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Abstract: With the continuous penetration and development of renewable energy power generation,
the distributed grid and the microgrid are becoming increasingly important in modern power
systems. In distribution networks and the microgrid, the grid impedance is comparatively large
and cannot be ignored. Usually, the parallel compensation is used to improve the grid quality. In
the grid with parallel compensation, the large phase angle difference between the impedance of
the grid-connected inverter and the impedance of the grid at amplitude intersection will result in
high frequency resonance (HFR). Because the inverter shows filter characteristics due to limited
bandwidth of the controller, the parallel compensation grid, respectively, performs as the capacitance
characteristic and inductance characteristic in different high frequency range. Compared with the
three-phase, three-wire system, an additional zero-sequence path exists in the three-phase four-wire
split capacitor inverter (TFSCI) system, so that the existing high frequency resonance suppression
methods will be not effective. Since the zero-sequence component is neglected, HFR will also occur,
in addition to the positive-sequence component and the negative-sequence component. Therefore, in
order to suppress the high frequency resonance caused by positive-sequence, negative-sequence and
zero-sequence components, an impedance reshaping strategy based on current feedback is proposed
in this paper. This proposed method can reshape the amplitude and phase of the inverter impedance
in a high frequency range without affecting the performance of the fundamental frequency control
and ensure that the inverter contains a sufficient phase margin. Additionally, the proposed method
can reshape the impedance of TFSCI within a wide frequency range, which makes it able to cope
with the challenge of the parallel compensation degree change. Theoretical analysis and experiments
verify the availability of the proposed control strategy.

Keywords: three-phase four-wire split capacitor grid-connected inverter; impedance reshaping; high
frequency resonance

1. Introduction

With the continuous penetration and development of renewable energy power gen-
eration, distribution networks and micro-grids account for an increasing proportion of
contemporary power grids [1–3]. In the distribution network and microgrid, the three-
phase four-wire system has been widely promoted and applied [4–11], because it has a
zero-sequence current path and is suitable for both symmetrical and asymmetrical con-
ditions. In the three-phase four-wire system, the three-phase four-wire inverter is an
important part that plays important functions such as power transmission and power qual-
ity improvement devices. Among them, the three-phase four-wire split capacitor inverter
has been widely used due to its low cost and simple control, whose application scenarios
include as an active filter [5], power redistribution device [6], renewable energy power
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generation system [7] and power distribution system [9]. At the same time, because the
distribution network and microgrid are usually weak grids with large impedance, parallel
compensation capacitors are typically equipped to perform reactive power compensation
and harmonic filtering to improve voltage quality and enlarge power transmission capac-
ity [12–14]. Therefore, it is a very common scenario for a three-phase four-wire system that
a capacitor split inverter connects to a weak grid with parallel compensation capacitors.

The impedance-based analysis is proved an attractive method to analyze and resolve
the small-signal instability problems caused by the interaction between the converter and
the grid [15–19]. Reference [15] presents a stability criterion for grid-connected converters
based on impedance models and Gershgorin’s theorem, which consider the effect of the non-
diagonal elements. Ref. [16] establishes the entire impedance of RSC and VSC considering
coupling factors to analyze the system stability. In [17], a single-in-single-out impedance
model of grid-connected converters with virtual synchronous generator using a cascaded
inner control loop has been established to analyze the system stability under different kinds
of weak grid.

Due to the fact that grid impedance cannot be neglected, when TFSCI connects, small-
signal instability may be caused by the interactions between the inverter systems and
the weak grid. According to the stability theory of impedance proposed in reference [16],
when the phase angle difference of impedance between grid-connected devices and the
weak grid impedance amplitude intersection closes to 180◦, it may cause system resonance.
Especially in the parallel compensation grid, the large phase angle difference will result in
the high frequency resonance (HFR). In high frequency, the inverter system shows filter
characteristics because of the limited control bandwidth of the controller. Moreover, in a
different high frequency zone, the parallel compensation grid, respectively, performed as
the capacitance characteristic and inductance characteristic. The HFR existed in the power
system will not only disintegrate the PCC voltage, but also deteriorate output power and
work conditions of other grid-connected devices [20–26]. Hence, it is necessary to consider
the HFR suppression when TFSCI is connected to parallel compensation grid.

