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Abstract: Wind energy and wave energy are considered to have enormous potential as renewable
energy sources in the energy system to make great contributions in transitioning from fossil fuel
to renewable energy. However, the uncertain, erratic, and complicated scenarios, as well as the
tremendous amount of information and corresponding parameters, associated with wind and wave
energy harvesting are difficult to handle. In the field of big data handing and mining, artificial
intelligence plays a critical and efficient role in energy system transition, harvesting and related
applications. The derivative method of deep learning and its surrounding prolongation structures
are expanding more maturely in many fields of applications in the last decade. Even though both
wind and wave energy have the characteristics of instability, more and more applications have
implemented using these two renewable energy sources with the support of deep learning methods.
This paper systematically reviews and summarizes the different models, methods and applications
where the deep learning method has been applied in wind and wave energy. The accuracy and
effectiveness of different methods on a similar application were compared. This paper concludes that
applications supported by deep learning have enormous potential in terms of energy optimization,
harvesting, management, forecasting, behavior exploration and identification.

Keywords: deep learning; wave energy; wind energy; long short-term memory

1. Introduction

Renewable energy has been catching researchers’ eyes for many years, and its exploita-
tion, harvesting, energy management, efficiency improvement and applications have been
the concentration in the energy research fields. Comprehensive applications of renewable
energy have the responsibilities of gradually taking the place of traditional fossil fuels.
Among them, wave and wind energy no doubt have huge potential. Wave energy has
been drawing researchers’ attention for years since the huge potential energy from oceans
may support energy transition and sustainability. The global wave energy market will be
increased from USD 44 million to USD 107 million in 2025. However, the design, construc-
tion and planning applications require all-round understanding and knowledge on the
wave energy behaviors, which have the properties of being the most intermittent, unstable
and uncertain. In both short-term and real-time interval scenarios, the wave behaviors are
domestically in deterministic. The wave height and wave period are the most dynamic and
critical properties of wave energy, and they change not only temporally but also spatially.
The wave period condition could affect the wave energy converters (WECs). Hence, to
some extent, the characteristics of the wave height and period both have a vital influence
on wave energy prediction. Many models have been built to simulate and explore the way
to make the wave energy harvesting, forecasting and optimization more accurate. The
accurate prediction occupies an important position in energy reliability and performance,
impacting the cost and the entire energy management system [1].

In the growing developing field of wave energy, wind energy has been expanded
and has become a more mature form of renewable energy application. The application
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of wind speed prediction on smart power systems plays a significant role since the wind
power integration could be impact by the prediction accuracy [2]. Similar to wave energy,
wind energy fluctuates and is unstable. The usage of wind power significantly relies on
forecasting as well as energy batteries and load limitations. Among the many applications of
wind energy integration, prediction is one of the most important. The very challenging issue
in renewable energy is the instability and uncertainty in large-scale applications, especially
wave energy harvesting and forecasting in commercial-scale farm use [3]. Intermittence
definitely increases the risk for energy storage and management. Resilience and stability
are critical factors that increase further large-scale application of wave energy as well as
the other applications of ocean engineering [4]. In order to enhance the understanding of
wave energy behavior and accelerate the growth of wave energy application, summarizing
the recent research and methods and exploring the new investigation and improvement of
wave energy could be crucial for its near future development. Compared with other energy
forms, solar energy will occupy 46% of US electric generation, followed by 21% natural
gas, 17% wind, and 5% nuclear, based on the EIA census in 2022 [5]. Wave energy has not
been considered as a practical option with tremendous potential. Since wind generates and
moves waves, wind transfers part of its kinetic energy to waves and augments them with
long-distance swells. Thus, offshore wind energy and wave energy have the potential to
enhance each other. In addition, the successful experience related to offshore/onshore wind
turbine installation and operations could inspire wave energy installation and application.
There are some difficulties existing in wave energy research, which also show up in wind
energy application [6]. Overall, the exploration of reviewing wave and wind energy
together provide an opportunity to extend the width of both types of energy development.

Algorithms and models that have been reported and published for wave and wind
energy application can be distinguished into different levels: (1) equipment level, such as
low-level control and monitoring, fault diagnosis and life cycle prediction; (2) operation
level, such as wind speed and power generation forecasting [7,8] and instability predic-
tion [9,10]; (3) energy plant level, such as global resource allocation, coordinated output,
farm site selection, reactive power compensation, low-voltage ride-through and limited life
distribution; and (4) power dispatching level, such as reactive power and frequency and
voltage regulation [11]. Typically, forecasting, optimization and power management are
the three major directions among these applications. Deep learning (DL) has been used for
different plenty of applications and has gained huge success in many fields, including wave
and wind energy fields. Compared with other machine learning methods, the structure
of deep learning is more appropriate for handling large datasets that accommodate the
properties of wave and wind energy. Deep learning can be trained using a GPU and can ac-
commodate pattern recognition better than other machine learning methods. Even though
the structure of deep learning means that it has a longer training time, it corresponds to
the characteristics of wave and wind energy. The published research work on this topic
increases every year [12]. With the increasing numbers of publications on wind and wave
energy based on the deep learning method, a review paper is needed for recently published
research works, which could provide a good insight for exploring any innovation method
through comparison of current research.

This paper summarizes the different deep leaning-based models implemented in wind
and wave energy applications and compares the different models in similar applications
through datasets, a preprocessing method, model structures, computing time and accuracy
in tabular forms. The models, including convolution neural network (CNN), recurrent
neural network, long short-term memory (LSTM), deep brief network, deep neural network
(DNN), gated recurrent network (GRU) and deep hybrid models, are used as part of deter-
ministic forecasting models. Several parameters were used to evaluate and compare the
performance of these selected models. These parameters include accuracy, data resolution,
data fusion, computing time, decomposition comparison, statistical testing and so on. The
comparison may be affected by datasets in different sizes, locations, resolutions, weather
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conditions and periods, and the paper attempts to grasp the core factors while summarizing
the relevant information.

