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Abstract: Battery electric vehicles (BEVs) are currently enjoying rising sales figures. However, BEVs
still have problems with customer acceptance, partly due to limited driving ranges. To improve the
situation, this paper introduces a novel approach utilising temperature-dependent efficiencies using
an economic model predictive control approach (MPC) in combination with an active grille shutter in
order to accelerate the heating of the permanent magnet synchronous machine. The measurements
of temperature-dependent component efficiencies on a powertrain test bench are presented and
analysed in detail in the speed/torque range. Thermal models based on the lumped parameter
thermal network approach were developed and validated as part of the system-level validation
against a US06 wind tunnel measurement. After the build-up and implementation of the MPC,
various simulations were conducted. For the investigations, three driving cycles were considered
at component start temperatures of 20–80 ◦C. The results show that using the MPC with the grille
shutter can save 0.69–2.02% energy at the HV level compared to the rule-based control with a shutter,
of which up to 1.02% is due to temperature-dependent efficiencies. Comparing the MPC with the
grille shutter to a vehicle without a shutter, savings of 2.8–4.2% were achieved, while up to 1.67%
was achieved due to temperature effects in the powertrain.

Keywords: PMSM; temperature-dependent efficiencies; economic model predictive control; thermal
field weakening; active grille shutter; road transport

1. Introduction

In recent years, the sales of battery electric vehicles (BEVs) have continuously grown,
reaching 1.5 million sales globally in 2019, with a total market share of around 1% [1]. The
intention to buy a BEV seems to be quite high. It ranged from 16% in the United States to 45%
in Japan in 2021 [2]. However, many consumers still have concerns, especially regarding
the battery charging infrastructure and times as well as the driving range [2,3]. Studies such
as [4] show that the boundary conditions, especially regarding the charging infrastructure,
are uneven between countries even within Europe. While [5] highlights a lack of charging
infrastructure in the Górnośląsko-Zagłębiowska Metropolis in Poland as one reason for
the low BEV sales in the country, the study in China presented in [6] concluded that
experiencing electric mobility enhances the willingness to buy an electric vehicle.

On the vehicle side, approaches such as reliable range prediction and fast charging are
being researched to improve customer acceptance [3,7,8]. Amongst others, these aspects
are being addressed by the CEVOLVER project [9], which targets a higher long-distance
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travel capability of BEVs, reducing the battery size to minimise hardware costs and also
mitigating the environmental impact of battery production. The trade-off between the
battery size, trip time, and charging power was already analysed in [10]. Another aspect
that enhances the long-distance travelling capability is reducing the power demand of the
vehicle and thus increasing the range per battery charge. As intelligent control strategies
have been proven to be an efficient way to increase the energy efficiency of various vehicle
types, this aspect is the focus of this contribution.

Optimal control of thermal systems using model predictive control (MPC) has been a
topic of intensive research since the 1990s in the field of climate control in buildings [11].
Novel approaches in this domain utilise predictive data such as weather forecasts, as was
considered in [12–14]. In recent years, thermal vehicle management, especially in BEV
applications, has received more and more attention. In extreme conditions, the driving
range can be reduced by up to 60%, especially due to the heating of the cabin in winter
conditions [15–18]. Thus, several publications have shown how control strategies combined
with hardware measures, especially heat pumps, can lead to significant improvements.
Around an 11% reduction in energy consumption for a New European Driving Cycle
(NEDC) at −10 ◦C was achieved in [19] using an artificial neuronal network (ANN) in
combination with optimisation steps. In contrast, in [20], energy savings of 34% at a 10 ◦C
ambient temperature and around 8% at −10 ◦C were shown using a rule-based strategy
optimised with a parameter variation. Next to cabin heating, the battery was also a focus of
interest, with the main emphasis on ageing as well as energy savings. In [21], a two-layer
MPC was used to improve the efficiency by 3–8% depending on the boundary conditions.
The energy efficiency of the battery thermal control was optimised for a BEV by a stochastic
model predictive control (SMPC) approach in [22]. In [23], energy savings of up to 5%
for a custom driving cycle were achieved using an MPC for a plug-in hybrid electric
vehicle (PHEV).