In order to suppress HFR, the virtual RC impedance was introduced in [20,21] to
deal with resonances of specific frequency. By introducing positive resistance to improve
the performance of harmonic resonance damping. neegative inductance to achieve better
performance of harmonic distortion mitigation due to reducing the grid-side inductance.
This kind method could achieve well HFR suppression performance by choosing reasonable
parameters, but it can only achieve well performance for some specific frequencies. Ref. [22]
presented a series-LC-filtered active damper to suppress HFR inac power-electronics-based
power systems by applying the fourth-order resonant controller. This strategy could
achieve well HFR suppression performance in wider frequency range by using cascaded
adaptive notch filter (ANF) [23] to identify the unknown resonance frequency. However,
the performance of the active damping control based on the resonant controller will be
weakened due to the limited dynamic performance of the resonant frequency identified
process when the parallel compensation degree varies. Ref. [24] proposed a control strategy
for the converter to suppress HFR based on voltage feedback, which can reshape the phase
of the converter impedance without a resonant frequency identified process. However,
it may increase the harmonic currents caused by the background harmonic voltages of
the grid because it significantly reduces the impedance magnitude of the inverter at high
frequency region.

It can be found that the HFR issue of the grid-connected converter have been widely
concerned, while it should be noted that these damping strategies mentioned above are only
suitable for three-phase three-wire system. When it comes to three-phase four-wire systems,
these methods are not completely applicable, because the zero-sequence component will
also cause high-frequency resonance in addition to the positive-sequence component and
the negative-sequence component [26]. Ref. [26] established the impedance models of
positive-sequence, negative-sequence and zero-sequence, which reveals that the positive-
sequence, negative-sequence and zero-sequence components all may bring small signal
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instability problems. However, the strategy to solve these stability problems has not been
proposed. Due to the decoupled relationship between zero-sequence components and
positive-sequence, negative-sequence components, the resonance problems caused by the
zero-sequence components cannot be solved by the existing HFR suppression strategies
which are applied to the positive-sequence and negative-sequence components.

Hence, in order to suppress the HFR problem for the TFSCI, the paper reshapes the
zero-sequence impedance positive-sequence impedance, and negative-sequence impedance
of the TFSCI. The proposed method can suppress the HFR caused by the zero-sequence
component, positive-sequence component and negative-sequence component of TFSCI.
In addition, the proposed control strategy reshapes the impedance in a wide frequency
band, which enables it to cope with the HFR frequency deviations challenge caused by the
parallel compensation degree variations.

The rest of this paper is organized as follows. System description and simplified
impedance modeling of the TFSCI is given in Section 2 as a foundation of the following
analysis. Then, the proposed control strategy is studied in Section 3. The controller
parameter analysis of the proposed control strategy is studied in Section 4. The effectiveness
of the proposed control strategy is verified by experiments in Section 5. Section 6 concludes
this paper.

2. System Description and Simplified Impedance Modelling of TFSCI
2.1. System Description

The block diagram of the TFSCI connected to the parallel compensation grid is shown
in Figure 1. In Figure 1, Lf, Ln represent the filter inductors, Rf, Rfn represent the corre-
sponding parasitic resistances. C1 and C2 are the DC side capacitors, where C1 = C2 = Cdc.
Cg and RCg, respectively, represent the capacitance and parasitic resistance of the parallel
compensation capacitor. Lg and RLg respectively, represents the inductance and parasitic
resistance of transmission line.
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Figure 1. Block diagram of three-phase four-wire split capacitor inverter. 
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The impedance of the grid can be achieved as follow [10–12],
Ygp = Ygn= 1/Zgp= 1/Zgn =

