMEAN

)
= 0.9 σ

(
σdHMIN

)
= 1.0 σ

(
σdHMEAN

)
= 1.8

Grasses

140 254.0 253.9 0.1 253.9 0.1 254.4 −0.4 254.4 −0.4
134 253.6 253.6 0.1 253.6 0.1 253.8 −0.2 253.8 −0.2
127 253.6 253.5 0.1 253.6 −0.1 253.6 −0.1 254.6 −1.1
125 253.3 253.2 0.1 253.2 0.0 253.3 0.0 253.3 −0.1
41 254.4 254.2 0.3 254.3 0.2 254.6 −0.1 254.5 −0.1
71 252.9 252.7 0.2 252.7 0.2 252.8 0.1 252.8 0.1
84 251.8 251.9 0 252.0 −0.1 252.0 −0.2 252.0 −0.2
99 252.5 252.8 −0.2 252.9 −0.4 252.6 0.0 252.6 −0.1

108 251.8 251.8 0 257.6 −5.8 251.8 0.0 258.7 −6.9
141 253.9 253.7 0.2 253.8 0.2 254.3 −0.4 258.0 −4.0

σ2
dH [m] σ2

dHMIN
= 0.0 σ2

dHMEAN
= 3.8 σ2

dHMIN
= 0.0 σ2

dHMEAN
= 7.2

σdH [m] σdHMIN = 0.1 σdHMEAN = 1.9 σdHMIN = 0.2 σdHMEAN = 2.7
σ
(
σ2

dH

)
[m] σ

(
σ2

dHMIN

)
= 0.0 σ

(
σ2

dHMEAN

)
= 1.8 σ

(
σ2

dHMIN

)
= 0.0 σ

(
σ2

dHMEAN

)
= 3.4

σ(σdH) [m] σ
(

σdHMIN

)
= 0.1 σ

(
σdHMEAN

)
= 1.3 σ

(
σdHMIN

)
= 0.2 σ

(
σdHMEAN

)
= 1.8

113 252.1 251.9 0.2 251.9 0.1 252.2 −0.1 253.5 −1.4
116 252.1 261.3 −9.3 258.4 −6.3 266.1 −14.1 259.5 −7.4
117 253.0 252.8 0.2 252.7 0.2 255.2 −2.2 255.4 −2.4
118 253.2 253.1 0.1 253.0 0.2 253.3 −0.1 253.3 −0.1
119 252.9 252.7 0.3 252.7 0.2 252.9 0.0 252.9 0.0
120 253.7 253.3 0.3 253.3 0.4 253.7 −0.1 253.7 −0.1
121 253.5 253.2 0.3 253.2 0.3 253.6 −0.1 253.6 −0.1
122 252.8 252.6 0.2 257.8 −5.0 252.8 0.0 252.8 0.0
123 252.7 262.0 −9.3 257.1 −4.4 259.0 −6.3 257.7 −5.0
124 252.9 263.5 −10.6 259.3 −6.4 256.5 −3.6 256.3 −3.4

σ2
dH [m] σ2

dHMIN
= 31.7 σ2

dHMEAN
= 14.1 σ2

dHMIN
= 28.3 σ2

dHMEAN
= 11.1

σdH [m] σdHMIN = 5.6 σdHMEAN = 3.7 σdHMIN = 5.3 σdHMEAN = 3.3
σ
(
σ2

dH

)
[m] σ

(
σ2

dHMIN

)
= 14.9 σ

(
σ2

dHMEAN

)
= 6.6 σ

(
σ2

dHMIN

)
= 13.3 σ

(
σ2

dHMEAN

)
= 5.2

Forests

σ(σdH) [m] σ
(

σdHMIN

)
= 3.9 σ

(
σdHMEAN

)
= 2.6 σ

(
σdHMIN

)
= 3.7 σ

(
σdHMEAN

)
= 2.3

Total

σ2
dH [m] σ2

dHMIN
= 9.9 σ2

dHMEAN
7.2 σ2

dHMIN
= 11.0 σ2

dHMEAN
= 11.7

σdH [m] σdHMIN = 3.1 σdHMEAN = 2.7 σdHMIN = 3.3 σdHMEAN = 3.4
σ
(
σ2

dH

)
[m] σ

(
σ2

dHMIN

)
= 2.6 σ

(
σ2

dHMEAN

)
= 1.9 σ

(
σ2

dHMIN

)
= 2.9 σ

(
σ2

dHMEAN

)
= 3.3

σ(σdH) [m] σ
(

σdHMIN

)
= 1.6 σ

(
σdHMEAN

)
= 1.4 σ

(
σdHMIN

)
= 1.7 σ

(
σdHMEAN

)
= 1.8

In the next stage of the work, the discrete data measured by the GNSS RTN method,
representing the surface of the land alone, were processed into a continuous raster form.
Four algorithms were used to create the DEM: “inverse distance”, “triangulation”, “natural
neighbour” and “nearest neighbour”. It was necessary to assess the quality of the hydrolog-
ical and topographic parameters determined on the DEM from other surveying methods
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(UAV, LIDAR). In order to select the best interpolation algorithm, the height comparison
was performed. The results are presented in Table A2.

Table A2, constituting Appendix B, presents the results of the third comparison of the
point heights. Column 2 (Table A2) summarises the point heights measured directly in the
field using the GNSS RTN technique. Columns 3, 5, 7, and 9 (Table A2) summarise the point
heights automatically read from the DEM rasters created from land surface surveys carried
out in the field using the GNSS RTN technique (HDEMRTN i ) using the following algorithms:
“inverse distance”, “triangulation”, “natural neighbour” and “nearest neighbour”. Columns
4, 6, 8, and 10 (Table A2) summarise the differences between the point heights automatically
read from the DEM rasters with the point heights measured directly in the field using the
GNSS RTN technique

(
dHRTN−DEMi

)
. Then, using Equation (7), the value of the variance

was calculated for height differences
(
σ2

dH
)
. Subsequently, using Equations (3)–(5), the

standard deviation of the height differences (σdH) and the accuracy of its determination
(σ(σdH)) were estimated. Based on the performed calculations, it was found that the
value of the standard deviation for DEM in the raster form from the “inverse distance”
method was σdH = 0.08 ± 0.03 [m], and from the “nearest neighbour” method it was
σdH = 0.02 ± 0.01 [m] (Table A2). For the other two methods, “triangulation” and “natural
neighbour”, the errors were very large (Table A2).

Then, in order to finally verify the DEM rasters created by the four methods—“inverse
distance”, “triangulation”, “natural neighbour” and “nearest neighbour”—cross-sections
were generated through the watercourse bed in the QGIS software (Table 3). The cross-
sections were generated every 25 m on average. Only exemplary cross-sections along the
lines illustrated in Figure 6 are given below.

Table 3. Cross-sections generated on the DEM created from GNSS RTN survey; source: own elaboration.
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Cross-Section No. DEM
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Table 3. Cont.

Cross-Section No. DEM

15

Energies 2022, 15, x FOR PEER REVIEW 20 of 42 
 

 

15 

 

17 

 

19 

 

21 

 

17

Energies 2022, 15, x FOR PEER REVIEW 20 of 42 
 

 

15 

 

17 

 

19 

 

21 

 

19

Energies 2022, 15, x FOR PEER REVIEW 20 of 42 
 

 

15 

 

17 

 

19 

 

21 

 

21

Energies 2022, 15, x FOR PEER REVIEW 20 of 42 
 

 

15 

 

17 

 

19 

 

21 

 



Energies 2022, 15, 1527 20 of 41

Table 3. Cont.

Cross-Section No. DEM
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Based on the results presented in Tables 3 and A2, it was found that the “inverse
distance” algorithm would be the optimal interpolation algorithm. The “inverse distance”
algorithm determines the real terrain height with high accuracy (Table A2). Moreover,
by analysing the cross-sections (Table 3), it can be concluded that this algorithm correctly
presents the “real” relief observed in the field. The “nearest neighbour” algorithm has the
greatest accuracy σdH = 0.02 ± 0.01 [m] (Table A2), but does not fully reflect the “real”
relief (Table 3).

3.2. Analysis of Cross-Sections and Slopes Created on the Terrain Model in the Form of the
DEM Raster

Another parameter important for the selection of sites for the construction of hy-
dropower plants, apart from the height above sea level, is the slope of the land. Therefore,
in the next stage of the work, for the land surface alone (DEM) and for the land surface
with land cover (DSM), cross-sections through the Czysta River bed and a cross-section
along the main axis of the watercourse were generated in the QGIS software, every 25 m
on average (Table 4). The cross-sections were created for the processed point cloud from
the UAV and LIDAR methods to a continuous form (the DEM and DSM raster) and a
raster created using the “inverse distance” method from the GNSS RTN survey. The main
cross-section was generated based on the measured course of the river in the field. Only
exemplary cross-sections along the lines illustrated in Figure 6 are given below.