Powertrain energy management on a system level towards temperature-dependent
efficiencies has been a focus of interest for hybrid electric vehicles (HEVs) and internal
combustion engine (ICE) applications already. In [24], a 2% fuel consumption advantage
was achieved for a vehicle with an ICE powertrain by reducing the friction and power
demand of the auxiliaries for an urban dynamometer driving schedule (UDDS) cycle with
a dual-mode coolant pump that can run in mechanical and electrical modes in combination
with a rule-based controller. Additionally in [25], a comparison of a mechanical/electrical
coolant pump combined with a continuous/switching valve using model predictive control
for an ICE powertrain was evaluated. The main outcome was a saving of 2% for the EPA
Federal Test Procedure (FTP75) and 1% for the US06 cycle by increasing the oil and engine
metal temperature, which led to friction reduction. In [26], an MPC was used to minimize
the fuel consumption of an ICE vehicle considering the engine metal and oil temperature
with regard to fuel efficiency. On the other hand, in [27], an optimisation-based strategy for
cabin climatisation, engine, and exhaust gas aftertreatment of an HEV was presented, which
showed fuel savings of 10–26% for a real-world cycle and the UDDS cycle by optimising
the heat harvesting from the ICE to heat the cabin. An electric powertrain can also be used
as a heat source for a heat pump system, as shown in [28] for an HEV. In combination with
waste heat recovery from the exhaust gas after treatment, fuel savings of up to 13.1% were
achieved in the NEDC driving mode.

The contributions of this paper are as follows:

• Energy management through economic model predictive thermal control for BEV
application;

• Controlling the temperature of the motor and inverter to utilise temperature-dependent
efficiencies, especially by closing the shutter for faster heating;

• Reduced pump and fan power draw, as well as decreased shutter-based drag force by
optimal control;

• Detailed controller-oriented modelling of the vehicle and thermal system, as well as
the motor and inverter, including system-level validation;
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The paper is structured as follows: First, in Section 2, an overview of the hardware
setup is presented, followed by Section 3, which provides an introduction to the MPC
approach and the problem formulation. Then, the temperature-dependent efficiencies for
the electric machine and inverter are described in detail in Section 4, followed by the system
modelling and the system level validation in Section 5. The results of the comparison
between the MPC controller and the rule-based approach are described in Section 6. Finally,
Section 7 concludes the paper.

2. Overview of the Setup

The vehicle that was used for the investigations was a Fiat 500, which was converted
from a combustion engine vehicle to a BEV in the Smart Wheels Project [29] and then rebuilt
with new powertrain and thermal components. Neither the vehicle nor the measurements
throughout this paper were built or obtained within the CEVOLVER project. The parame-
ters used for a physics-based vehicle model, which were already partly presented in [30],
are summarized in Table 1. The gross weight of the vehicle was 1335 kg, including the
driver and battery. As is typical for most electric vehicles, it had a fixed gear ratio. The
drag coefficient was measured in a wind tunnel.

Table 1. Vehicle parameters for longitudinal model.