RCg(sLg+RLg)+sCgRCg+1

(sLg+RLg)(sCgRCg+1)

Yg0 = 1/Zg0 =
sCg(s(Lg+3Lgn)+RLg+3RLgn)+1+sCgRCg

(1+sCgRCg)(s(Lg+3Lgn)+RLg+3RLgn)

(1)

Figure 2 shows the equivalent impedance of TFSCI and the grid. It is assumed that
TFSCI can be considered as a current source Is,pn which is paralleled with the output
impedance Zinv,pn0, while the grid can be considered as an ideal voltage source Vg,pn0 series
with grid impedance Zg,pn0. where, Zg0, Zgp, Zgn represents zero-sequence impedance,
positive-sequence impedance and negative-sequence impedance of grid, respectively.
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Figure 2. Equivalent impedance of TFSCI system and grid.

Figure 3 shows the voltage, currents, active power and negative power of TFSCI
connected to parallel compensation grid when the HFR occurs. The parameters can be seen
in Table A1 in Appendix C. Figure 4 shows the FFT of ia. From Figures 3 and 4, there are
two resonance points at 365 Hz and 930 Hz in the system. From Figure 3 it can be found that
the resonance at 431 Hz is caused by the zero-sequence components and the resonance at
930 Hz is caused by the positive-sequence and negative-sequence components. Therefore,
in order to suppress these resonances, it is necessary to analyze how these resonances
occurs.
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2.2. Simplified Impedance Modelling of TFSCI

In order to analyze how these HFR occurs clearly, some simplifications need to be
done. Since the bandwidth of the PLL is usually within a few tens of hertz, the influence
of the phase-locked loop on the impedance characteristics of the inverter can be ignored
when studying the problem of high-frequency resonance [24].

After the simplification, the block diagram of the TFSCI impedance model can be
shown in Figure 5. The detailed derivation process of Figure 5 can be seen in Appendix A.
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In Figure 5, Hdec denotes the decoupling term matrix caused by the d-q decoupling
control. Hci denotes the current controller matrix. Hdel denotes a delay transfer matrix
caused by the control delay. Hiv denotes the relationship between current ∆i to ∆udc2. Hvdc
is the dc voltage balance PI controller to balance the up and down capacitor voltages.

Hdec =

 0 −ω1L f 0
ω1L f 0 0

0 0 0

 (2)

Hdc =

 1/Udc 0 0
0 1/Udc 0
0 0 1/Udc

 (3)

Hdel =

 e−Tdels 0 0
0 e−Tdel s 0
0 0 e−Tdel s

 (4)

Hci =

 kdip +
kdii

s 0 0

0 kqip +
kqii
s 0

0 0 k0ip +
k0ii

s

 (5)

Hiv =

 0 0 0
0 0 0
0 0 3

2sCdc

 (6)

Hvdc =

 0 0 0
0 0 0
0 0 kdc0ip +

kdc0ii
s

 (7)
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According to Figure 5, the admittance from ∆
→
i to ∆

→
u can be expressed as Equation (8).

The detailed derivation process of Equation (8) can be seen in Appendix B.
Yp = 1

Km×( 1
2×(kdip+kdii/(s−jω1)+kqip+kqii/(s−jω1))−jω1L f kdq)+sL f +R f

Yn = 1
Km×( 1

2×(kdip+kdii/(s−jω1)+kqip+kqii/(s−jω1))+jω1L f )+sL f +R f

Yz =
1

Km×(k0ip+k0ii/s+ 3
2sCdc

(k0vp+k0vi/s))+s(3Ln+L f )+3Rn+R f

(8)

where, Km= e−Tdels is the system delay. k0ip, k0ii, kqip, k0ii, k0ip, k0i represent respectively the
proportional parameter and integral parameter of the d-axis, q-axis and 0-axis current PI
controller, k0vp, k0vi represent the proportional parameter and integral parameter of DC
voltage balance PI controller.