This review and summary of methods used in wind and wave energy not only re-
veals the development of deep learning methods but also explores the new possibilities
of new applications in wind and wave energy and tracks the possibility to expand the
trend of prolongation. Continually reorganizing the existing research results would allow
us to obtain excellent methods and experience, avoid the repetition of redundancy and
mistakes, and extend the novel combination of methods and extensive applications. On
the other hand, it could provide and motivate insights into further research directions. It
is reasonable to conclude that applications of renewable energy based on deep learning
could develop splendidly and gradually mature in technique and cost management due to
the corresponding support techniques increasing sharply. The literature review of current
research in wave and wind energy application will also provide a valuable evaluation
of available datasets from existing case studies, which is a necessary support for future
research in similar fields and research directions to explore the effectiveness and efficiency
of potential in different applications.

2. Deep Learning Applications of Wind and Wave Energy

Wind energy and wave energy have become critical clean sources of renewable energy.
The deep learning method has been used in the field of renewable energy since it provides a
feasible method for not only linear correlations but also nonlinear dynamic prediction and
correlations process. As the utilization and exploration of marine energy increase, enormous
wave energy has gradually become the leading role, while its harvesting, control, behavior
exploring, movement tracking, stability and generation provide too many possibilities on
its growth.

In order to gradually utilize the wave energy and expand its commercial scale, one
of the options is to combine wind and wave energy to explore offshore wind and wave
energy by analyzing its behavior and correlations. Another option is to summarize and
analyze onshore and offshore wind energy applications in different models to encourage
the possibility of applying it in the wave energy optimization, visualization and forecasting.
This method can promote the development of deep learning wave energy in many contexts.
In the meantime, stability and resilience should always be considered both in current and
future research. Both wind and wave energy are similar in their variation. The variation of
wind and wave energy is critical for a stable grid power demand. If the fluctuation goes
over a certain threshold, it may cause grid failure or system restart. With the renewable
installation increases that have occurred since 2009, balancing different renewable energy
sources is another effective way to meet the demand from the grid. However, the existing
variation in wind and wave energy could be reduced and even canceled out in time series
and spatial dimensions [13,14] using the hybrid method, which could lead to meaningful
development of both energy sources. Wind and wave energy applications were chosen to
be reviewed and discussed in this paper together based on publications in the last 5 years.
Google Scholar, ReseachGate and Science Direct search engines were used for searching the
literature for this paper. The keywords used for searching this literature include wind /wave
energy, deep learning, RNN, LTSM, GRU, etc. Articles were selected and reviewed based
on chosen time range starting from 2016 and the pertinence of the theme.

2.1. Forecasting of Wind and Wave Energy

Even though both wind and wave conditions are predictable, the actual wind and
wave power output is difficult to predict in order to match the demand. The application
of a deep learning structure to prediction provides a deficient way to process a large
number of historical data for prediction. The forecasting methods have been developed in
different ways including traditional statistical method [15,16], such as Kalman-filter [17] and
regression model [18], physical model, artificial intelligence (AI) techniques and hybrids
on different structures [19]. Physical models usually rely on numerical weather prediction
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(NWP) or time series models with a number of related variables considered to predict the
wind speed or wind power. Research shows that the physical model may act better in
wind speed or wind power forecasting6 h to 1 day ahead, and it has usually been applied
in power system management and trading systems [20,21]. The statistical method is the
most common in applications forecasting less than 6 h ahead, which could benefit the wind
turbine control and tracking [22,23].

Al-based models, such as support vector machines (SVMs), back propagation, fuzzy
logic methods and artificial neural networks (ANNs), have been implemented in many
forecasting fields. With the fast engagement and increasingly attractive use, different struc-
tures of deep neural networks have been developed for different applications. The ability
to handle enormous datasets and nonlinear correlation with more flexibility and resilience
has resulted in the remarkable development of renewable energy applications. Meanwhile,
existing methods also can be divided into nonhybrid models and hybrid models [24-28]
based on current research. Bootstrap is another method used in wind speed forecasting
(WSEF), in which the dataset is small and is not divided into the training set and the test-
ing set. One of its advantages is that it generates multiple training datasets, which may
benefit the ensemble learning method. Due to the importance of wind and wave energy
forecasting in power systems and the electricity supply market, the accuracy of the fore-
casting has gradually become an increasingly critical factor in forecasting models. Hence,
intelligent forecasting models have been widely implemented, preferably and frequently
due to their ability to address correlations among variables compared to statistical methods
or physical models.

In the last five years, the following deep learning models have been developed and
used: convolutional neural network [29]; recurrent neural network; long short-term mem-
ory [30]; deep brief network [31]; stacked auto-encoder; deep neural network [32]; gated re-
current network [33]; and deep hybrid models. In previously research, deep learning-based
models performed better than statistical models and physical models [34]. Forecasting
models based on deep neural networks not only improve the accuracy of forecasting but
also reduce the operational cost to increase the wind or wave energy competitiveness
compared to other forms of renewable energy. Based on recent research, wind power and
wave power forecasting can be performed based on hindcast wind or wave power data
or rely on direct related variables, such as wind speed, wave height and wave period, to
calculate the wind /wave power through the power curves of specific harvesting devices.
Table 1 summarizes the recent applications of deep learning models in wind and wave
forecasting field. For example, Francisco [35] and Gu [36] applied the power curves of
Vesta 90 wind turbine and Pelamis 750 kW wave energy converter to calculate the available
wind and wave power through wind speed, wave height and period. Different harvesting
devices have slightly different power curves, which may cause slightly differences [37]. In
nonlinear relationship problem solutions, models based on deep learning perform better
than traditional statistical models; thus, deep leaning neural network has been widely
considered in forecasting research.