Vehicle Parameter Value

Vehicle type BEV
Gross weight : m [kg] 1335

Gear ratio : iGear [-] 9.59
Drag coefficient : cd [-] 0.325

Front area: A [m2] 2.1
Dyn. tyre radius : rdyn [m] 0.27

Rolling resistance coefficient fr [-] 0.0107

The thermal hardware layout is depicted in Figure 1a. It consists of a coolant pump,
an inverter, an electric machine motor, and a radiator. A 50/50 water–glycol mixture was
used as a cooling fluid. The motor was cooled by a water jacket, while the inverter was
cooled using a cooling plate. The coolant was circulated by a Pierburg CWA100 pump,
which has a rated electrical power of 100 W [31]. A fan located behind the radiator was
used to increase the air volume flow. The depicted shutter was considered only for the
simulation. In Figure 1a, the control variables are marked separately with red arrows to
highlight the degrees of freedom. The fan was controlled using the rotational speed signal
nFan, while the pump received the rotational speed signal nPump as a set point. The shutter
position was controlled with the continuous opening signal φshtr.
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The powertrain and the electrical topology are depicted in Figure 1b. The layout
consists of a DC high-voltage lithium-ion battery, a low-voltage DC/DC converter (LV-
DC/DC), as well as an inverter. For the inverter, a Brusa DMC 524 was used, which has a
voltage range of 120–450 V, with a maximum power of 105 kW and a rated efficiency of
97% [32]. The vehicle used an interior permanent magnet synchronous motor (IPMSM)
of the Brusa HSM1-6.17.12 type with three pole pairs. It deliveres a continuous torque of
130 Nm and a peak torque of 220 Nm [33]. The maximum speed was 12,000 rpm and the
motor has a rated efficiency of 95%. The gearbox and the final drive are air cooled. The
system of interest in this study is highlighted in the figure by the dashed box.

3. Model Predictive Control as a Method for Controlling Temperatures of the Powertrain

Control methods that use a system model to predict process variables and calculate a
control variable trajectory are known as model predictive control (MPC). An MPC uses the
current states of the system and predictive data to optimise the future states and controls
based on a scalar cost function. When formulating the optimisation problem, constraints
can be directly included, for example, with the Lagrange function. This is an advantage
of the MPC approach in contrast to indirect methods, which are based on Pontryagin’s
minimum principle [34,35]. In MPCs with reference tracking, the deviation of the state
variables from a given reference trajectory is minimized by a cost function. In contrast, the
cost function of an economic MPC has no reference trajectory and is composed solely of
economic cost terms, such as energy consumption [36].

The cost function J in (1) for the economic MPC of this contribution describes the
power losses and electrical consumption of the components considered. This includes
the power loss of the electric motor PEM,Loss and the inverter PInv,Loss, the electrical power
demands of the coolant pump Pel,Pump and the fan Pel,Fan. For the low-voltage (LV) actuator
supply, a constant electrical DCDC efficiency of ηDCDC = 0.9 was considered. When the
grille shutter is closed, the cost function value is reduced by PShutter, which describes
the reduced power demand by lowering the drag coefficient cd. Due to the low energy
consumption, the electrical power demand of the grille shutter motor was neglected.

J = PEM,Loss + PInv,Loss − PShutter +
Pel,Pump + Pel,Fan

ηDCDC
(1)

y =
[

PEM,Loss, PInv,Loss, PShutter, Pel,Pump, Pel,Fan

]T
= f (x, u, nEM, MEM) (2)

.
x = f (x, u, t) (3)

x = [TEM, TInv, TCoE, TCoI , TCoR]
T (4)

u =
[
nPump, nFan, φshtr

]T (5)

The considered system model is described by (2)–(5), starting with the system output
vector y. The instances of the letter “T” at the right side of the brackets in (2), (4), and (5)
indicate that the content is transposed from a column vector to a row vector. The outputs are
the above-described powers, which are dependent on the states x, the controls u, as well as
the motor speed nEM and the torque MEM. The states are described in (4), which are solely
the temperatures of the motor TEM, the inverter TInv as well as the coolant temperature
downstream of the motor TCoE, inverter TCoI , and radiator TCoR. The controls in (5), which
are highlighted in Figure 1a, are the speed of the coolant pump nPump and the fan nFan, as
well as the grille shutter position φshtr. The system model, which was integrated using an
implicit Runge–Kutta second-order method, is described in (3) [37]. Here,

.
x is the time

derivative of the state x, and t is the time in the continuous domain [34,35].
In (6), the constraints on the temperature states xi of the thermal system are defined.