The Bode diagram of the inverter admittance after the simplification is shown in
Figure 6. In Figure 6, Yp, Yn, and Y0 represents the admittance of the inverter after
simplification, Ygp, Ygn and Yg0 are the admittance of the grid.
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Based on the impedance stability theory, system stability is determined by Zinv,pn0/(Zinv,pn0
+ Zg,pn0) [14]. When there is a lack of enough phase margin between Zinv,pn0 and Zg,pn0 at the
amplitude intersection point, the resonance will occur. According to Figure 6, the positive-
sequence impedance and negative-sequence impedance of the inverter are inductive at high
frequency, the phase difference between the impedance of TFSCI and the impedance of grid
is 178◦ close to 180◦ atamplitude intersection point 930 Hz. The zero-sequence impedance
characteristic of the inverter the zero-sequence impedance characteristic gradually tran-
sitions from capacitive to inductive and the phase difference between the impedance of
TFSCI and the impedance of grid is 176◦ close to 180◦ atamplitude intersection point
356 Hz. Figure 6 also reveals that the system has a risk of resonance at 356 Hz and 930 Hz.
Combination of Figures 3–5 and the above theoretical analysis, the following conclusions
can be obtained,

(1) The reason of HFR in the TFSCI system is that the phase difference between the zero-
sequence impedance, positive-sequence impedance and negative-sequence impedance
of TFSCI and grid are close to 180◦.

(2) The simplified model obtained in this section can accurately reflect the high-frequency
impedance of TFSCI and can be applied to the analysis and resolution of the high-
frequency resonance.

Therefore, in order to suppress these resonances, it is necessary to reshapes the zero-
sequence impedance, positive-sequence impedance and negative-sequence impedance of
the TFSCI.

(1) The reason of HFR in the TFSCI system is that the phase difference between the
positive-sequence, negative-sequence, zero-sequence impedance of TFSCI system and
grid is close to 180◦.

(2) The simplified model obtained in the previous section can accurately reflect the high-
frequency impedance of TFSCI and can be used for the analysis and resolution of
high-frequency problems.

Therefore, in order to suppress these resonances, it is necessary to reshapes the positive-
sequence, negative-sequence and zero-sequence impedance of the TFSCI.

3. Control Strategy Based on Impedance Reshaping

Based on the analysis in Section 2, the key to maintain system stability is to ensure
sufficient phase margin between the impedance of TFSCI and the impedance of grid. In
other words, the phase of TFSCI system should be closed to 0◦. Hence, an impedance re-
shaping strategy for TFSCI is proposed in this paper. In the proposed impedance reshaping
strategy, a second-order high-pass filter and a negative second order differential block are
introduced to reshape the zero-sequence impedances, positive-sequence impedances and
negative-sequence impedances of TFSCI.

A high pass filter will be selected to ensure well performance of fundamental frequency
control. The high pass filter is used to ensure a sufficiently large amplitude difference
of TFSCI impedance between HFR frequency and fundamental frequency. It is vitally
important to prevent fundamental frequency control from being influenced by the influence
which is caused by the proposed HFR suppression controller. Considering the proposed
control strategy is developed under the dq0 frame and the second-order filter is widely
used in the industrial control, the second-order high-pass filter is selected.

In addition to the high-pass filter, a virtual impedance is needed to change the
impedance of TFSCI. In order to reshape the phase of TFSCI impedance close to 0◦, a
virtual impedance Hv with resistive characteristic is needed. Figure 6 shows that the am-
plitude of TFSCI system impedance increases as the frequency increases, so it’s hard for a
constant resistance to adapt the increasing impedance amplitude of the TFSCI. Based on this
demand, a negative second-orders differential control (Hv) is used in this paper to adjust
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both the amplitude and phase of TFSCI impedance by means of its phase-frequency resis-
tance characteristic. Therefore, the high-frequency controller can be expressed as follow,

Zv = G f ilter ∗ Hv
= s2/

(
s2 + 2ζωcuts + ω2

cut
)
∗
(
−ks2) (9)

where Gfilter is the second order high-pass filter, cut-off frequency fcut = 100 Hz. Hv= −ks2,
in which Hv can be regarded as a resister whose resistance increases as the frequency
increasing, k is the controller gain. Here ωcut = 2πfcut.