By analysing the cross-sections, it can be concluded that the shape of the riverbed is
maintained for all the surveying methods (LIDAR, UAV, GNSS RTN). However, it is easier
to reduce noise generated by bushes from the LIDAR data, which can be noticed in the
cross-sections 13, 15, 17 (Table 4). It is also clearly noticeable when we analyse slopes in
the cross-sections (Table 5), where the noise on the DEM from the UAV is so large that it
distorts the image on the cross-section. When analysing the cross-sections, it can be noticed
that the UAV data are much more sensitive to noise in the form of dense vegetation than
the LIDAR data. In the cross-sections, considerably greater vibrations for the UAV data
than for the LIDAR data can be observed. The UAV data have much greater field accuracy
than the LIDAR data and are therefore more susceptible to noise.

The greater susceptibility of the UAV data to noise also translates into the value of the
next topographic parameter, which is the slope. As can be seen in Table 5, the vibrations in
the cross-sections for the UAV data are so large that they disturb the image of the entire
cross-section. As a result, the slope values for the UAV data become unreliable.
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Table 4. Cross-sections of the watercourse bed on the DEM and DSM in raster form; source: own elaboration.

Cross-Section No. DEM DSM
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13

Energies 2022, 15, x FOR PEER REVIEW 23 of 42 
 

 

13 

  

15 

  

17 

  

19 

  

21 

  

Energies 2022, 15, x FOR PEER REVIEW 23 of 42 
 

 

13 

  

15 

  

17 

  

19 

  

21 

  

15

Energies 2022, 15, x FOR PEER REVIEW 23 of 42 
 

 

13 

  

15 

  

17 

  

19 

  

21 

  

Energies 2022, 15, x FOR PEER REVIEW 23 of 42 
 

 

13 

  

15 

  

17 

  

19 

  

21 

  

17

Energies 2022, 15, x FOR PEER REVIEW 23 of 42 
 

 

13 

  

15 

  

17 

  

19 

  

21 

  

Energies 2022, 15, x FOR PEER REVIEW 23 of 42 
 

 

13 

  

15 

  

17 

  

19 

  

21 

  

19

Energies 2022, 15, x FOR PEER REVIEW 23 of 42 
 

 

13 

  

15 

  

17 

  

19 

  

21 

  

Energies 2022, 15, x FOR PEER REVIEW 23 of 42 
 

 

13 

  

15 

  

17 

  

19 

  

21 

  

21

Energies 2022, 15, x FOR PEER REVIEW 23 of 42 
 

 

13 

  

15 

  

17 

  

19 

  

21 

  

Energies 2022, 15, x FOR PEER REVIEW 23 of 42 
 

 

13 

  

15 

  

17 

  

19 

  

21 

  



Energies 2022, 15, 1527 23 of 41

Table 4. Cont.

Cross-Section No. DEM DSM

MAIN AXIS

Energies 2022, 15, x FOR PEER REVIEW 24 of 42 
 

 

MAIN AXIS 

  

By analysing the cross-sections, it can be concluded that the shape of the riverbed is 

maintained for all the surveying methods (LIDAR, UAV, GNSS RTN). However, it is eas-

ier to reduce noise generated by bushes from the LIDAR data, which can be noticed in the 

cross-sections 13, 15, 17 (Table 4). It is also clearly noticeable when we analyse slopes in 

the cross-sections (Table 5), where the noise on the DEM from the UAV is so large that it 

distorts the image on the cross-section. When analysing the cross-sections, it can be no-

ticed that the UAV data are much more sensitive to noise in the form of dense vegetation 

than the LIDAR data. In the cross-sections, considerably greater vibrations for the UAV 

data than for the LIDAR data can be observed. The UAV data have much greater field 

accuracy than the LIDAR data and are therefore more susceptible to noise. 

Table 5. Slope of land on cross-sections through watercourse bed on the DEM and DSM in raster 

form; source: own elaboration. 

Cross-Section 

No. 
DEM DSM 

LEGEND 

 
 

1 

  

3 

  

1 

 

 

 

Table 5. Slope of land on cross-sections through watercourse bed on the DEM and DSM in raster
form; source: own elaboration.

Cross-Section No. DEM DSM

LEGEND

Energies 2022, 15, x FOR PEER REVIEW 24 of 42 
 

 

MAIN AXIS 

  

By analysing the cross-sections, it can be concluded that the shape of the riverbed is 

maintained for all the surveying methods (LIDAR, UAV, GNSS RTN). However, it is eas-

ier to reduce noise generated by bushes from the LIDAR data, which can be noticed in the 

cross-sections 13, 15, 17 (Table 4). It is also clearly noticeable when we analyse slopes in 

the cross-sections (Table 5), where the noise on the DEM from the UAV is so large that it 

distorts the image on the cross-section. When analysing the cross-sections, it can be no-

ticed that the UAV data are much more sensitive to noise in the form of dense vegetation 

than the LIDAR data. In the cross-sections, considerably greater vibrations for the UAV 

data than for the LIDAR data can be observed. The UAV data have much greater field 

accuracy than the LIDAR data and are therefore more susceptible to noise. 

Table 5. Slope of land on cross-sections through watercourse bed on the DEM and DSM in raster 

form; source: own elaboration. 

Cross-Section 

No. 
DEM DSM 

LEGEND 

 
 

1 

  

3 

  

Energies 2022, 15, x FOR PEER REVIEW 24 of 42 
 

 

MAIN AXIS 

  

By analysing the cross-sections, it can be concluded that the shape of the riverbed is 

maintained for all the surveying methods (LIDAR, UAV, GNSS RTN). However, it is eas-

ier to reduce noise generated by bushes from the LIDAR data, which can be noticed in the 

cross-sections 13, 15, 17 (Table 4). It is also clearly noticeable when we analyse slopes in 

the cross-sections (Table 5), where the noise on the DEM from the UAV is so large that it 

distorts the image on the cross-section. When analysing the cross-sections, it can be no-

ticed that the UAV data are much more sensitive to noise in the form of dense vegetation 

than the LIDAR data. In the cross-sections, considerably greater vibrations for the UAV 

data than for the LIDAR data can be observed. The UAV data have much greater field 

accuracy than the LIDAR data and are therefore more susceptible to noise. 

Table 5. Slope of land on cross-sections through watercourse bed on the DEM and DSM in raster 

form; source: own elaboration. 

Cross-Section 

No. 
DEM DSM 

LEGEND 

 
 

1 

  

3 

  

1

Energies 2022, 15, x FOR PEER REVIEW 24 of 42 
 

 

MAIN AXIS 

  

By analysing the cross-sections, it can be concluded that the shape of the riverbed is 

maintained for all the surveying methods (LIDAR, UAV, GNSS RTN). However, it is eas-

ier to reduce noise generated by bushes from the LIDAR data, which can be noticed in the 

cross-sections 13, 15, 17 (Table 4). It is also clearly noticeable when we analyse slopes in 

the cross-sections (Table 5), where the noise on the DEM from the UAV is so large that it 

distorts the image on the cross-section. When analysing the cross-sections, it can be no-

ticed that the UAV data are much more sensitive to noise in the form of dense vegetation 

than the LIDAR data. In the cross-sections, considerably greater vibrations for the UAV 

data than for the LIDAR data can be observed. The UAV data have much greater field 

accuracy than the LIDAR data and are therefore more susceptible to noise. 

Table 5. Slope of land on cross-sections through watercourse bed on the DEM and DSM in raster 

form; source: own elaboration. 

Cross-Section 

No. 
DEM DSM 

LEGEND 

 
 

1 

  

3 

  

Energies 2022, 15, x FOR PEER REVIEW 24 of 42 
 

 

MAIN AXIS 

  

By analysing the cross-sections, it can be concluded that the shape of the riverbed is 

maintained for all the surveying methods (LIDAR, UAV, GNSS RTN). However, it is eas-

ier to reduce noise generated by bushes from the LIDAR data, which can be noticed in the 

cross-sections 13, 15, 17 (Table 4). It is also clearly noticeable when we analyse slopes in 

the cross-sections (Table 5), where the noise on the DEM from the UAV is so large that it 

distorts the image on the cross-section. When analysing the cross-sections, it can be no-

ticed that the UAV data are much more sensitive to noise in the form of dense vegetation 

than the LIDAR data. In the cross-sections, considerably greater vibrations for the UAV 

data than for the LIDAR data can be observed. The UAV data have much greater field 

accuracy than the LIDAR data and are therefore more susceptible to noise. 