All temperature limits were set to their respective values taken from the data sheets. For
the water–glycol coolant, the limits were set according to the evaporation and solidification
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temperature with a safety reserve at these temperatures. The limits of the controls ui in (7)
were set according to the physical limitations of the real components.

xmin,i ≤ xi ≤ xmax,i, i = 1, . . . , 5 (6)

umin,i ≤ ui ≤ umax,i, i = 1, . . . , 3 (7)

The high-performance software package acados was used to set up and solve the
non-linear-problem (NLP) [38]. acados contains algorithms by which the cost function, the
system equations, and the constraints can be transformed into an NLP. The optimisation
problem, which was discretized using the multiple-shooting method, was solved using
the sequential quadratic programming method (SQP). In SQP, the discretized Lagrangian
function containing the cost function and the constraints was quadratically approximated
using a Taylor series. The resulting quadratic problem was solved using the gradient-based
interior-point solver HPIPM, which is based on the linear algebra software framework
BLASFEO [39,40]. Furthermore, regularization methods integrated into acados were applied
to ensure a positive definite Hessian matrix [41]. In order to stabilize the MPC against a
temperature limit violation, soft constraints were added as quadratic costs that penalized
the distance to the constraint when exceeded.

4. Discussion of Temperature-Dependent Electrical Efficiencies of Motor and Inverter

In this section, the temperature-dependent efficiencies are explained in the speed/torque
domain after introducing the measurement setup. For both components, the inverter and
electric machine, the losses were measured on a test bench in the whole speed/torque map
at different temperatures and DC voltages. The measurement setup, which was already
shown in [30], is depicted in Figure 2, showing the motor and inverter on a test bench. The
DC supply controlled the voltages at the input of the inverter to 300 V, 350 V, and 400 V,
while the conditioning systems controlled the temperatures of the motor and inverter using
the internal measurements from the NTC sensors of the inverter. Each operating point was
measured at temperatures of −10 ◦C, 30 ◦C, 70 ◦C, and 110 ◦C within a range of +/−3 ◦C.
In order to obtain the efficiencies, a speed/torque measurement at the shaft flange was
used, as well as the power draw at the inverter input and output [30].
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4.1. Temperature-Dependent Motor Losses

Figure 3a shows the changes in the motor power losses when the temperature increased
from 30 ◦C to 110 ◦C at a constant battery voltage of 400 V. Negative values represent a loss
reduction at higher temperatures. When the temperature increases in low load operations at
medium to high speeds, such as during constant highway driving, there is a potential of up
to 1.3 kW in the sweet spot considering the motor loss. Nevertheless, higher temperatures
are not beneficial for high load operations at low speeds, leading to loss increases of up to
1.2 kW.
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These observations can be explained considering the motor loss mechanisms. In a
PMSM, the total losses PLoss,Tot,PMSM can be divided into copper PLoss,Copper, iron PLoss,Iron,
magnet PLoss,Magnet, and mechanical losses PLoss,Mech:

PLoss,Tot,PMSM = PLoss,Copper + PLoss,Iron + PLoss,Magnet + PLoss,Mech (8)

For all loss mechanisms, excluding the mechanical loss, the specific electrical resistance
ρ(T) as a function of temperature is relevant [42]:

ρ(T) = ρ0·[1 + α·(T − T0)] (9)

At a certain temperature T, it can be calculated by the specific initial resistivity ρ0
at temperature T0 and the temperature coefficient α, which is positive for metals such as
copper and iron. The first motor loss mechanism PLoss,copper is the most significant at high
motor torques, as the current in the copper windings rises and the losses increase with
respect to the temperature-dependent phase resistance [42,43]:

PLoss,Copper = i2·ρCu(T)·
l
A

= i2·ρ0·[1 + α·(T − T0)]·
l
A

(10)

The copper loss is calculated by the specific electrical resistance ρCu(T), the length l,
and the cross-section A of the conductor, as well as the current i. According to (10), it
increases proportionally with the temperature.
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Second, the temperature dependence of the iron losses PLoss,Iron can be evaluated
by splitting it into two main loss mechanisms, the Eddy PLoss,Eddy and Hysteresis Losses
PLoss,Hyst [44]:

PLoss,Iron = PLoss,Eddy + PLoss,Hyst (11)

Due to the frequent change in the magnetic flux density, a voltage is induced inside
the stator and rotor laminations, which leads to eddy currents [45]. Eddy current losses are
derived from Maxwell’s law [46]:

PLoss,Eddy =
π2

6
1

ρFe
d2 f 2B̂2 (12)

In (12), the eddy current losses are derived from the specific electric resistance ρFe and
the diameter d of the metal sheets, as well as the frequency f and amplitude of the magnetic
flux density B̂. Under consideration of (9), eddy currents are inversely proportional to
temperature and quadratically proportional to frequency. This explains the higher efficiency
at increased temperatures in the field-weakening range in Figure 3a.

The specific hysteresis losses PLoss,Hyst are defined by the space inside the hysteresis
loop of magnetisation, which results from the material behaviour. Because of a decreasing
saturation polarisation for the laminations with increasing temperatures, the hysteresis
losses can also be reduced by an increased temperature of the PMSM [43].

Likewise, the loss mechanism PLoss,Magnet in permanent magnets is due to eddy cur-
rents that heat the magnets [43]. Consequently, the remanence flux density of the perma-
nently excited rotor is reduced by these higher temperatures, which also decreases the
maximum possible torque [47,48]. However, the amount of required negative d-current in
the field-weakening area is reduced as well. The lower flux density B̂ at increased magnet
temperatures additionally lowers the iron losses, as can be seen in (12). The mechanical
losses PLoss,Mech in the PMSM are mainly dependent on the rotational speed, as they are
related to friction losses in the bearings and windage losses in the airgap between the stator
and rotor. While the viscosity of the oil in the bearings decreases with higher temperatures,
the viscosity of the air in the airgap increases. However, both loss mechanisms are several
orders smaller than the electromagnetic losses described before, so they can be neglected
considering Figure 3a [44].

4.2. Temperature-Dependent Inverter Losses

The main loss sources in inverter operations are the insulated gate bipolar transistors (IG-
BTs) [49] as well as the copper losses in the cables. The overall inverter losses are approximated
by PLoss,Tot,Inv:

PLoss,Tot,Inv = PLoss,Switch + PLoss,Cond + PLoss,Copper (13)

The IGBTs introduce heat to the inverter by switching losses PLoss,switch, which are
dominant at high frequencies, as well as conduction losses PLoss,Cond [49]. Furthermore, the
copper losses in cables PLoss,Copper, which were described by (10), are relevant. While the
switching losses proportionally increase with rising temperatures due to a change in the
collector current slopes during a switch event, as described in [50] and [51], the conduction
losses have a changing NTC to PTC behaviour with an increasing current injection [51,52].
Thus, in low load operations, respectively at low current injections, the conduction losses
decrease with increasing temperatures, due to the NTC behaviour. This can be seen in
Figure 3b for a small area under 50 Nm, as the conduction loss NTC behaviour dominates
over the copper and switching losses. The maximum loss reduction for high temperatures is
about 400 W. At higher loads and higher current injections, the PTC behaviour of PLoss,Cond
as well as the PTC behaviour of the copper and the switching losses are the loss terms
most relevant. This leads to increasing losses at higher temperatures around a maximum
difference of 1 kW for high torques. As switching losses increase with higher frequencies,
they become dominant over the conduction losses at high speeds. Therefore, the benefit of
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an increased temperature at higher speeds diminishes and is eventually lost, as can be seen
in Figure 3b for speeds above 9000 rpm [51].

5. System Modelling and Validation

In this section, the model of the system and the electrical components are presented.
First, the thermal and electrical modelling of the motor and inverter are described. Then,
the thermal system components are presented. After the shutter modelling section, the
system validation is shown.