2.1.1. Differences on Datasets Used

Typically, the objective of forecasting includes wind speed, wind power, wave period
and wave power among the published studies, and it is also common to conduct based on
deep learning method in this context. Meanwhile, the data used in forecasting might come
from historical datasets from meteorological, remote sensing, geographic data in wind
speed, wind direction, wave height, wave period and wave direction, along with many
corresponding factors including temperature, parameters of devices, weather condition,
sea surface salinity, ocean depth, pressure, humidity, orographic and dynamic atmosphere
as computation resources. Meanwhile, the dataset could include different time series,
spatial or remote sensing images. If the reviewed paper uses the historical dataset with
meteorological parameters, the wave and wind power prediction need to be calculated
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through the equations by critical parameters, such as wave height, wave period, wind
speed, wind turbine hub height and pitch angle of devices” parameters.

Table 1. Summary of deep learning models in wind and wave energy forecasting.

Applications

Wave height (Buoy), wind speed [38]

Wave height/period, wind speed/direction, sea level pressure, gust speed, air pressure, Sea
surface temperature, buoy data [39]

Mean wave period (wave buoy data) [37]

Offshore wind speed (light detection and ranging and seashore meteorological mast) [40]
Wave height/period /direction (buoy station from NOAA) [41]

Daily ocean wave height prediction [42]

Wind power generation [43]

Wind power forecast [44]

Wind speed forecasting [45-48]

Wind forecasting [49]

Wind farm cluster power prediction [50]

Surface wind forecast [51]

Prediction of directly gained or measured parameters are more flexible and easier to
achieve than calculated power. However, indirect factors such as temperature, salinity,
pressure and precipitation might be used for forecasting and prediction or the exploration
of correlations [13]. From the perspective of calculation and workload, if the corresponding
factors can be used for forecasting instead of direct parameters, it may be a useful and
supportive method for irregular data mitigation and model improvement. Lin implemented
11 features as inputs of the predictive model, which included four different wind speeds
at different heights and three different pitch angles of blade, as well as the parameters of
nacelle orientation, atmosphere temperature and error [52].

Chen et al. [29] used combination auto-encoder of CNN and LSTM to perform the
2-D wind plane prediction, and the dataset implemented in the case study comprised
meteorological data collected from Wind Integration National Dataset by NREL, located in
Indiana, US, from 2010 to 2012 within 10 by 10 wind array. The resolution was in 5 min time
series in raw data and modified based on it into 2 h time interval. The raw data include
1314,000 points from this three-year period. The proportion of training vs. testing data was
4:1 to feed and assess the CNN-LSTM model. Wei and Chang [38] chose the study area
located in the coastal water of Keelung and Kaohsiung ports in Taiwan, while the buoy and
radar images datasets were collected for typhoon data during 2013-2019. The dataset was
typically time-series-sensitive. Wave height, wind speed, air pressure at sea level, surface
temperature, surface wind speed/direction and instantaneous maximum surface wind
speed/direction were used as the dataset group and attribute group for the gated recurrent
unit neural network (GRU) and CNN feature and time series extraction input and adopted
as two wind-speed-prediction models and extended four wave-height-prediction models
based on the results of wind [38]. The comparison was conducted using different inputs as
two different groups: one group included raw data from the meteorological data and the
significant wave height dataset separately, while the other group combined the group one
with the outcome from two wind speed prediction models, respectively.

Bento et al. [53] collected sites buoy data from 11 sites in four different months from
US National Data Center (NDBC) and two sites from Canadian Integrated Science Data
Management (ISDM) at Pacific and Atlantic coasts and the Gulf of Mexico to forecast
the wave energy flux directly and indirectly through the wave height and wave period
forecasting, respectively, based on DNN [54]. The wave dataset used had both temporal
and spatial properties, which were used to revealed the correlations between the predicted
value and raw variables. Mousavi et al. [55] proposed a model based on LSTM to predict
wave power. The dataset comprised experimental data from He [56] collected from a Fetch
experiment by flow-3D simulation to investigate the wave power and relationship with
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wave height based on LTSM structure. Fan et al. [57] implemented a bidirectional gated
recurrent units (BiGRU) network to predict the wave height in 3 h, 6 h, 12 h and 24 h of
the tropical cyclone lead time with more accurate feature extraction and compared it with
another deep learning-based model of a new typhoon. Fan et al. [57] also applied LSTM to
predict the wave height 6 h in advance using 9 years (2010-2018) of 14 buoys’ data of wind-
wave tropical cyclones to predict the typhoon trajectory. Pirhooshyaran et al. [39] chose an
LSTM structure to conduct prediction of wave parameters from multistep to multistep and
feature selection. These researchers used hindcast historical data from National Oceanic
and Atmospheric Administration (NOAA), and the dataset included the related wave and
wind features. However, the hindcast data may have missing data in specific time periods,
which need to be reconstructed to compensate the dataset. Cornejo et al. [58] applied
Evolution Algorithms and Bayesian optimization to address the reconstruction of missing
data. Chen L. et al. [59] considered a multiperiod-ahead stacked denoising auto encoder
model, which is unsupervised and uses nonlabeled reconstructed data to conduct the wind
speed forecasting with the reconstructed data inputs. The training samples amounted to
20,000 within each wind speed series from 15 min to 24 h, and the period covered was
six months.

Shi et al. [60] adopted continuous wavelet transforms to detect the spatial and temporal
correlations of wind speed and focused on an SC-LSTM (temporal—spatial correlation LSTM)
network with the data collected from the Buck City wind farm located in Washington State
in the US. The comparison was conducted with a conventional back-propagation model and
support vector machine (SVM) through RMSE, MAE and MAPE parameters. The dataset
came from wind turbines at the wind farm, and the period ranged from 2010 to 2010 with
5 min resolution. There were 10,656 groups of data, including raining data, validation data
and testing data, and the proportion was 30:2:5 (days), respectively. Wei [41] demonstrated
a wind waves forecasting model using LSTM models with 2 years of historical buoy station
data from NOAA; the input parameters consisted of wind speed, atmospheric pressure
and surface temperature data, which were used to predict the significant wave height,
wave period and mean wave direction in the short-term forecast. The result of the LSTM
improved the prediction accuracy of the short-term forecast. Ahmad and Zhang [61]
demonstrated the use of a sequence-to-sequence LSTM regression model to predict the
wind speed using high-quality data preprocessing to obtain a stable, robust and accurate
result. Data from Belgian, DSO and Elia wind farms at three sites and in different seasons
were collected monthly and annually to the forecasting, and the MAE, MAPE and RMSE
were compared to achieve higher accuracy. The coefficient of variation error was addressed
to validate the forecasting results.