From the control block shown in Figure 1, the output reference voltage of the inverter
consists of PI controller output, decoupled controller output and high frequency control
output. So, the output reference voltage of the inverter can be shown in Equation (10).
It should be noted that the purpose of the high frequency controller is to suppress the
high frequency harmonic component in the system, so the reference currents i∗d,HF, i∗q,HF
and i∗0,HF of the high frequency controller are set to zero. In Equation (10), Gid, Giq and
Gi0 represents d-axis, q-axis and 0-axis PI controller respectively. And Zvd, Zvq and Zv0
represents d-axis, q-axis and 0-axis high frequency controller respectively.

umd = Gid ∗
(
i∗d − id

)
+ Zvd ∗

(
i∗d,HF − id

)
− jω1L f iq + ud

umq = Giq ∗
(

i∗q − iq

)
+ Zvq ∗

(
i∗q,HF − iq

)
+ jω1L f id + uq

um0 = Gi0 ∗ (i∗0 − i0) + Zv0 ∗
(

i∗0,HF − i0
)
+ u0

(10)

According to Figure 6, the impedance after reshaping can be expressed as,
Yp = 1

Km∗( 1
2 ∗(kdip+kdii/(s−jω1)+kqip+kqii/(s−jω1))−jω1L f kdq+Gfilter Hv)+sL f +R f

Yn = 1
Km∗( 1

2 ∗(kdip+kdii/(s−jω1)+kqip+kqii/(s−jω1))+jω1L f +Gfilter Hv)+sL f +R f

Yz =
1

Km∗
(

k0ip+k0ii/s+ 3
2sCdc

(k0vp+k0vi/s)+Gfilter Hv

)
+s∗(3Ln+L f )+3Rn+R f

(11)

It should be noted that not only three-phase four-wire inverters, but also three-phase
three-wire photovoltaic inverters, wind turbines or energy storage inverters may also
have the risk of high frequency resonance. Because the grid-connected devices show filter
characteristic due to limited control bandwidth of the controller in high frequency range,
and the parallel compensation grid respectively performs as the capacitance characteristic
and inductance characteristic in different high frequency range, which will bring large phase
angle difference between the impedance of the grid-connected devices and the impedance
of the grid at amplitude intersection and results the high frequency resonance (HFR). The
impedance reshaping method proposed in this paper can also be applied to these devices,
because the essence of this method is equivalent to connecting a virtual resistor in series
with the impedance of the high-frequency band of the grid-connected inverter by adding
an extra current feedback branch into the control structure. Therefore, the damping of the
grid-connected equipment is increased, the phase margin of the grid-connected system is
improved, and the high-frequency resonance can be suppressed.

4. Analyses of Parameters Variation

In order to analyze the performance of the proposed method with different parameters,
the performance of the proposed method under deviations of parameters is given in
this section.

4.1. Choosing of High Frequency Controller Gain

In order to analyze the proposed control strategy and achieve well control performance,
the analysis on high frequency controller k for the proposed control strategy is of vital
importance, since k is decisive to high frequency suppression effect.
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Figure 7 shows the Bode diagram of Hv with different controller gains. From Figure 7,
it can be seen that increasing of the k can magnify the amplitude of Hv at high frequency;
however, the magnitude at low frequency is also increased. At 50 Hz, GD is −43 dB and
17.7 dB when k = 1 and 100, which indicates that the overlarge k will affect the control
performance at the fundamental frequency. Figure 8 shows the bode diagram of TFSCI’s
reshaped impedance with different values of k, which validates the above analyses that
overlarge k will affect the fundamental frequency control performance. The TFSCI system
parameters used in the analyses are shown in Table A1 in Appendix C.