5.1. Thermal and Electrical Modelling of Motor and Inverter

The lumped parameter thermal network (LPTN) modelling approach for thermal mod-
elling of the electrical components for determining the relevant component temperatures
was applied as shown in [53,54]. In LPTN models, heat transfer processes are abstracted by
equivalent electric circuit diagrams [55,56]. The analogy of the electrical current I and heat
flow

.
Q was used, as shown in the following equation:

∆T = RTherm·
.

Q⇔ U = REl ·I (14)

Parts of a component with similar temperatures are lumped together as a single node
in the network, which is separated from other nodes by thermal resistances to represent
the heat transfer between different parts [57]. The proposed LPTN models for the electric
motor and inverter in this contribution are shown in Figure 4.
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The high abstraction level of the LPTNs in Figure 4 enables a low computing effort,
which is beneficial for model predictive control. Only two temperature nodes are used for
the electric motor, representing the average motor temperature TEM and the coolant outlet
temperature TC−out. Similarly, the nodes TJ and TC−out represent the junction temperature
of the inverter and the coolant outlet temperature, respectively.

The coolant inlet temperature TC−in and the environment temperature TE are used as
boundary conditions for the thermal systems. They are depicted as temperature sources.
Furthermore, the losses Pi are introduced as heat sources. In addition, the capacitances Ci
represent the thermal masses, which are defined by the gravitational mass and the specific
heat capacity. Finally, the resistances Ri−j represent the thermal resistance, which hinders
the heat flow from one component i to another component j.

When summarizing the LPTN system equations, the general state-space representation
can be derived [34,37].

.
x = Ax + Bu
y = Cx + Du

(15)

The exact state space matrices A, B, C, and D, as well as the state vector x and the
input vector u are used to calculate the output vector y and the time derivative

.
x. Although
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the system formulation derived from the LPTNs is linear, the usage of nonlinear resistances
(16) results in a nonlinear system. The convective heat transfer, representing the laminar
and turbulent coolant or air flow, is modelled as in [58] as a function of the fluid flow rate
.

V and the fluid temperature T:

Ri−j = Rth,re f ·
( .

Vre f
.

V

)bth−αth ·(1−
Tre f

T )

·
(Tre f

T

)ath

(16)

The factors αth, ath, and bth are fitting coefficients determined in the identification
process, while Rth,re f ,

.
Vre f , and Tre f are reference values for the thermal resistance, volume

flow, and temperature, respectively. The resistances RC−C, RJ−C, RJ−E, and RC−EM are
modelled according to (16). As the housing of the motor is modelled indirectly, RE−C uses
(16) twice. The equations are multiplied, once for the air flow and once for the coolant
flow. On the other hand, REM−E represents the heat conduction through the shaft to the
gearbox, which is assumed to have an ambient temperature. Therefore, it is modelled as a
constant [55]. Due to the sensitive temperature dependency of IGBT materials, the junction
temperature is taken into account for modelling the capacity CJ and it is modelled as in [59].
All other capacitances are assumed to be constant.

Finally, for the electrical modelling, temperature-dependent loss maps were used to
create polynomials of the fourth order as a function of speed and of second order as a
function of torque using the MATLAB curve fitting toolbox [60]. For the model of the plant
and the controller, temperatures of 30 ◦C and 110 ◦C were considered at 400 V. In the plant
model, values outside of this range were clipped.

5.2. Modelling of Thermal System Components

The modelling of the thermal system components, including the pump, fan, radiator,
and shutter, is explained in the electrical as well as the fluid mechanical domain. For
modelling, the pump speed was correlated to the volume flow as well as the power draw
with a second-order polynomial dependency. The dynamic behaviour was considered with
a first-order lag element. The fan model was map-based and combined with a first-order
lag element as well. The air velocity through the radiator was correlated by polynomials of
the third order regarding the vehicle velocity and of the first order regarding the fan speed.
The data were measured at a wind tunnel roller dyno test bench.

The radiator was modelled by using the ε-NTU Theorem for crossflow heat exchangers
according to [61,62]. It defines the effectiveness ε to calculate the transferred heat

.
Q between

the two fluid flows from the maximum possible one
.