Table 5. Slope of land on cross-sections through watercourse bed on the DEM and DSM in raster 

form; source: own elaboration. 

Cross-Section 

No. 
DEM DSM 

LEGEND 

 
 

1 

  

3 

  

3

Energies 2022, 15, x FOR PEER REVIEW 24 of 42 
 

 

MAIN AXIS 

  

By analysing the cross-sections, it can be concluded that the shape of the riverbed is 

maintained for all the surveying methods (LIDAR, UAV, GNSS RTN). However, it is eas-

ier to reduce noise generated by bushes from the LIDAR data, which can be noticed in the 

cross-sections 13, 15, 17 (Table 4). It is also clearly noticeable when we analyse slopes in 

the cross-sections (Table 5), where the noise on the DEM from the UAV is so large that it 

distorts the image on the cross-section. When analysing the cross-sections, it can be no-

ticed that the UAV data are much more sensitive to noise in the form of dense vegetation 

than the LIDAR data. In the cross-sections, considerably greater vibrations for the UAV 

data than for the LIDAR data can be observed. The UAV data have much greater field 

accuracy than the LIDAR data and are therefore more susceptible to noise. 

Table 5. Slope of land on cross-sections through watercourse bed on the DEM and DSM in raster 

form; source: own elaboration. 

Cross-Section 

No. 
DEM DSM 

LEGEND 

 
 

1 

  

3 

  

Energies 2022, 15, x FOR PEER REVIEW 24 of 42 
 

 

MAIN AXIS 

  

By analysing the cross-sections, it can be concluded that the shape of the riverbed is 

maintained for all the surveying methods (LIDAR, UAV, GNSS RTN). However, it is eas-

ier to reduce noise generated by bushes from the LIDAR data, which can be noticed in the 

cross-sections 13, 15, 17 (Table 4). It is also clearly noticeable when we analyse slopes in 

the cross-sections (Table 5), where the noise on the DEM from the UAV is so large that it 

distorts the image on the cross-section. When analysing the cross-sections, it can be no-

ticed that the UAV data are much more sensitive to noise in the form of dense vegetation 

than the LIDAR data. In the cross-sections, considerably greater vibrations for the UAV 

data than for the LIDAR data can be observed. The UAV data have much greater field 

accuracy than the LIDAR data and are therefore more susceptible to noise. 

Table 5. Slope of land on cross-sections through watercourse bed on the DEM and DSM in raster 

form; source: own elaboration. 

Cross-Section 

No. 
DEM DSM 

LEGEND 

 
 

1 

  

3 

  

5

Energies 2022, 15, x FOR PEER REVIEW 25 of 42 
 

 

5 

  

7 

  

11 

  

13 

  

15 

  

Energies 2022, 15, x FOR PEER REVIEW 25 of 42 
 

 

5 

  

7 

  

11 

  

13 

  

15 

  



Energies 2022, 15, 1527 24 of 41

Table 5. Cont.

Cross-Section No. DEM DSM

7

Energies 2022, 15, x FOR PEER REVIEW 25 of 42 
 

 

5 

  

7 

  

11 

  

13 

  

15 

  

Energies 2022, 15, x FOR PEER REVIEW 25 of 42 
 

 

5 

  

7 

  

11 

  

13 

  

15 

  

11

Energies 2022, 15, x FOR PEER REVIEW 25 of 42 
 

 

5 

  

7 

  

11 

  

13 

  

15 

  

Energies 2022, 15, x FOR PEER REVIEW 25 of 42 
 

 

5 

  

7 

  

11 

  

13 

  

15 

  

13

Energies 2022, 15, x FOR PEER REVIEW 25 of 42 
 

 

5 

  

7 

  

11 

  

13 

  

15 

  

Energies 2022, 15, x FOR PEER REVIEW 25 of 42 
 

 

5 

  

7 

  

11 

  

13 

  

15 

  

15

Energies 2022, 15, x FOR PEER REVIEW 25 of 42 
 

 

5 

  

7 

  

11 

  

13 

  

15 

  

Energies 2022, 15, x FOR PEER REVIEW 25 of 42 
 

 

5 

  

7 

  

11 

  

13 

  

15 

  

17

 

2 

 

Energies 2022, 15, x FOR PEER REVIEW 26 of 42 
 

 

17 

  

19 

  

21 

  

MAIN AXIS 

  

The greater susceptibility of the UAV data to noise also translates into the value of 

the next topographic parameter, which is the slope. As can be seen in Table 5, the vibra-

tions in the cross-sections for the UAV data are so large that they disturb the image of the 

entire cross-section. As a result, the slope values for the UAV data become unreliable. 

3.3. Analysis of Hydrological Parameters 

Based on the previously determined topographic parameters, in the last stage of the 

work, the determination of hydrological parameters important in hydrological modelling 

for the purpose of selecting the location for the construction of small hydropower plants 

was commenced. In the first stage of the work with the use of QGIS software, a map of 

slopes was created based on the previously prepared DEMs (Figure 7). 

As illustrated in Figure 7, on the map generated from the digital elevation model 

created from the LIDAR data, the outline of the Czysta River bed is clearly visible, which 

is noticeable thanks to the steeper slopes running along the watercourse bed. On the slope 

map generated with the use of the UAV data, the bed and the slopes along the river are 
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3.3. Analysis of Hydrological Parameters

Based on the previously determined topographic parameters, in the last stage of the
work, the determination of hydrological parameters important in hydrological modelling
for the purpose of selecting the location for the construction of small hydropower plants
was commenced. In the first stage of the work with the use of QGIS software, a map of
slopes was created based on the previously prepared DEMs (Figure 7).
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As illustrated in Figure 7, on the map generated from the digital elevation model
created from the LIDAR data, the outline of the Czysta River bed is clearly visible, which is
noticeable thanks to the steeper slopes running along the watercourse bed. On the slope
map generated with the use of the UAV data, the bed and the slopes along the river are less
distinguishable. This is due to the very high detail of spatial data captured from UAVs.

In the last stage of the work, the average and actual flow of the watercourse was deter-
mined, which was necessary when choosing locations for the construction of hydropower
plants, because the energy potential of the designed structures is determined based on
the flows. For this purpose, with the use of SAGA GIS software, DEM raster cells were
determined, in which the water flow is accumulated in a given area. Then, knowing the
places where water accumulates in a given area, the direction of its flow was determined
indirectly. This allowed for the visualisation of the water network in the analysed area
(Figure 8). As can be noted in Figure 8, the most developed water network was generated
based on the LIDAR surveying data. The reason for this may lie in the larger area used for
the analysis of the catchment area, as the LIDAR method raster covered the largest area.
The water network generated based on the DEM from the UAV is hardly visible.
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Figure 8. Flow accumulation map generated from DEM created based on surveying data by pho-
togrammetric methods using UAV, LIDAR and GNSS/RTN; source: own elaboration.

In the last stage of the work, using the method presented in [86] involving the reclassi-
fication of the raster using the mean watercourse flow in a given area (equal to 6 m3/s), the
values of the actual watercourse flow in each raster cell were defined. Therefore, the actual
course of the Czysta River in the field was specified. In Figure 9, the actual course of the
river in the field measured by the GNSS RTN method is marked in red, while the course of
the river generated in the QGIS software, determined based on the actual flow values in
each raster cell, is marked in white.