From Figure 7, when k = 5, the magnitude of Hv at 50 Hz is −23 dB, which means the
high frequency controller can hardly affect the fundamental frequency control performance.
From Figure 8, when kd = kq = k0 = 5, the high frequency controller shows well reshaping
effect on the impedance of the inverter, which ensures at least 30◦phase margin in the
system. So, choose kd = kq = k0 = 5 as the high frequency controller gain of d-axis, q-axis
and 0-axis.

4.2. Filter Parameters Deviations

In the actual operation of the inverter, due to the deviation between the actual induc-
tance value and the nominal inductance value, it is necessary to analyze the influence of the
variation of the filter inductance value on the impedance reshaping effect. The following
figure shows the impedance reshaping effect with ±30% deviation of the filter inductor
Lf. It can be seen from Figure 9 that the inductance deviation basically hardly affects the
impedance reshaping effect.

4.3. Parallel Compensation Degree Variations

In the actual grid operation, the parallel compensation degree of the grid will change
with the actual demand. The following figure shows the suppression effect of the proposed
impedance reshaping method on HFR when the parallel compensation of the power grid
changes. It can be seen from Figure 10 that even if the degree of parallel compensation
changes, the proposed impedance reshaping method can still ensure sufficient phase margin
for the inverter impedance to effectively suppress HFR.

4.4. Dc Side Capacitance Variations

In the actual operation of the inverter, due to the deviation between the actual capac-
itance value and the nominal capacitance value, it is necessary to analyze the influence
of the variation of the DC side capacitance value on the impedance reshaping effect. The
following figure shows the impedance reshaping effect with ±30% deviation of the DC
side capacitance Cdc. It can be seen from Figure 11 that the capacitance deviation basically
hardly affects the impedance reshaping effect.
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4.5. Discussion of Non-Linearities System

It should be noted that the above analyses are based on the grid impedance presented
in Figure 1. It is worth discussing whether the proposed control method is still effective if
there are non-linearities devices connected to the system.

The high frequency resonance studied in this paper is caused by the small signal
instability when the three-phase four-wire split capacitor inverter is connected to the
parallel compensation grid. The high frequency resonance suppression method proposed
in this paper is also realized based on impedance reshaping under small signal. So, the
whole system can be linearized is a basis of this paper.
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In fact, when the system reaches stable working state, the devices can be linearized,
whether it is a power electronic device, a motor or other device with nonlinear charac-
teristics based on the stable working state. Under this premise, regardless of whether
there are nonlinear devices in the grid, the grid impedance and device impedance can
be aggregated into an equivalent impedance by linearizing. Then, the Bode diagram of
equivalent impedance is similar to that of grid impedance shown in Figure 6 in the paper.
The high-frequency resonance suppression method proposed in this paper is to change the
impedance characteristics of the inverter in the high-frequency band from pure capacitive
or pure inductive to pure resistive, which increases the damping of the system. So even if
there are nonlinear devices in the system, it will not affect the effectiveness of the proposed
method. In addition, the grid impedance model used in this paper is an extreme case,
which has both purely capacitive and purely inductive characteristics in different frequency
bands of grid impedance. Therefore, the proposed control method is still effective in
non-linearities system

5. Experimental Verification

To better verify the achieved conclusions, the hardware platform based on Control-
hardware-in-loop (CHIL) is established, which can be seen in Figure 12. The model of
three-phase four-wire split capacitor Grid-connected inverter system is established in
Typhoon 602+ with the time step of 1 µs. The controllers of the three-phase four-wire split
capacitor inverter are carried out in a TMS320F28335/Spartan6 XC6SLX16 DSP+FPGA
control board. And the CHIL has been used to analyze and verify the conclusion presented
in [27,28]. The parameters of the system are listed in Table A1 in section Appendix C.
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Figure 12. Hardware platform of CHIL experiment. Reproduced from [26] IEEE Access 2021.