Qmax [27]:

.
Q = ε

.
Qmax (17)

Tcoolant,out = Tcoolant,in −
ε

.
Qmax

.
Ccoolant

(18)

The effectiveness ε for crossflow heat exchangers can be found in [61] and [63]. It is
calculated based on the dimensionless quantity of the number of transfer units (NTUs),
which characterizes the size of the radiator. In (18), the radiator coolant outlet temperature
is shown, which is required for the system model. It is obtained by an energy balance
around the fluid in the radiator with

.
Q from (17) as a heat source considering the inlet

temperature Tcoolant,in and the heat capacity flow
.
Ccoolant. The steady-state coolant outlet

temperature Tcoolant,out was super positioned with a first-order lag element.

5.3. Active Grille Shutter (AGS)

In this contribution, the potential of an active grille shutter was investigated as an
additional degree of freedom regarding cooling, as well as a measure to reduce the vehicle’s
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air drag. The vehicle was modelled using physics-based equations as a forward simulation
model with a PID-based driver model. The basic correlation in order to obtain the motor
speed and torque is given in the following equation [64]:

∑ FWhl = FAir + FRoll + FSlope + FAccel (19)

In (19), the total driving force FWhl at the wheel level is calculated as the superposition
of the air drag resistance FAir, the rolling resistance FRoll , the slope resistance FSlope, and the
acceleration resistance FAccel . As the air resistance force is of special interest for the shutter
actuation, the equation is shown in detail in [64], as follows:

FAir = cd(φshtr) · A · ρAir ·
vrel

2

2
(20)

The air drag force FAir is calculated using the front area of the vehicle A, the air density
ρAir, and the relative air velocity vrel , which is a superposition of the vehicle speed and
the wind speed. Furthermore, the drag coefficient cW(φshtr) is used, which in contrast
to [64] in this paper is dependent on the shutter position φshtr. Closing the latter reduces
the coefficient, leading to a decreased driving resistance.

Using an AGS, the air volume flow through the coolant radiator and by this, the
heat dissipation can be actively controlled, influencing the coolant and the temperatures
of the components [65–67]. Furthermore, closing the AGS decreases the cd-value up to
5.1% [65,68–74]. The control of the AGS has been studied in detail for vehicles with internal
combustion engines in the past for fuel savings by lowering the air resistance and engine
friction while not exceeding the maximum temperature for safe engine operation [66,68,75].
The influence of the shutter position was modelled in this work by approximating the
CFD-based and experiment-based curves from [66,69,76,77]. Wolf [69] defined a function to
correlate the opening angle with the opening proportion for rotatory AGS flaps depending
on the number of flaps per air duct and the relative rotation direction to each other. This
correlation was used to calculate the opening proportions when possible; otherwise, a
linear relationship was assumed.

The relative change in the experimentally determined cd-values is shown in Figure 5a.
It has a sigmoidal shape. The latter can be modelled using a logistic function, which is also
commonly used in neural networks [78]. Equation (21) shows the modelled function of the
drag coefficient cd(φshtr) as a function of the opening proportion of the AGS φshtr and the
constants Kshtr,cw ,i (i = 1, . . . ,4).

cd(φshtr) = ∆cd

 Kshtr,cw ,1

1 + e
− φshtr

Kshtr,cw ,2
+Kshtr,cw ,3

+ Kshtr,cw ,4

+ cd,Shtr,closed (21)

The base drag coefficient is represented by cd,Shtr,closed, whereas the drag increase by
opening the shutter is considered in ∆cd. The air mass flow rate curve was approximated
quadratically, as shown in Figure 5b on the right side. Wind forces and construction-related
gaps can cause air to flow through the AGS even when it is closed [65,66,69,79]. In this
contribution, a design according to Pfeifer [65] was used, which had an air leakage of 2.5%
and was approximately speed-independent. In the same contribution, the air resistance
depending on the longitudinal position of the AGS was investigated in a wind tunnel.
The best savings were achieved with the AGS in the far front. For consistency, the drag
coefficient reduction of 4.7% from [65] was used in the simulation.
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5.4. System-Level Model Validation