Based on a comparison of the course of the watercourse surveyed in the field using the
GNSS RTN method and generated from DEM, it is possible to evaluate the hydrological
modelling. As illustrated in Figure 9, the algorithm worked best for the DEM created from
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the LIDAR data. For LIDAR data, hydrological modelling produced good results. The
generated river course corresponded to that actually measured in the field by the GNSS
RTN method. For the UAV data illustrated in Figure 9, the results are not as good. The
reason for this may, first of all, be the area of the analysed catchment, which was much
larger for the LIADR data than for the UAV, and secondly, the slope values generated from
the UAV data based on which the slope map and flow values were generated.
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4. Discussion

Based on the conducted analysis of discrete and continuous data describing the land
surface captured by the following methods: GNSS RTN, UAV, LIDAR, it was found that the
data in the continuous (raster) form modelled the land surface more accurately. Discrete
data in the form of a point cloud captured by the LIDAR and UAV methods, especially
for areas covered with dense vegetation, had very low accuracy—even a few metres in
extreme cases. However, these errors were eliminated at the stage of processing them into
a continuous form. The mean error for the DEM from the UAV survey was 0.17 m, and for
LIDAR data it was 0.39 m. This is very important information, because all hydrological
analyses are performed on the terrain model converted to a raster form. As the analyses
demonstrated, the low accuracy of the height determination for discrete data (single points
from the cloud) did not directly translate into the accuracy of the model itself. When
interpolating the area at the stage of creating the DEM, outliers, which are much more
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difficult to identify and reject during the discrete analysis (single points), were rejected. As
a result, the error for continuous data (raster) was smaller. It can therefore be concluded that
the accuracy of determining the value of the first of the topographic parameters important
for the selection of the location of small hydropower plants, which is the height, determined
based on the DEM in the raster form from UAV and LIDAR, is sufficient.

Comparing the cross-sections made on the surface model created from the LIDAR and
UAV data (after removing the noise in the form of land cover surrounding the watercourse)
with the cross-sections made on the surface model created based on the measurement
data representing the actual terrain relief measured by the GNSS RTN method, it can be
concluded that the general cross-section of the riverbed was maintained for all measurement
methods. A more extensive cross-sectional analysis demonstrated, however, that it was
easier to remove noise (bushes) from the DSM constructed using LIDAR data, compared to
UAV data. High sensitivity to noise can be noticed in the cross-sections made based on the
DEM constructed using the UAV data. The course of bushes on LIDAR cross-sections is
less varied, which makes it easier to remove. The high susceptibility of UAV data to dense
vegetation makes the slopes generated on the DEM from UAV unreliable. The unremoved
noise in the form of the land cover from the DEM distorts the image of the slopes in the
UAV cross-sections. This problem only occurs when cross-sections are generated for an area
densely covered with high vegetation, i.e., trees. For the remaining areas, this problem does
not occur. It can therefore be concluded that the accuracy of determining the value of the
second of the topographic parameters for the selection of the location for the construction
of small hydropower plants, which is the slope of the land, determined based on the DEM
in the raster form from UAV, is not always sufficient (areas covered with dense vegetation).

The highly detailed and noise-sensitive DEM constructed using UAV data affects the
values of hydrological parameters necessary to find the location for the construction of
small hydropower plants. The values of hydrological parameters, i.e., the direction of water
flow in a given area or the value of water flow, are generated based on the slope of the land,
and if its values are not entirely reliable for the entire area, the hydrological parameters are
not correctly determined either. In the case of the UAV data, hydrological modelling did
not produce as good results as for the LIDAR data.

Another disadvantage of the high-resolution DEM from UAVs is that they have a
limited range. Data to create the DEM from UAVs are obtained during photogrammetric
passes. The UAV pass should be carried out in accordance with EU regulations [87,88].
These regulations limit the flight range beyond the visual range of the UAV’s operator,
the so-called beyond visual line of sight (BVLOS), up to 2 km. For flights with a range
exceeding 2 km, it is necessary to obtain appropriate approval from the Civil Aviation
Authority of the country concerned. Therefore, in order to capture large-scale data, several
stations will be needed to perform surveys. This results in longer measuring times and
higher costs. During the hydrological analyses, the studied area has a very significant
influence on the values of the calculated hydrological coefficients. With a larger area for
analysis, it is possible to generate a larger catchment area from which the parameters
are calculated.

LIDAR data with average spatial (metre) accuracy are publicly available in most
countries. Therefore, the area that can be analysed is not limited. In addition, the cost
of data acquisition from LIDAR, both in Poland and in other countries, amounts to zero,
because the data are free. Data from UAVs are still very expensive due to the innovations
they provide in the field of surveying.

The analyses carried out for the purpose of this study demonstrated that the data
from UAVs, despite the very high field accuracy (centimetre), are not always suitable
for generating topographic and hydrological parameters relevant for the selection of the
location for the construction of small hydroelectric power plants. Data from UAVs will work
well in less forested areas. In areas covered with dense and particularly high vegetation, the
LIDAR data, despite a much lower field resolution, will be better. This is a very important
conclusion, because based on hydrological parameters, especially the value of the flow rate,
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the energy potential of a given water investment is determined with the use of GIS tools. If
these parameters are not fully determined correctly, the estimate of the energy potential
will be less reliable.

5. Conclusions

GIS spatial analyses are widely used in decision-making processes. However, in order
to make the right decision, it is necessary to select the source of data for the analysis
correctly in terms of functionality and economy. Based on the conducted research, it can
be concluded that modern surveying methods are useful for spatial data acquisition for
the purpose of selecting the location for the construction of small hydropower plants. The
surveying data acquired by the photogrammetric method using LIDAR are particularly
useful. As the analyses show, although the LIDAR data have a much lower resolution than
the UAV data, they are sufficient for this purpose. The advantage of the LIDAR method is
also the availability of data for larger areas, and thus the possibility of using a much larger
area of the catchment area for analysis. This is especially important when calculating the
flow accumulation. The UAV data, despite their high accuracy, are not always suitable for
the analysis of the morphological features of the terrain, such as slopes. As a result, the
flow accumulation maps that are generated using the slope information obtained from
the UAVs do not always reflect the actual water network present in the field. This is due
to the problems with filtering out the land cover from the DEM created from the data
obtained from the UAV. On the other hand, the exact data we acquire as a result of using
this surveying method can be used at the investment design stage. This method, however,
requires planning and execution of a pass for each object separately, while LIDAR data are
often captured systemically for entire regions and even countries.

The presented research confirmed the validity of using LIDAR data with metre accu-
racy to search for locations for the construction of hydropower plants, while concluding
that it is not justified to use high-resolution (centimetre accuracy) UAV data for this purpose
if LIDAR data are publicly available.

The presented research covers only topographic and hydrological criteria—among the
most important criteria taken into account when selecting locations for the construction of
small hydropower plants. Obviously, the decision to choose a site for such an investment is
also influenced by other criteria (Table 1), the catalogue of which may differ depending on
the country or region. Cooperation between specialists in various fields in a given country
and the use of data from various sources for multi-criteria GIS analyses are key to the
correct selection of the location for the construction of small hydropower plants.
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Appendix A

Table A1. Comparison of point heights measured in the field using the RTN technique with point
heights read from the DEM and DSM created from the LIDAR and UAV point clouds; source:
own elaboration.