Wang [62] implemented a deep neural network model to process wave period calcula-
tions using the data from altimeters’ observation parameters. The global wave reanalysis
was addressed using the DNN model of altimeters and complied with the distribution
of mean wave period and steepness, which could achieve a lower bias compared to the
buoy data. The parameter of significant wave height data from altimeters was denoised to
improve the accuracy on wave—current interaction capture. The estimate parameter still
focused on the comparison of mean absolute error (MAE), root mean square error (RMSE)
and scatter index (SI). Saxena [39] conducted a comparison of six deep learning-based
models to perform short-term forecasting of offshore wind speed in two study sites in
India. Data were preprocessed using the ensemble empirical mode decomposition (EEMD)
method [40] to denoise and reduce the forecasting error, which also increased the accuracy
of the models. Different hub heights were chosen for two sites to compare and evaluate the
performance indicators and explain the reasons for different accuracies in datasets with
different hub heights.

Different parameters have different impacts on prediction models. Dataset used also
could obtain different results on forecasting models. Meanwhile, since the weights on each
variable are diverse, it affects the feature extraction and the variables. The smaller the
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weight, the less impact of the variable for deep learning models. Tables 2—4 summarize the
wave and wind forecasting models reviewed in this paper.

Table 2. Summary of wave forecasting models based on deep learning.

Application Time Step Location Model Used Type Pre-Processing
Wave conditions, wind Gulf of Lion in the
velocity [55] S north-western LSTM - -
y Mediterranean Sea

Wave height, Wind s The East China Sea; BiGRU short term }
speed [57] The Yellow Sea 3-24h
Wave and wind . Gulf of Mexico; Long term
conditions [39] min North Atlantic LSTM/RNN 2-day )
Mean wave period [62] 3-h Coast'of central DNN Short-term Star}da’rd

America deviation
Offshore wind . Gulf of Khambat; C.N N; L.STM;

10-min Bidirectional Short term EEMD
speed [40] Gulf of Mannar LSTM:
Wave conditions [41] 1-h U.S. Atlantic coast LSTM 148 h Standard
. Gulf of Mexico; . .
Daily ocean wave . Sequential learning
. sec Korean region; UK ELM

height [42] . neural networks

region
Significant wave 1-dimentional-

& 1-h Three buoy stations CNN-position 624 h STL
height [63] .
encoding
. Queensland,

Wave energy period [64] Half hour Australia CNN + RNN - ELM

Table 3. Summary of wind speed forecasting models based on deep learning.

Ref. Time Step Location Model Used Type Pre-Processing
[29] 2h Onshore CNN + LSTM 1-3h ELM
[30] 10-min/1h Onshore LSTMDE-HELM Short term DE
[38] hourly Onshore/coast CNN + GRU 1-6h -
Singular
[45] - Onshore hybrid LSTM + DBN Short term spectrum
decomposition
[46] 10-min Offshore Nega.t ive correlation Short term OVMD
learning
[47] - Offshore BiLSTM - -
[48] 10-min Onshore/coast MLP, LSTM, ARIMA - EMD
[49] 24-h Onshore CNN Short term -
[53] hourly Coast/offshore DNN 1-12h -
[60] min Onshore SC-LSTM 37 days WCT
[61] monthly/seasonal/ o hore /offshore STSR-LSTM Long term -
annual
Signal
[65] 1-2h Onshore QRNN Short term reconstruction
decomposed
[66] 1-h Onshore CNN-LSTM - EWT
[67] 1-5 months onshore RNNs + SVM 624 h WT
Multivariable stacked
[68] 5-min Onshore long-short term memory  Ultra short term Normalization
network
[69] hourly Onshore Causal convolutior}al Short term Multiple .
gated recurrent unit decomposition
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Table 3. Cont.

Ref Time Step Location Model Used Type Pre-Processing
Deep feature extraction + Batch
[70] - Onshore LSTM Short term normalization
Ensemble
Wavelet neural network empirical
(711 I-h Onshore EEMD-AWNN mode
decomposition
[72] daily Offshore LSTM + STCG - STCG
(73] 30-60 days Coast/offshore Egﬁv‘l"rea division + Short term CEEMD
Table 4. Summary of deep learning models in other wind energy forecasting applications.
Applications Time Step Location Model Used Type Pre-Processing
Wind power [33] 15-min Onshore BiGRU Ultra short term ECM
Wind speed/ 4h Onshore 1-D CNN 24 h, Real-time Short term
turbulent [66]
Wind power [74] 10/30/60/20-min Onshore Stackg d ensemble Short term /very ECM
learning short term
Thunderstorm [75] 91-min Onshore 1-D CNN Short term -
Wind turbine data Hybrid
uncertainty [76] Onshore RNN-LSTM Fuzzy based
Wind power [43] 24h - LSTM-GMM Short term Sg‘élseslla“ mixture
Wind power [44] - Coast LSTM + LUBE Short term LUBE
Wind farm cluster Onshore CNN + LTSM SSM
power [50]
Surface wind [51] 12h River Rea.I t}me' 4D Short term -
assimilation

2.1.2. Preprocessing

Raw data need to be pre-processed before using them as the input of network models.
Usually, raw data may have missing values, incorrect values, noise with data, different
resolution data combinations, inactive time series records and large unit difference among
variables, which need to be handled with the abnormal values using denoising, normal-
ization, filling out estimation data, deleting inactive or incorrect values, or augmentation
processes.