Figure 13 shows the Steady-state performance verification of HFR suppression control
strategy. There are three stages in Figure 13a. State 1© shows the voltages, currents, active
power and reactive power of the TFSCI when HFR occurs. It can be seen that there are
high frequency harmonics in the inverter’s voltages, currents, active power and reactive
power. State 2© shows waveforms when only HFR suppression of positive-sequence and
negative-sequence is enabled. It can be seen that the resonance caused by the positive-
sequence and negative-sequence components is well suppressed after enabling the HFR
suppression of positive-sequence and negative-sequence. However, there are still high-
frequency resonance caused by zero-sequence component in the system. State 3© shows
the waveforms after further enabling HFR suppression of zero-sequence, which shows that
the resonance caused by the zero-sequence component has been well suppressed.
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Figure 13. Steady-state performance verification of HFR suppression control strategy.

Figure 13b shows the enlarged part when the HFR suppression of positive-sequence
and negative-sequence enabled. Figure 13c shows the enlarged part when the HFR sup-
pression of zero-sequence enabled. From Figure 13b,c, it can be seen that the HFR can be
suppressed within 50 ms after the proposed HFR suppression strategy enabled, which
demonstrates that the proposed HFR strategy is provided with well dynamic performance.

Figure 14 shows the effect of HFR control strategy on the dynamic performance of
fundamental frequency control. Figure 14a shows the voltages, currents of and powers of
the TFSCI when the active power step form 1 p.u. to 0.5 p.u., Figure 14b shows the voltages,
currents of and powers of the TFSCI when the active power step form 0.5 p.u. to 1 p.u. It
can be seen from Figure 14 that the proposed control strategy hardly has negative effect on
the dynamic performance of fundamental frequency.

Figure 15 shows the adaptability verification of the proposed control strategy to the
variation of the power grid short-circuit ratio. Figure 15 shows the voltage, current, and
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power waveforms of the inverter when the short-circuit ratio of the grid changes from 4.6
to 9.2 and the short-circuit ratio changes from 9.2 to 2. When the short-circuit ratio changes,
the inverter can still remain stable and well HFR suppression performance, indicating that
the proposed high-frequency oscillation control strategy has strong adaptability to the
changes in the grid impedance.
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6. Conclusions

This paper studies the HFR issue when the TFSCI connects to parallel compensation
grid. The conclusions achieved by this paper can be shown as following.

(1) From the perspective of impedance, the essence which causes the HFR is the insuffi-
cient phase margin at the intersection of positive-sequence, negative-sequence, and
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zero-sequence impedance amplitude between TFSCI and grid based on a simplifying
impedance of the TFSCI, when the TFSCI connects to the grid.

(2) In order to suppress the HFR, an impedance reshaping method has been proposed in
this paper. This method can reshape the amplitude and phase of the TFSCI impedance
in high frequency band without affecting the performance of fundamental frequency
control and ensure that the system has sufficient phase margin.

(3) The impedance reshaping method can reshape the impedance of TFSCI within wide
frequency range which makes it able to cope with the challenge of the parallel com-
pensation degree change.
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Appendix A

Figure A1 shows the small-signal circuit model of inverter in dq0-domain.
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Figure A1. Small-signal circuit model of inverter in dq0-domain. (a) d-axis small-signal circuit; (b) q-

axis small-signal circuit; (c) 0-axis small-signal circuit. Reproduced from [26] IEEE Access 2021. 
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Figure A1. Small-signal circuit model of inverter in dq0-domain. (a) d-axis small-signal circuit;
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From Figure A1, assuming ∆ds
d = ∆ds

q = 0 the transfer function matrix from perturba-
tion voltage to current response in the system frame can be expressed as,