Point No. HRTNi

[m]
HDEMUAVi

[m]
dHRTN−DEMi

[m]
HDEMLIDARi

[m]
dHRTN−DEMi

[m]
HDSMUAVi

[m]
HDSMLIDARi

[m]
dHDSMi

[m]
1 2 3 4 5 6 7 8 9

1 254.55 254.37 0.17 254.35 0.19 254.37 254.53 −0.16

10 253.10 252.86 0.24 254.30 −1.20 252.86 254.66 −1.80

100 252.08 251.93 0.15 252.17 −0.09 251.93 252.19 −0.26

101 252.16 251.83 0.33 251.46 0.70 251.83 251.63 0.20

102 252.15 251.84 0.31 251.48 0.67 251.84 251.60 0.24

103 252.21 252.07 0.14 252.06 0.14 252.07 252.07 0.00

104 251.31 251.31 0.00 251.46 −0.15 251.68 251.60 0.08

105 251.63 251.47 0.16 251.62 0.01 251.47 251.64 −0.17

106 251.70 251.54 0.17 251.66 0.04 251.54 251.78 −0.24

107 251.32 251.37 −0.05 251.28 0.04 251.37 251.51 −0.14

108 251.82 251.75 0.08 251.76 0.07 251.75 260.77 −9.02

109 251.39 251.41 −0.02 251.45 −0.06 251.41 251.54 −0.14

11 254.60 254.51 0.09 254.77 −0.17 254.51 260.84 −6.33

110 251.33 251.65 −0.31 251.28 0.05 252.21 258.29 −6.08

111 251.37 251.37 0.00 251.41 −0.03 251.37 251.43 −0.05

112 251.70 251.73 −0.03 251.80 −0.09 266.09 259.51 6.58

113 252.07 252.01 0.06 251.88 0.20 252.01 253.80 −1.80

114 251.90 251.85 0.05 251.95 −0.06 251.85 255.48 −3.63

115 251.92 252.06 −0.14 252.00 −0.08 252.06 253.34 −1.29

116 252.05 252.14 −0.08 252.11 −0.05 261.34 258.20 3.14

117 252.96 252.93 0.03 252.92 0.04 252.93 257.10 −4.17

118 253.19 253.60 −0.41 253.27 −0.08 262.12 259.37 2.75

119 252.90 253.27 −0.38 252.89 0.00 253.27 253.55 −0.27

12 253.02 252.84 0.18 254.37 −1.35 252.84 255.99 −3.16

120 253.66 254.41 −0.75 253.67 −0.01 254.41 254.02 0.38

121 253.49 254.15 −0.66 253.49 0.00 254.15 254.35 −0.20

122 252.77 252.76 0.01 252.78 −0.01 252.86 256.19 −3.32

123 252.69 252.75 −0.05 252.59 0.10 261.59 260.42 1.16

124 252.89 252.96 −0.08 252.83 0.06 252.96 255.42 −2.46

125 253.25 253.23 0.02 253.35 −0.09 253.23 253.39 −0.16

126 253.29 253.21 0.09 253.45 −0.16 253.21 253.59 −0.38

127 253.55 253.62 −0.07 253.62 −0.06 253.62 254.65 −1.03

128 253.63 253.59 0.03 253.67 −0.05 253.59 254.50 −0.91

129 253.79 253.73 0.06 253.84 −0.04 253.73 256.31 −2.58

13 254.65 254.59 0.06 254.60 0.04 254.59 254.67 −0.08

130 253.69 253.67 0.02 253.79 −0.10 253.67 254.55 −0.88
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Table A1. Cont.

Point No. HRTNi

[m]
HDEMUAVi

[m]
dHRTN−DEMi

[m]
HDEMLIDARi

[m]
dHRTN−DEMi

[m]
HDSMUAVi

[m]
HDSMLIDARi

[m]
dHDSMi

[m]
131 253.48 253.49 −0.01 253.42 0.06 253.49 253.77 −0.28

132 253.25 253.12 0.13 253.28 −0.03 253.12 253.36 −0.23

133 253.56 253.49 0.06 253.63 −0.08 253.49 253.76 −0.27

134 253.62 253.53 0.08 253.73 −0.12 253.53 253.76 −0.23

135 252.92 252.80 0.13 253.29 −0.37 252.80 253.32 −0.53

136 253.16 253.25 −0.09 253.34 −0.18 253.25 256.17 −2.91

137 253.27 253.38 −0.11 253.43 −0.15 253.38 253.91 −0.53

138 253.65 253.66 −0.01 254.36 −0.71 253.66 254.54 −0.88

139 253.75 253.82 −0.08 254.33 −0.59 253.82 255.23 −1.41

14 253.08 252.92 0.16 254.32 −1.24 252.92 254.93 −2.01

140 253.96 253.88 0.07 254.35 −0.39 253.88 256.00 −2.11

141 253.92 253.81 0.10 254.34 −0.42 253.81 255.75 −1.94

142 253.72 253.61 0.11 254.30 −0.58 253.61 254.34 −0.73

15 253.27 252.99 0.28 254.33 −1.07 252.99 254.34 −1.35

16 253.84 253.58 0.26 254.39 −0.55 253.58 257.18 −3.60

17 252.93 252.69 0.24 254.35 −1.42 252.69 255.80 −3.12

18 253.04 253.03 0.01 254.34 −1.30 253.03 256.19 −3.16

19 253.97 253.87 0.10 254.36 −0.39 253.87 256.81 −2.94

2 253.30 253.03 0.27 254.28 −0.98 253.03 255.62 −2.59

20 254.72 254.55 0.17 254.67 0.04 254.55 254.71 −0.16

21 254.72 254.48 0.24 254.70 0.02 254.48 255.94 −1.45

22 252.79 252.72 0.08 253.36 −0.57 252.72 254.00 −1.28

23 253.84 253.63 0.21 253.77 0.06 253.63 257.98 −4.35

24 254.36 254.24 0.12 254.27 0.09 254.24 254.50 −0.26

25 254.30 254.12 0.17 254.32 −0.02 254.12 254.34 −0.22

26 253.57 253.34 0.23 253.67 −0.09 253.34 253.79 −0.45

27 252.81 252.74 0.07 253.28 −0.47 252.74 255.22 −2.48

28 253.70 253.51 0.19 253.60 0.10 253.51 253.65 −0.14

29 254.31 254.11 0.19 254.50 −0.19 254.11 254.56 −0.45

3 254.35 254.25 0.10 254.36 −0.01 254.25 257.39 −3.14

30 253.13 252.92 0.21 253.29 −0.16 252.92 256.91 −3.99

31 252.82 252.64 0.18 253.26 −0.44 252.64 253.38 −0.74

32 254.71 254.64 0.08 254.81 −0.10 254.64 257.33 −2.69

33 254.32 254.16 0.16 254.22 0.10 254.16 254.25 −0.09

34 252.93 252.66 0.27 253.33 −0.40 252.66 253.42 −0.76

35 254.05 253.92 0.13 254.07 −0.02 253.92 258.56 −4.64

36 253.91 253.78 0.12 253.62 0.28 253.78 255.87 −2.09

37 252.79 252.67 0.12 253.28 −0.49 252.67 254.31 −1.63

38 253.75 253.56 0.18 254.00 −0.25 253.56 254.45 −0.89

39 252.88 253.04 −0.16 253.46 −0.58 253.04 253.70 −0.66
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Table A1. Cont.

Point No. HRTNi

[m]
HDEMUAVi

[m]
dHRTN−DEMi

[m]
HDEMLIDARi

[m]
dHRTN−DEMi

[m]
HDSMUAVi

[m]
HDSMLIDARi

[m]
dHDSMi

[m]
4 253.15 252.86 0.29 254.30 −1.15 252.86 258.28 −5.42

40 253.72 253.62 0.10 253.89 −0.17 253.62 256.09 −2.47

41 254.43 254.22 0.21 254.40 0.03 254.22 254.46 −0.24

42 253.77 253.56 0.21 253.60 0.17 253.56 253.85 −0.29

43 252.69 252.84 −0.15 253.35 −0.66 252.84 253.38 −0.53

44 254.16 253.88 0.28 254.11 0.05 253.88 254.13 −0.25

45 254.34 254.15 0.19 254.33 0.01 254.15 254.43 −0.28

46 252.80 252.61 0.19 252.64 0.15 252.61 252.67 −0.06

47 253.64 253.39 0.25 253.72 −0.07 253.39 253.75 −0.36

48 254.17 254.03 0.14 253.99 0.18 254.03 257.90 −3.86

49 252.91 252.75 0.16 252.91 0.00 252.75 254.79 −2.05

5 254.09 253.87 0.22 254.34 −0.25 253.87 260.84 −6.97

50 253.89 253.62 0.27 253.85 0.04 253.62 253.90 −0.28

51 254.18 253.96 0.22 253.47 0.71 253.96 254.12 −0.16

52 253.09 252.86 0.23 252.88 0.21 252.86 253.22 −0.37

53 253.02 252.73 0.30 253.06 −0.04 252.73 253.12 −0.39

54 252.74 252.71 0.03 252.80 −0.06 252.71 252.82 −0.11

55 253.55 253.36 0.19 253.54 0.01 253.36 253.73 −0.37

56 252.83 252.72 0.11 252.78 0.05 252.72 253.28 −0.55

57 252.76 252.63 0.13 252.81 −0.05 252.63 252.94 −0.31

58 253.61 253.35 0.26 253.62 −0.01 253.35 256.66 −3.31

59 254.27 254.16 0.11 254.26 0.01 254.16 255.25 −1.08

6 253.14 253.02 0.12 254.36 −1.22 253.02 261.32 −8.30

60 252.84 252.67 0.17 252.75 0.08 252.67 252.85 −0.18

61 253.54 253.47 0.07 253.61 −0.07 253.47 253.72 −0.25

62 252.97 252.95 0.02 253.21 −0.25 252.95 253.36 −0.41

63 253.77 253.62 0.15 253.68 0.10 253.62 254.39 −0.77

64 252.81 252.78 0.03 252.96 −0.15 252.78 253.06 −0.28

65 253.70 253.59 0.11 253.69 0.01 253.59 253.76 −0.17

66 252.72 252.73 −0.01 252.93 −0.20 252.73 252.97 −0.24

67 252.69 253.04 −0.35 252.82 −0.13 253.04 252.94 0.10

68 252.84 252.74 0.09 252.81 0.02 252.74 252.94 −0.20

69 253.09 252.91 0.18 253.08 0.01 252.91 253.08 −0.17

7 254.24 254.09 0.16 254.32 −0.08 254.09 255.47 −1.38

70 252.75 252.80 −0.05 252.82 −0.07 252.80 252.87 −0.07

71 252.89 252.80 0.09 252.86 0.03 252.80 255.35 −2.55

72 252.52 252.45 0.07 252.49 0.04 252.45 252.75 −0.30

73 252.65 252.48 0.17 252.43 0.22 252.48 252.75 −0.27

74 252.66 252.52 0.14 252.25 0.41 252.52 252.61 −0.09

75 252.74 252.55 0.19 252.62 0.12 252.55 252.76 −0.21
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Table A1. Cont.