Data preprocessing techniques are commonly used for data feature extraction, data
regression and error analysis for raw data, either in time series or spatially in different
frequencies or visualized images. It has been implemented in many published research
papers and was used to reduce the noise and data discrepancy, reconstruct the missing
data, combine noncontinuous data, delete the repeated and redundant data and correct
the data to keep a consistent series of a dataset. A clean and smooth dataset can reduce
the forecasting error, which is critical to the model performance. Wang et al. [37] divided
pre-processing methods into two groups. The first is signal processing, which decomposes
the data into several series to reduce noise. The other group is outlier detection. The
wavelet-based method was used to decompose the raw data into different series to process
rather than keep them at the same level [32]. Ensemble EMD [34,52], EMD [65] and
mode decomposition (VMD) [77] are decomposition-based methods. Xiang [78] applied
a secondary decomposition (SD) preprocessing method, which is a signal processing
method, to propose a deep learning-based model with higher efficiency, to conduct wind
speed and wind power forecasting. On the other hand, Wang et al. [52] chose a support
vector machine to organize the raw data outliers and corrected the data with the value
undergoing the estimation. It was focused on abnormal values of raw data, while signal
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processing methods were implemented for data decomposition and denoising. Some of the
preprocessing methods are listed in Table 2.

2.1.3. Evaluation and Comparison Methods

Convolutional neural networks (CNNs) have been used in feature extraction in pattern
recognition, auto-drive tracking, image processing and so on. The structure of CNNs
enhances the ability to extract the features from target objective variables. It usually
consists of different layers and is also called a “black box” with input and output. The
black box (hidden layers) portion actually includes a padding layer, a convolution layer, a
pooling layer, a fully connected layer (flatten layer) and dropout and activation functions
(ReLU/Sigmoid). Many studies have combined CNNs with other models’ structures due
to its excellent feature extraction capability, which could reduce the computing cost t some
extent. As Chen et al. [29] explained in their article, the CNN module worked as a feature
extractor; meanwhile, it translated the raw data into intrinsic deep features. Thus, the
extracted spatial feature was obtained from CNN structure, and the time series feature
could be extracted from LSTM, RNN and GRU, equipped with a memorial gate to record
the sequence data. The preprocessing in CNN is not much higher than other classification
methods because of its training and filter characteristics extraction abilities.

On the other hand, based on the input dataset feature extraction, the CNN structure
can be divided into one-dimensional, two-dimensional or three-dimensional structures [32].
If the input data of the objective are vectors, the convolution kernel (filter) is quite straight-
forward and is placed over the vector data with weight and bias and adds it to the nearby
data value. The filter moves in one direction. When the input data are a matrix, such
as an image, they can be extracted or visualized to form the matrix data based on the
meteorological historical data. The images also can be input as a matrix through the color
channels; meanwhile, the temporal information can be collected as time-sequential feature
maps. The convolutional filter follows the dimension size of the input data and runs in
two different directions when performing the filtering. A three-dimensional structure
extracts spatial information with temporal data with a three-direction filter extraction in
three directions. The three-dimensional structure improves the accuracy of forecasting
but costs more computing time. In the existing literature, CNN has been applied as a
feature extractor due to its better performance on deeper information extraction, which
could be a good choice. Zhu et al. [79] predicted wind power based on a CNN with the
input of historical wind farm data, which was the example of the use of a CNN with
two-dimensional matrix data. Zhao et al. [66] adopted a one-dimensional CNN on input
matrix and convolutional filters, which are usually effective to identify simple patterns
and include few samples in each channel. The input wind speed can be transferred to
two-dimensional demand, which is also adaptive on a multistep wind speed and turbulent
standard deviation combination dataset. Tian et al. [80] introduced a form of RNN structure
in which the effective performance of the forecasting model can be evaluated synthetically
using a set of evaluation criteria. Gu and Li implemented visualized images from the
wave data as the input of a regional convolutional neural network (R-CNN) to explore the
correlations between variables [13]. CNN architecture and fine-tuning support gave the
opportunity to deal with the huge 40-year dataset. Figure 1 explains how the CNN structure
works to extract features. The wave density hotspot images (1979-2009) were applied as
the input training dataset. More than 2000 candidate regions, called regions of interest
(Rols), were proposed for each image, where the score of each region was determined by
the value of intersection-over-union (IoU). Only the images with values greater than the
predefined threshold were selected as the pool, as shown in Figure 1. The threshold of the
IoU overlap rate was identified based on different applications, which is the proportion of
ground truth data area (labeled data) over the region proposal area, and a value greater
than 0.5 is usually considered an acceptable candidate. The remaining proposal areas were
wrapped as a square dimension in order to feed the convolution neural network to produce
multidimensional feature vector. These vectors are ready be fed into a classifier. An SVM
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(support vector machine) and a fully convolution layer are more commonly used as clas-
sifiers. The advantages of CNN include its extraction abilities and customized flexibility,
preventing time consumption and inefficiency of work.

R-CNN: Regions with CNN features

- | wapedregion g Horsporszves |
- - ki :
|: i o 4 e e ]
g e CNNN :
1. Input 2. Extract region 3. Compute 4. Classify
image proposals CNN features regions

Figure 1. Sample structure of a regional CNN.