Zout =

 sL f + R f ωL f 0
−ωL f sL f + R f 0

0 0 s(L f + 3Ln) + R f + 3Rn − 3
2sC

 (A1)

Similarly, in Figure A1, assuming ∆us
d = ∆us

q = 0 the transfer function matrix from
duty ratio to the corresponding current response in the system frame can be expressed as,

Hid =


−(sL f +R f )Udc

(sL f +R f )
2+(ωL f )

2 b =
ωL f Udc

(sL f +R f )
2+(ωL f )

2 0

− ωL f Udc

(sL f +R f )
2+(ωL f )

2
−(sL f +R f )Udc

(sL f +R f )
2+(ωL f )

2 0

0 0 −Udc
s(3Ln+L f )+3Rn+R f− 3

2sC

 (A2)

Additionally, through Kirchhoff’s current law, the zero-sequence current can be
written as,

i0 =
C f

3
d(uc2 − uc1)

dt
(A3)

Then, matric Hiv can be achieved as follow,

Hiv =

 0 0 0
0 0 0
0 0 3

2sCdc

 (A4)

Matrix Hvdc represents the dc voltage balance PI controller to balance the up and
down capacitor voltages, which can be expressed as follow,

Hvdc =

 0 0 0
0 0 0
0 0 kdc0ip +

kdc0ii
s

 (A5)

Then, ignoring the influence of the SRF-PLL and considering time delay Hdel, current
controller Hci and the d-q decoupling control Hdec, the impedance model block diagram of
the three-phase four-wire split capacitor inverter can be obtained as shown in Figure 6.

Hdel =

 e−Tdels 0 0
0 e−Tdel s 0
0 0 e−Tdel s

 (A6)

Hdec =

 0 −ω1L f 0
ω1L f 0 0

0 0 0

 (A7)

Hci =

 kdip +
kdii

s 0 0

0 kqip +
kqii
s 0

0 0 k0ip +
k0ii

s

 (A8)



Energies 2022, 15, 1486 19 of 20

Appendix B

According to Figure 6, when the proposed HFR suppression strategy is not enabled
which means the branch containing Zv is opened. So, the admittance from ∆i to ∆u can be
obtained as,

Yidq0=
Z-1

out
I-HidHdel∗Hdc(Hdec-Hci)−HdcHciHivHvdcHidHdel

(A9)

By reference [29], the admittance in the d-q-0 domain can be equivalently transformed
into the admittance in sequence domain as,

Yipn0= TZYdq0T−1
Z =

[
Yipn 0

0 Yi0

]
=

 Y11 Y12 0
Y21 Y22 0
0 0 Y33

 (A10)

where,

TZ =
1√
2

 1 j 0
1 −j 0
0 0

√
2

 (A11)

Taking the responding matrixes to above equation, then Equation (8) can be can be
achieved.

Appendix C

Table A1. Three-phase Four-wire Split Capacitor Grid-connected Inverter Parameters.

Symbol Parameter Value

Us Rated voltage 380 V
Pn Rated power 30 kW
f 1 Fundamental frequency 50 Hz
fs Switching frequency 5 kHz
Lf Filter inductance 3 mH

RLf parasitic resistance of filter inductance 0.02 Ω
Lg Grid inductance 1 mH

RLga parasitic resistance of Grid inductance 0.02 Ω
kpp Proportional gain of PLL controller 0.16
kpi Integral gain of PLL controller 0.25
kdip Proportional gain of d-axis current controller 1
kdii Integral gain of d-axis current controller 18
kqip Proportional gain of q-axis current controller 1
kqii Integral gain of q-axis current controller 18
k0ip Proportional gain of zero-axis current controller 3
k0ii Integral gain of zero-axis current controller 54
kdcp proportional parameter of DC voltage balance PI controller 2.1
kdci integral parameter of DC voltage balance PI controller 4.2
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