Point No. HRTNi

[m]
HDEMUAVi

[m]
dHRTN−DEMi

[m]
HDEMLIDARi

[m]
dHRTN−DEMi

[m]
HDSMUAVi

[m]
HDSMLIDARi

[m]
dHDSMi

[m]
76 252.40 252.35 0.04 252.14 0.25 252.35 255.56 −3.20

77 252.72 252.49 0.23 252.66 0.07 252.49 253.72 −1.23

78 252.56 252.64 −0.08 252.13 0.43 252.64 253.93 −1.30

79 252.43 252.31 0.12 252.02 0.41 252.31 255.57 −3.27

8 253.04 252.87 0.18 254.30 −1.26 252.87 259.57 −6.71

80 253.03 252.82 0.21 253.00 0.02 252.82 257.19 −4.37

81 252.42 252.57 −0.16 252.35 0.07 252.57 254.60 −2.03

82 252.88 252.76 0.12 252.82 0.06 252.76 256.61 −3.85

83 252.31 252.55 −0.24 252.32 −0.01 252.55 253.10 −0.56

84 251.84 251.90 −0.06 251.92 −0.09 251.90 251.97 −0.07

85 251.74 251.90 −0.17 251.74 −0.01 251.90 253.57 −1.67

86 252.30 252.13 0.16 252.32 −0.03 252.13 252.85 −0.72

87 251.79 251.76 0.03 251.78 0.01 251.76 253.75 −1.98

88 252.71 252.57 0.14 252.64 0.07 252.57 254.97 −2.40

89 253.18 253.06 0.12 253.15 0.03 253.06 253.24 −0.18

9 254.31 254.12 0.19 254.37 −0.06 254.12 254.43 −0.31

90 251.49 251.35 0.14 251.72 −0.24 251.35 252.23 −0.88

91 253.34 253.20 0.14 253.19 0.15 253.20 258.76 −5.56

92 251.52 251.53 −0.01 251.75 −0.23 251.53 252.22 −0.69

93 252.55 252.35 0.20 252.52 0.03 252.35 258.35 −6.00

94 252.57 252.38 0.19 252.63 −0.06 252.38 257.64 −5.25

95 251.38 251.42 −0.04 251.47 −0.08 251.42 252.02 −0.59

96 251.41 251.24 0.17 251.55 −0.14 251.24 251.97 −0.73

97 252.54 252.41 0.13 252.43 0.11 252.41 252.56 −0.14

98 251.41 251.61 −0.20 251.46 −0.05 251.61 251.75 −0.14

99 252.52 252.31 0.21 252.56 −0.04 252.31 252.56 −0.25

f1 253.90 253.90 0.00 254.33 −0.43 253.90 255.04 −1.14

f10 252.91 252.93 −0.02 253.17 −0.26 252.93 253.24 −0.31

f10p 252.96 252.92 0.03 253.16 −0.21 252.92 253.23 −0.31

f11 252.22 252.21 0.00 252.42 −0.20 252.21 252.42 −0.21

f11p 252.23 252.21 0.01 252.42 −0.19 252.21 252.42 −0.21

f12 252.07 252.19 −0.12 251.68 0.39 252.19 252.05 0.14

f13 252.09 252.09 0.00 251.39 0.70 252.09 251.98 0.11

f14 252.94 252.93 0.01 253.10 −0.16 252.93 253.55 −0.62

f14p 252.95 252.93 0.01 253.10 −0.16 252.93 253.55 −0.61

f15 253.40 253.36 0.03 253.41 −0.02 253.36 253.60 −0.24

f15p 253.35 253.36 −0.01 253.41 −0.06 253.36 253.60 −0.24

f1p 253.85 253.90 −0.05 254.33 −0.48 253.90 255.03 −1.13

f2 253.79 253.87 −0.08 254.35 −0.55 253.87 254.40 −0.53

f2p 253.76 253.87 −0.11 254.35 −0.59 253.87 254.40 −0.53
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Table A1. Cont.

Point No. HRTNi

[m]
HDEMUAVi

[m]
dHRTN−DEMi

[m]
HDEMLIDARi

[m]
dHRTN−DEMi

[m]
HDSMUAVi

[m]
HDSMLIDARi

[m]
dHDSMi

[m]
f3 253.22 253.20 0.02 253.41 −0.19 253.20 253.46 −0.26

f3p 253.21 253.20 0.01 253.41 −0.20 253.20 253.46 −0.26

f4 255.76 255.80 −0.04 255.95 −0.20 255.80 255.96 −0.16

f4p 255.78 255.80 −0.02 255.96 −0.18 255.80 255.96 −0.16

f5 254.91 254.94 −0.03 255.11 −0.20 254.94 255.15 −0.21

f5p 254.92 254.94 −0.02 255.11 −0.19 254.94 255.15 −0.21

f6 253.98 253.96 0.02 253.48 0.50 253.96 254.12 −0.15

f6p 253.96 253.96 0.00 253.47 0.49 253.96 254.11 −0.15

f7 253.24 253.24 0.00 253.49 −0.26 253.24 253.54 −0.31

f7p 253.23 253.23 −0.01 253.49 −0.26 253.23 253.54 −0.31

f8 252.67 252.69 −0.02 252.93 −0.26 252.69 252.96 −0.27

f8p 252.66 252.69 −0.03 252.93 −0.27 252.69 252.96 −0.27

f9 252.88 252.84 0.04 252.95 −0.07 252.84 253.22 −0.37

f9p 252.90 252.84 0.06 252.95 −0.05 252.84 253.22 −0.37

MINdH [m] 0.00 0.00 0.00
MAXdH [m] 0.75 1.42 9.02

MEANdH [m] 0.13 0.24 1.40
σdH [m] 0.17 0.39 2.28

σ(σdH) [m] 0.06 0.13 0.75

Appendix B

Table A2. Comparison of point heights read automatically from the DEM rasters created from field
surveys using the GNSS RTN technique; source: own elaboration.

HDEMRTNi
[m]

dHRTN−DEMi
[m]

HDEMRTNi
[m]

dHRTN−DEMi
[m]

HDEMRTNi
[m]

dHRTN−DEMi
[m]

HDEMRTNi
[m]

dHRTN−DEMi
[m]

Point No HRTNi
[m] TRIANGULATION INVERSE DISTANCE NATURAL

NEIGHBOUR
NEAREST

NEIGHBOUR
1 2 3 4 5 6 7 8 9 10

1 254.55 254.46 0.09 254.43 0.12 254.46 0.09 254.54 0.01

10 253.10 253.27 −0.16 253.26 −0.16 253.26 −0.16 253.11 −0.01

100 252.08 252.07 0.01 252.07 0.01 252.06 0.02 252.08 0.00

101 252.16 252.13 0.03 252.14 0.01 252.13 0.02 252.16 0.00

102 252.15 252.12 0.03 252.14 0.01 252.12 0.03 252.15 0.00

103 252.21 252.18 0.02 252.19 0.02 252.18 0.03 252.21 0.00

104 251.31 251.41 −0.10 251.38 −0.07 251.44 −0.13 251.31 0.00

105 251.63 251.65 −0.02 251.65 −0.02 251.67 −0.04 251.63 0.00

106 251.70 251.69 0.01 251.70 0.00 251.70 0.01 251.70 0.00

107 251.32 251.36 −0.04 251.34 −0.02 251.37 −0.05 251.32 0.00

108 251.82 251.84 −0.01 251.83 −0.01 251.85 −0.02 251.82 0.00

109 251.39 251.40 −0.01 251.40 −0.01 251.40 −0.02 251.39 0.00

11 254.60 254.51 0.09 254.47 0.13 254.51 0.09 254.60 0.00

110 251.33 251.36 −0.02 251.35 −0.02 251.36 −0.02 251.33 0.00

111 251.37 251.38 −0.01 251.39 −0.02 251.39 −0.01 251.37 0.00

112 251.70 251.75 −0.04 251.72 −0.02 251.77 −0.07 251.70 0.00

113 252.07 0.00 252.07 252.07 0.00 0.00 252.07 252.07 0.00

114 251.90 251.96 −0.06 251.90 0.00 251.98 −0.09 251.90 0.00

115 251.92 251.93 −0.01 251.92 0.00 251.92 −0.01 251.92 0.00
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[m]