The input of recurrent neural networks (RNNs) has been applied in time-series-
sensitive applications, which are usually temporal and spatial sequential dataset, such as
speech prediction, wind speed/power forecasting, audio recognition and weather fore-
casting. The output data can be fed back again as the input of the next step. Meanwhile,
the data are also trained using back propagation and are derived from a feed-forward
network with updated weights. Hence, RNN supports temporal dynamics scenarios with
sequence datasets. The current input of an RNN not only considers the current time series
data but also includes the feature results from previous steps learned together, which is
the core point of so-called memory from traditional feed-forward networks. The individ-
ual units shown in Figure 2 include the input, output, weight and bias. By sending the
previous input to the next hidden layer, the input data can be given to the next layer and
“memorized”. Depending on different applications, the recurrent unit can be added to any
steps without losing previous weights. Back-propagation provides support in updating the
weights during the training process. RNN combined with CNN can increase the training
efficiency of feature extraction. However, the activation function used in RNN may keep
the training from keeping its memory for a longer period of time. Another disadvantage
of RNN is the gradient descent vanishing, in which the gradient shrinks to become too
small, which could result invalid learning training and lost memory from previous steps.
Hence, RNN usually has short-term memory as depicted in the scheme. The gradient can
be regarded as the slope of the function, such that a steeper slope can result in a faster
learning progress, while if the slope becomes close to zero or start to shrink, the learning
stops. The weights related to the change in error in each back-propagation loop are also
supervised and changed according to the gradient. Hence, solving the vanishing issue
could improve the performance and keep the memory advantage from the RNN structure.
Therefore, the LSTM is created for converging in RNN.

@ =) . 8- -0
®

Figure 2. Sample structure of a recurrent neural network.

LSTM has excellent performance in dealing with long-term datasets due to the gate
and memory cell of its architecture, which is stable and better able to overcome the over-
fitting problem. Hence, the time series dataset, which needs either a long term or a short
term, could use LSTM to process the model conduction. Hu et al. [65] revealed a novel
nonlinear algorithm to combine the LSTM with an extreme learning machine and applied a
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differential evolution algorithm (DE) to improve the number of hidden layers to balance
the structure complexity and performance. Altan et al. [26] also chose LSTM combined
with the decomposition method and optimizer to conduct wind speed forecasting. The
weight was estimated and optimized using grey wolf optimizer (GWO), while the data
were processed using a weighted moving average (WMA) before being input into the
model. They mentioned that the missing data reconstructed Kalman filters, filling through
interpolation, to avoid the system accuracy offset. Even though the LSTM model solves
the overfitting issue and has longer memory, it still has some drawbacks. It requires more
time and bigger dataset to be trained in advance, and it has the limitation of different
weight initializations.

Gated recurrent units (GRUs) [33] are a popular variant of LSTM, which replace the
forget gate and the input gate with only one update gate. Because GRU has fewer parame-
ters, training is slightly faster and requires fewer data to generalize, and GRU achieves a
similar performance in multiple tasks with less computation. Ding et al. [33] demonstrated
a bidimensional GRU model to address wind power prediction by extracting the wind
speed error as weights and considered it as the time series weight to put as input to correct
the wind speed. The estimate criteria were still focused on RMSE and MAE to evaluate
the forecasting performance. The bidirectional GRU model has two gates for incorporat-
ing the new input and controlling the previous memory. Nam et al. [19] introduced a
case study in Korea, in which they built a GRU model for electricity demand forecasting.
Kuremoto et al. [81] constructed a deep brief network (DBN) for time series forecasting.

The hybrid model is a trend that can be used to improve forecasting accuracy and
explore the advantages of different combinations of models. Combining the feature ex-
traction method with the forecasting models allows dealing with spatial-temporal data,
which could improve the efficiency and computation cost for forecasting applications.
Both stacking-based models [82] and weighted-based models embed different base models.
Hong [25] developed a combined model of CNN with radial basis function neural network
and double Gaussian function (DGF) to handle the 24 h ahead (short-term) wind power
forecasting. CNN was used for feature extraction using convolutional layers, filter, pooling
layers and fully connection layers. The data were collected from the real time wind farm,
and the uncertainty could be used to deal with the Gaussian function.

For multistep deep learning models, a feature extraction tool combined with LTSM
was an excellent choice to improve performance. Variation mode decomposition (VMD)
and singular spectrum analysis were both used to obtain the low-frequency and high-
frequency sub-layers from the raw data. LSTM was adopted for low-frequency-layer
forecasting from VMD-SSA, while the extreme learning machine model had the target of
forecasting the high-frequency layers. Prediction was performed separately for different
frequencies. Low-frequency sub layers were embedded with LTSM to process time series
forecasting [83]. A hybrid convolutional LSTM model was introduced in research on
multi-step-ahead short-term wind speed forecasting. The model was improved by the
time varying filter-based empirical mode decomposition (TVF-EMD) as a filter to smooth
noise interference [84]. Liu et al. [83] proposed a hybrid deep learning model for wind
speed prediction. LSTM and Elman neural network were combined together for obtaining
high-precision. Empirical wavelet transformation was used to decompose the raw wind
data, which were decomposed into several sub-layers so as to input them into an Elman
neural network.

Mi et al. [67] chose CNN and LSTM with a decomposed method (empirical wavelet
transform) as a CNN-LSTM-EWT model to conduct the wind speed prediction, and singular
spectrum analysis was applied for denoising and preprocessing the dataset. Two case
studies were conducted to test and compare the performance with EMD-BP, EMD-Elman
and EMD-BP models using RMSE, MAE and MAPE indicators. Table 5 summarizes
the deep learning models reviewed with their advantages, disadvantages and potential
applications. To evaluate the efficiency and performance of each model, a set of indicators
were usually adopted and calculated according to the results as summarized in Table 6.
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Table 5. Summary of different deep learning models.

Model Pros Cons Application
Feature extraction; ability to develop Image classification; object
. . Not store past sequences of S .
CNN internal representation of . detection; image segmentation;
. . . patterns; Predetermined dataset P .
two-dimensional image classification of spatial data
RNN Processes time-series data in the Limited performance in the Time series data identification and
short term short term forecasting
. . . L -t ti ies f ting,
LSTM Processes long-term time series data Complexity; ong-ierm Hme series forecasting,
prediction; pattern recognition
L han LSTM, simpl i . - . . . .
ess memory than LSTM, simp e.d.e51gn, Low learning efficiency; slow Time series foresting model; wind
GRU faster; handles long-term data; mitigates .
- ; convergence speed forecasting; error model
the vanishing gradient problem
. . logical . . .
DBN Good at unsupervised feature extraction Cannot process me tgoro ogica Single variables forecasting
dataset with multidimension
Wind speed/power, wave scenario
- . . f ing; typh hurri
. Flexibility, excellence in extracting . . orecast}ng, typhoon/hurricane
Hybrid Computational complexity; forecasting; power system

different types of data; higher accuracy

optimization; energy storage size
optimization

Table 6. Estimate criteria in recent publications.