Point No HRTNi
[m] TRIANGULATION INVERSE DISTANCE NATURAL

NEIGHBOUR
NEAREST

NEIGHBOUR
116 252.05 252.06 −0.01 252.05 0.00 252.07 −0.01 252.05 0.00

117 252.96 252.94 0.02 252.96 0.00 252.94 0.02 252.96 0.00

118 253.19 253.19 0.00 253.18 0.00 253.19 0.00 253.19 0.00

119 252.90 252.94 −0.05 252.92 −0.02 252.95 −0.05 252.90 0.00

12 253.02 253.16 −0.15 253.15 −0.14 253.18 −0.17 253.02 0.00

120 253.66 253.56 0.10 253.63 0.03 253.56 0.10 253.66 0.00

121 253.49 0.00 253.49 253.49 0.00 0.00 253.49 253.49 0.00

122 252.77 252.79 −0.02 252.77 0.00 252.79 −0.02 252.77 0.00

123 252.69 252.72 −0.02 252.70 −0.01 252.72 −0.03 252.69 0.00

124 252.89 252.90 −0.01 252.89 0.00 252.90 −0.02 252.89 0.00

125 253.25 253.25 0.00 253.25 0.00 253.25 0.00 253.25 0.00

126 253.29 253.30 −0.01 253.30 0.00 253.30 −0.01 253.29 0.00

127 253.55 253.54 0.01 253.55 0.00 253.54 0.02 253.55 0.00

128 253.63 253.63 0.00 253.63 0.00 253.63 0.00 253.63 0.00

129 253.79 253.77 0.02 253.78 0.01 253.77 0.02 253.79 0.00

13 254.65 254.52 0.12 254.53 0.11 254.51 0.13 254.64 0.00

130 253.69 253.68 0.01 253.68 0.01 253.68 0.01 253.69 0.00

131 253.48 253.46 0.02 253.48 0.00 253.45 0.03 253.48 0.00

132 253.25 253.25 0.01 253.27 −0.02 253.25 0.01 253.25 0.00

133 253.56 253.53 0.03 253.54 0.02 253.53 0.03 253.56 0.00

134 253.62 253.56 0.05 253.57 0.05 253.55 0.06 253.62 0.00

135 252.92 253.01 −0.09 253.00 −0.07 253.03 −0.11 252.93 −0.01

136 253.16 253.19 −0.03 253.19 −0.02 253.19 −0.03 253.16 0.00

137 253.27 253.31 −0.04 253.29 −0.02 253.31 −0.03 253.27 0.00

138 253.65 253.60 0.05 253.63 0.01 253.59 0.05 253.65 0.00

139 253.75 253.74 0.00 253.74 0.00 253.75 0.00 253.74 0.00

14 253.08 253.22 −0.14 253.18 −0.10 253.24 −0.16 253.08 0.00

140 253.96 253.94 0.01 253.95 0.01 253.93 0.02 253.96 0.00

141 253.92 253.91 0.00 253.91 0.01 253.91 0.01 253.91 0.00

142 253.72 253.70 0.02 253.71 0.01 253.69 0.03 253.72 0.00

15 253.27 253.37 −0.10 253.31 −0.04 253.38 −0.11 253.27 0.00

16 253.84 253.81 0.03 253.75 0.09 253.80 0.04 253.82 0.02

17 252.93 253.08 −0.15 253.09 −0.16 253.11 −0.18 252.94 −0.01

18 253.04 253.16 −0.13 253.15 −0.11 253.21 −0.18 253.04 0.00

19 253.97 253.94 0.04 253.87 0.11 253.90 0.08 253.97 0.01

2 253.30 253.55 −0.25 253.52 −0.22 253.57 −0.27 253.34 −0.04

20 254.72 254.71 0.01 254.66 0.05 254.71 0.01 254.71 0.00

21 254.72 254.70 0.02 254.68 0.05 254.70 0.02 254.72 0.00

22 252.79 252.96 −0.17 252.96 −0.16 253.03 −0.24 252.81 −0.02

23 253.84 253.75 0.09 253.72 0.12 253.73 0.11 253.81 0.02

24 254.36 254.32 0.04 254.31 0.04 254.29 0.06 254.36 0.00

25 254.30 254.32 −0.02 254.28 0.02 254.32 −0.02 254.30 0.00

26 253.57 253.58 −0.01 253.57 0.01 253.59 −0.01 253.59 −0.02

27 252.81 252.93 −0.12 252.99 −0.18 253.01 −0.20 252.87 −0.06

28 253.70 253.56 0.14 253.57 0.13 253.54 0.15 253.67 0.03

29 254.31 254.26 0.04 254.24 0.07 254.25 0.05 254.30 0.00

3 254.35 254.18 0.17 254.19 0.16 254.16 0.19 254.31 0.04

30 253.13 253.19 −0.06 253.18 −0.06 253.21 −0.08 253.13 0.00

31 252.82 252.92 −0.10 252.89 −0.07 252.96 −0.14 252.82 0.00
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HDEMRTNi
[m]

dHRTN−DEMi
[m]