Indicator Equation
Mean absolute error (MAE) MAE = % & ‘ X; — X
i=1
Mean absolute percentage error (MAPE) MAPE — % g ‘ %‘
i-1! -

Root mean square error (RMSE)

Coefficient of determination (R2)

Mean absolute percentage error (MAPE)

Scatter index

RMSE = | & ¥ (X = X;)*

i=

[uy

R2— 1 (%)
T (Xi—X)
N .
MAPE = } ¥ | %% | x 100%
i=1' "
_ RMSE
ST = RASE

Note: X; and X; are the measured and output forecasting wind speed at time i, and N is the number of test data.

RSME represents the standard deviation of the prediction output and the raw ob-
servation values, while MAE explains the difference between two continuous variables.
MAPE considers both the error and the ratio of the measured value and the predicted value,
where a lower value indicates better performance. Due to the different datasets, models
and parameters, comparing different research has been done relying on R and SI [57]. The
performance of different deep learning models is summarized in Table 7.
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Table 7. Summarized Performance of Different Deep Learning Models.

Forecasting MAE RMSE R? MAPE SI Models Lead Time
Application

Wind speed [59] 0.28 0.49 0.257 SC-LSTM

Wind speed [66] 0.3 0.3925 0.4285 CNN-LSTM

Wind speed [63] 0.07988 0.1052 0.9992 LTSM

Wind speed [72] 0.13-0.27 0.14-0.19 LSTM 6h
Wind speed [81] 0.3509 0.5193 0.981 CNN + LSTM 1-3h
Wave height and

wind speed [37] 0.844 CNN + GRU 1-6h
Wave condition

and power [54] 0.49 LST™M

Wave height [56] 0.78 0.8638 3-24h
Wave height [61] 0.425 0.64 0.109

Wind power [49] 0.3576 0.5058 - 0.2173

2.2. Optimization Application on Wind and Wave Energy

Application of deep learning to optimization has also been widely extended into
different fields, including onshore/offshore wind farm site selection, layout optimization,
wind turbine design, wave converter distribution optimization, harvesting device optimiza-
tion and hybrid energy storage management. Hybrid models have also been proposed to
optimize the parameters of available day-ahead forecasting of wind energy with storage
powers plant and the balance with energy price and available electricity generated. This
topic has been brought up by many researchers in the last two decades. After all, with the
growing number of installations, the commercial utility of the application of renewable
energy has been increasing spectacularly. Balancing and optimizing the available renewable
energy are critical for power generation, energy market management and forecasting for
the day-ahead market. The implementation of deep learning technique supports handling
the uncertainty in the energy price market, which was built and simulated with a recurrent
neural network for wind energy forecasting with the dataset provided with hourly time
series in a percentile format and with a limitation of the upper bound [85].

On the other hand, optimization of wind and wave harvesting devices plays an
important role in the energy generation field. “Searaser” is a representation of a wave
energy converter to be used for modeling the prediction of power generation that is lower
in price and involves no gas emission. With the support of simulated data from flow-3D, the
correlation between wind speed and wind power generated by the specific converter was
addressed [55]. One of the applications of harvesting devices is to improve and maximize
the short-term wave power generation, which was addressed through deep learning-based
model to increase the absorption of the wave energy converter and reduce the prediction
error to control the negative effect on energy generation [86]. Dong [43] chose LSTM to
improve the efficiency of the wind power generation system and regulation. A Gaussian
mixture model (GMM) was implemented to consider the correlation between wind speed
and wind direction, while a preprocessed 24 h ahead dataset was used as the input of the
LSTM prediction network. Combined with the appropriate control strategy, it can keep
the output smooth and stable. Hence, aligning the wind energy generation with real-time
demand relied on a deep learning network to help solve the rolling optimization problem.
The memories of each stop were collected, which could be enabled to refer to the previous
step’s result and explore the next several steps using the recorded sequence to increase
the accuracy.

2.3. Pattern Recognition and Correlations Identification

Traditional image processing studies form the majority of applications in the classifica-
tion research field. The growth of deep learning application has increasingly drawn the
interest of researchers in the field of robotics with artificial intelligence. Pattern recognition
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is a separate field from deep learning in terms of image processing, and it was popular in
1970s. Even though it was the first concept used to introduce image processing, pattern
recognition has gradually evolved with deep learning and big data technique to improve
performance in the image processing field. Hence, the original motivation of pattern
recognition is presently focused on deep learning-based applications. Pattern recognition
usually needs to label the training data as the input of the neural network in most cases.
This process includes data conversion, segmentation, feature extraction, classification and
postprocessing. Typically, the main objective of pattern recognition in supervised learning
is to provide trained predictors for analyzing future data in the model. However, semisu-
pervised and unsupervised models can also obtain classifiers [87]. James et al. [88] applied a
supervised training network to predict the ocean condition using a significant wave height
and wave period dataset. Pattern recognition can also be used for object detection and
image classification combined with the deep learning-based model, which helps predict
and analyze the trends in objective forecasting, decision-making and correlation exploration
sing trained predictors and classifier. The dataset is not limited to images, videos or digital
signals, but it also can include numerical multidimensional data. It also complies with the
wind and wave deep learning-based applications for feature extraction, data preprocessing
and correlation discovery.