Point No HRTNi
[m] TRIANGULATION INVERSE DISTANCE NATURAL

NEIGHBOUR
NEAREST

NEIGHBOUR
32 254.71 254.64 0.07 254.63 0.08 254.62 0.10 254.71 0.00

33 254.32 254.28 0.04 254.25 0.07 254.26 0.06 254.32 0.00

34 252.93 253.09 −0.16 253.01 −0.07 253.10 −0.16 252.93 0.00

35 254.05 254.02 0.03 253.98 0.07 254.01 0.04 254.04 0.00

36 253.91 253.74 0.17 253.71 0.20 253.61 0.30 253.85 0.06

37 252.79 252.98 −0.18 253.02 −0.23 253.00 −0.21 252.90 −0.11

38 253.75 253.68 0.06 253.66 0.08 253.68 0.06 253.72 0.02

39 252.88 252.96 −0.09 252.97 −0.10 252.98 −0.10 252.88 0.00

4 253.15 253.28 −0.13 253.35 −0.20 253.35 −0.20 253.18 −0.03

40 253.72 253.77 −0.05 253.71 0.01 253.78 −0.06 253.72 0.00

41 254.43 0.00 254.43 254.39 0.03 0.00 254.43 254.43 0.00

42 253.77 253.66 0.11 253.65 0.12 253.57 0.20 253.73 0.03

43 252.69 252.82 −0.13 252.85 −0.15 252.84 −0.15 252.70 −0.01

44 254.16 254.15 0.01 254.15 0.02 254.16 0.00 254.16 0.00

45 254.34 254.22 0.12 254.30 0.04 254.25 0.09 254.34 0.00

46 252.80 252.84 −0.04 252.87 −0.07 252.85 −0.05 252.80 0.00

47 253.64 253.60 0.05 253.62 0.03 253.59 0.05 253.64 0.00

48 254.17 254.09 0.08 254.10 0.07 254.08 0.09 254.17 0.00

49 252.91 252.99 −0.08 252.99 −0.08 252.99 −0.08 252.91 0.00

5 254.09 253.91 0.18 254.00 0.09 253.90 0.19 254.06 0.03

50 253.89 253.84 0.04 253.89 0.00 253.85 0.03 253.89 0.00

51 254.18 253.87 0.31 253.98 0.20 253.86 0.32 254.05 0.13

52 253.09 253.15 −0.06 253.30 −0.22 253.16 −0.07 253.14 −0.06

53 253.02 253.05 −0.02 253.07 −0.05 253.05 −0.03 253.02 0.00

54 252.74 252.77 −0.03 252.77 −0.03 252.78 −0.04 252.74 0.00

55 253.55 253.56 −0.01 253.54 0.01 253.56 −0.02 253.54 0.00

56 252.83 252.85 −0.02 252.84 −0.01 252.84 −0.01 252.83 0.00

57 252.76 252.79 −0.04 252.78 −0.02 252.79 −0.03 252.76 0.00

58 253.61 253.60 0.01 253.60 0.01 253.60 0.01 253.61 0.00

59 254.27 254.13 0.14 254.05 0.22 254.10 0.17 254.26 0.01

6 253.14 253.22 −0.08 253.30 −0.16 253.24 −0.10 253.15 −0.01

60 252.84 252.93 −0.10 252.98 −0.15 252.94 −0.11 252.84 0.00

61 253.54 253.46 0.08 253.42 0.12 253.46 0.07 253.45 0.09

62 252.97 253.04 −0.07 253.08 −0.12 253.06 −0.09 252.99 −0.02

63 253.77 253.69 0.09 253.70 0.08 253.69 0.09 253.77 0.00

64 252.81 252.84 −0.03 252.84 −0.03 252.84 −0.04 252.80 0.00

65 253.70 253.53 0.17 253.50 0.20 253.49 0.21 253.69 0.01

66 252.72 252.79 −0.07 252.78 −0.06 252.79 −0.07 252.72 0.00

67 252.69 252.73 −0.03 252.72 −0.03 252.72 −0.03 252.69 0.00

68 252.84 252.82 0.02 252.83 0.01 252.80 0.03 252.84 0.00

69 253.09 253.08 0.01 253.08 0.01 253.08 0.01 253.09 0.00

7 254.24 254.14 0.10 254.12 0.12 254.14 0.11 254.23 0.01

70 252.75 252.75 0.00 252.75 0.00 252.75 −0.01 252.75 0.00

71 252.89 252.89 0.00 252.88 0.01 252.89 0.00 252.89 0.00

72 252.52 252.51 0.02 252.51 0.01 252.50 0.03 252.52 0.00

73 252.65 252.59 0.05 252.61 0.03 252.57 0.07 252.65 0.00

74 252.66 252.66 0.00 252.69 −0.03 252.65 0.01 252.66 0.00

75 252.74 252.73 0.01 252.71 0.03 252.73 0.01 252.74 0.00
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NEIGHBOUR
76 252.40 252.45 −0.05 252.43 −0.04 252.46 −0.07 252.40 0.00

77 252.72 252.71 0.01 252.71 0.01 252.71 0.01 252.72 0.00

78 252.56 252.56 0.00 252.56 0.00 252.55 0.01 252.56 0.00

79 252.43 252.45 −0.02 252.44 −0.01 252.45 −0.02 252.43 0.00

8 253.04 253.17 −0.12 253.20 −0.16 253.18 −0.14 253.05 −0.01

80 253.03 252.97 0.06 252.97 0.06 252.96 0.07 253.03 0.00

81 252.42 252.44 −0.03 252.44 −0.02 252.45 −0.03 252.42 0.00

82 252.88 252.73 0.15 252.81 0.08 252.74 0.14 252.88 0.00

83 252.31 252.35 −0.04 252.38 −0.07 252.39 −0.08 252.33 −0.02

84 251.84 251.88 −0.04 251.87 −0.03 251.90 −0.07 251.84 0.00

85 251.74 251.75 −0.02 251.76 −0.02 251.76 −0.02 251.74 0.00

86 252.30 252.29 0.00 252.29 0.00 252.31 −0.02 252.29 0.00

87 251.79 251.82 −0.02 251.82 −0.03 251.82 −0.03 251.79 0.00

88 252.71 252.64 0.07 252.69 0.02 252.66 0.06 252.71 0.00

89 253.18 253.04 0.14 253.02 0.16 253.00 0.18 253.14 0.04

9 254.31 254.29 0.03 254.21 0.10 254.26 0.06 254.31 0.01

90 251.49 251.60 −0.11 251.62 −0.13 251.65 −0.16 251.49 0.00

91 253.34 253.21 0.13 253.23 0.11 253.15 0.18 253.34 0.00

92 251.52 251.60 −0.08 251.60 −0.08 251.63 −0.11 251.52 0.00

93 252.55 252.52 0.04 252.52 0.04 252.51 0.04 252.55 0.00

94 252.57 252.50 0.06 252.51 0.05 252.50 0.07 252.57 0.00

95 251.38 251.43 −0.05 251.42 −0.04 251.43 −0.05 251.38 0.00

96 251.41 251.46 −0.05 251.45 −0.04 251.47 −0.06 251.41 0.00

97 252.54 252.51 0.03 252.51 0.04 252.50 0.05 252.54 0.00

98 251.41 251.43 −0.03 251.43 −0.03 251.43 −0.03 251.41 0.00

99 252.52 0.00 252.52 252.51 0.01 0.00 252.52 252.52 0.00

f1 253.90 253.92 −0.03 253.87 0.02 253.96 −0.06 253.87 0.03

f10 252.91 252.92 −0.01 252.99 −0.08 252.91 0.00 253.05 −0.14

f10p 252.96 252.90 0.05 252.99 −0.03 252.90 0.06 253.05 −0.09

f11 252.22 252.21 0.00 252.21 0.00 252.21 0.01 252.22 −0.01

f11p 252.23 252.21 0.02 252.21 0.01 252.21 0.02 252.22 0.00

f12 252.07 252.06 0.01 252.07 0.00 252.07 0.01 252.07 0.00

f13 252.09 252.06 0.02 252.08 0.00 252.08 0.01 252.09 0.00

f14 252.94 252.94 0.00 252.95 0.00 252.95 0.00 252.94 0.00

f14p 252.95 252.94 0.00 252.95 0.00 252.95 0.00 252.94 0.00

f15 253.40 253.39 0.01 253.38 0.02 253.37 0.03 253.37 0.02

f15p 253.35 253.39 −0.04 253.38 −0.02 253.37 −0.01 253.37 −0.02

f1p 253.85 253.92 −0.08 253.87 −0.03 253.96 −0.11 253.87 −0.02

f2 253.79 253.79 0.00 253.77 0.02 253.76 0.03 253.77 0.02

f2p 253.76 253.79 −0.04 253.77 −0.02 253.76 0.00 253.77 −0.02

f3 253.22 253.21 0.01 253.22 0.00 253.20 0.02 253.22 0.00

f3p 253.21 253.21 0.01 253.22 −0.01 253.20 0.01 253.22 −0.01

f4 255.76 0.00 255.76 255.75 0.00 0.00 255.76 255.76 −0.01

f4p 255.78 0.00 255.78 255.75 0.02 0.00 255.78 255.76 0.02

f5 254.91 254.91 0.00 254.90 0.01 254.90 0.00 254.91 −0.01

f5p 254.92 254.91 0.01 254.90 0.02 254.90 0.01 254.91 0.01

f6 253.98 253.85 0.14 253.98 0.00 253.84 0.14 254.04 −0.05

f6p 253.96 253.84 0.12 253.98 −0.02 253.84 0.12 254.04 −0.08
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f7 253.24 253.31 −0.07 253.25 −0.01 253.32 −0.08 253.26 −0.02

f7p 253.23 253.31 −0.08 253.25 −0.02 253.31 −0.09 253.26 −0.03

f8 252.67 252.78 −0.11 252.70 −0.03 252.82 −0.15 252.67 0.01

f8p 252.66 252.78 −0.12 252.70 −0.04 252.81 −0.15 252.67 −0.01

f9 252.88 252.88 0.01 252.88 0.00 252.87 0.01 252.89 −0.01

f9p 252.90 252.88 0.03 252.88 0.02 252.87 0.03 252.89 0.01
MINdH [m] 0.00 0.00 0.00 0.00
MAXdH [m] 255.78 0.23 255.78 0.14

MEANdH [m] 9.02 0.05 9.03 0.01
σdH [m] 47.86 0.08 47.86 0.02

σ(σdH) [m] 15.79 0.03 15.79 0.01
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87. Regulations Commission Delegated Regulation (EU) 2019/945 of 12 March 2019 on Unmanned Aircraft Systems and on Third-Country

Operators of Unmanned Aircraft Systems; The European Commission: Luxembourg, 2019.
88. Commission Implementing Regulation (EU) 2019/947 of 24 May 2019 on the Rules and Procedures for the Operation of Unmanned Aircraft;

The European Commission: Luxembourg, 2019.

http://doi.org/10.1016/S0166-2481(08)00012-3

	Introduction 
	Materials and Methods 
	Field Work and Data Used 
	Methods 

	Results 
	Analysis of the Accuracy of Spatial Data Describing Land Surface and Selection of an Interpolation Algorithm for Modelling Land Surface for Data from the GNSS RTN Method 
	Analysis of Cross-Sections and Slopes Created on the Terrain Model in the Form of the DEM Raster 
	Analysis of Hydrological Parameters 

	Discussion 
	Conclusions 
	Appendix A
	Appendix B
	References