Gu and Li [13] explored wind and wave energy correlations using pattern recognition,
where the dataset was image-based and visualized using hindcast wind and wave data
from NOAA WAVEWATCH III. The dataset was transferred from historical data to image
analysis based on a regional CNN deep learning network. Hence, the pattern recognition
problem could address the correlation of variables. Pattern recognition application based
on deep learning can provide a deep understanding of and different aspects to solve the
correlation problem. Furthermore, it may support the identification of the correlation
problem as quantification. Yang et al. [89] performed damage detection for a wind turbine
blade using image recognition. The blade images were segmented to reduce the back-
ground effect for the identification, and ensemble learning classifier and data fine tuning
were adopted to increase the efficiency and improve the accuracy of the model. Better
performance can be obtained through a CNN model than the SVM method, verified by an
unmanned aerial vehicle.

Shi et al. [60] introduced Wavelet Coherence Transformation Analysis (WCT) to reveal
the cross-correlation between wind speed series and adjacent turbines instead of Pearson’s
correlation method. Fang et al. [90] mentioned in the published research of inter-seasonal
risk analysis that the characteristics of both the frequency and time series of the wind
speed could be effectively and deeply depicted. The correlations between wind turbines
have been analyzed in spatial and temporal dimensions. The representation of statistical
correlation analysis between parameters includes Pearson coefficient (r), whose equation is
shown below, where N is size of dataset, i is index, X; and Y; are individual variables, and
X; and Y; are the mean value of the individual parameters.

DL X (% - Y
V=X (Y - V)

The Pearson coefficient is within the range of [—1, 1], and the r value represents a small
correlation within [0.1, 0.3], medium correlation within [0.3, 0.5], and strong correlation
within [0.5, 1]. In contrast, the r value in the opposite direction to —1 means negative
correlations in the same range division. Pattern recognition is not only involved in many
applications in wind and wave energy fields, but also plays a critical role in seismic analysis,
healthcare, fingerprint identification and computer vision. A tremendous number of hybrid
deep learning-based models have been explored in many possible fields and have been
implemented in many real-time situations.




Energies 2022, 15, 1510

15 0f 19

3. Challenges and Future Research Directions

This paper has focused on reviewing the most recently published studies on wind
and wave energy applications based on deep learning models. Challenges always exist
with wind and wave energy development. Because variables related to wind and wave
energy have strong uncertainty at temporal and spatial scales, handling raw data with
different data preprocessing methods provides many possibilities for exploring, extending
and smoothing datasets. Hence, the limitation of the processing method sets an upper
bound on the uncertainty of data processing. Many mathematical methods can be used to
deal with raw data before using them as the structure input. Meanwhile, due to the good
performance of convolutional neural networks (CNNs) in feature extraction, CNN has
usually been implemented as the extraction supporter and combined with other forecasting
models or higher-efficiency models in order to improve the accuracy of the structure. Thus,
efficiency of feature extraction is another challenge to improving the forecasting accuracy
or the abilities of the classifier. Deep learning-based feature extraction models are able
to reduce complexity and computation time, and increase efficiency. On the other hand,
exploring efficient, fast and accurate feature extraction structures will always be a challenge
in conducting and improving the capacity of forecasting, optimization and classification.
The quality of the dataset determines the accuracy and computation time to some extent
according to the reviewed publications, and the size and integrity of the training data also
restrict the performance of the model. The configuration of the structure supports the
performance. The correlations of variables play a critical role in the process of optimizing
the structure of forecasting and exploration of nonlinear correlations [91].

Future research trends and strategies can be settled by exploring, developing and
extending the scope of applications of deep learning-based models. Future research should
aim at solving and obtaining more practical structures and finding effective solutions to
above challenges in its application. The uncertainty and fluctuation need to be analyzed
sufficiently, which includes either extending new preprocessing models or combining
existing methods. Furthermore, the majority of the applications have used CNN as the
feature extraction tool, which is not enough for achieve complete and complex data features
in different applications. Even though fine tuning increases the support of different specific
uses, it is far from expanding the possibilities of renewable energy growth. Recently, most
wind energy forecasting studies focus on onshore applications, while offshore wind energy
applications concentrate on ocean oil and gas platforms and wave energy combination.
Identifying the appropriate configuration for each application should be considered one of
the primary tasks due to the complexity of wind and wave energy research.

4. Conclusions

Forecasting and predictions form the majority of recent applications. In wind and
wave energy exploitation research, energy market price and distribution forecasting, as
well as the sizing and configuration of device layout and power dispatch, are also involved
in its application. The similar nature of wind and waves makes it possible to analyze
and compare them with each other. Combining the wind and wave energy in a hybrid
setting could reduce both the uncertainty and variation. The other reason for analyzing and
comparing them is that wide implementation of wind energy forecasting and management
could inspire the application of similar methods of wave energy, which could promote
and accelerate the development of wave energy [92]. To motivate correlation analysis
between wind and wave energy, this relationship could help reduce the complexity of
wave energy prediction using wind energy parameters, which can be obtained more easily
than wave variables. This solution could also solve the problem of computational cost
and time. Overall, it will help to inspire the greater possibility of reducing variation and
promoting the development of wave energy. A hybrid model could be an effective solution
to the aforementioned challenges [58,93,94]. Stable energy output will be the final target to
achieve and is the most urgent.
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The paper reviewed recently published papers on wave and wind applications in
forecasting, optimization and pattern recognition, which are the main foci of these two
types of renewable energy. The differences in dataset are listed with the data preprocessing
methods. The majority of the feature extraction methods concentrated on CNN, which is
flexible and consists of unsupervised and supervised structures, together known as fine
tuning. Following the forecasting models with the handled dataset using data prepro-
cessing, the paper reviewed RNN, LTSM, GRU, DBF and hybrid models. The advantages
and disadvantages were listed to help choose an appropriate model for future research.
The estimation indicators include RMSE, MAE, MAPE, scatter index and correction effi-
ciency to evaluate the performance of models [9,74]. The optimization of wind and wave
application could extend to many fields of device optimization, layout optimization and
energy management. Pattern recognition can actually be considered an improved technique
of image processing, but it focuses on the structure of the models [95] instead of being
limited to images. The future development of wind and wave energy may transfer offshore
and explore more accurate models with lower computation cost. This review provides a
summary and inspiration for future applications of research.
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