After describing the model design and the fitting of the components in detail, the
validation is shown at a system level. The component models were parametrized using
the worldwide harmonized light vehicles test cycle (WLTC) at 20 ◦C and 35 ◦C. As the
component level validation already showed good results, a system-level validation was
done. This was more challenging, as the components influenced each other. Moreover,
two consecutive US06 driving cycles at 20 ◦C measured on a roller dyno were used for
the validation, which contained operation points that were not part of the fitting to the
WLTCs. The system layout shown in Figure 1a indicates a residual thermal system. The
state of the coolant mixing with the coolant from the powertrain branch was known from
measurements. For the system validation, this was considered an imposed boundary
condition assuming ideal mixing before entering the radiator. The vehicle velocity and the
temperatures within the system are depicted in Figure 6 within the time domain.
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Next to the velocity, Figure 6 depicts the junction temperature TJ measured and
simulated using the LPTNs from Figure 4b. This temperature correlated very well with
the torque output of the motor as the current increased. Because the thermal mass of the
junction was small, high frequencies in the temperature signal occurred. In contrast, the
time constants of the other thermal masses were much higher, which led to a stiff problem.
In order to reduce the stiffness of the problem for longer possible integration intervals,
the thermal mass of the junction was increased. As a result, the simulated temperature
traces tended to follow the average temperature, as seen in Figure 6. This resulted in high
maximum deviations of up to 10.97 ◦C, but a low RMSE.

Below the inverter temperature in Figure 6, the motor temperature TEM is depicted.
It can be seen that the highest overall temperature rise within the system occurred with
the motor starting at 20 ◦C and ending around 70 ◦C. Peak deviations of up to 9.66 ◦C and
an RMSE of 3.81 ◦C can be seen, as the temperature estimation was constantly too low.
Because the deviations need to be considered in the context of the high temperature rise,
the fitting is considered sufficient, also because the tendencies of the temperature traces are
matched well. Next to the motor and inverter temperatures, the coolant outlet temperatures
of the radiator TCoR, the electric motor TCoE, and the inverter TCoI are depicted. Generally,
considering a maximum RMSE of 0.56 ◦C and a maximum deviation of 1.69 ◦C throughout
all coolant temperatures, the fitting is considered to be good.

6. Simulation Results: Efficiency Increase Using Model Predictive Control

In this section, the comparisons of the MPC approach with the rule-based baseline
with and without shutter are made. First, the considered driving cycles, as well as the
rule-based baseline strategy, are presented. Then, the different control approaches are
compared energetically.

6.1. Introduction: Driving Cycles and Rule-Based Baseline Strategy

For this contribution, three different driving cycles were investigated, namely the
WLTC, the so-called Eifel Cycle, and a Highway Cycle. The velocity profiles can be seen in
Figure 7. The WLTC is well known for its length of 23.26 km while the Eifel Cycle is a cycle
on rural roads with a highway section at the end. The latter passes the Eifel area in Western
Germany, which has many uphill and downhill slopes. It has slopes of around ±4.7%, a
length of 87.7 km and an altitude between 77 m up to 586 m. It is commonly used for real
driving emission (RDE) homologation purposes as well. The highway cycle was a round
trip from Aachen (Germany) to Cologne (Germany) and had a length of 125 km. The Eifel
Cycle and the Highway Cycle were based on measurements taken during real test drives.
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In this section, the functionality of the rule-based controller is described, which is
the baseline for the energy comparison. In Figure 8, the controller structure is depicted
schematically in a simplified way, referring to the temperature-defined hysteresis loops
from [27], while the temperature limitations were chosen in accordance to prevent a boiling
coolant and thermal failure [30]. Therefore, the default controls constitute the safety
operation point for the PMSM and inverter, as described in [32,33].
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For the rule-based strategy, the pump runs at a minimum of 5000 rpm in order to
distribute the heat and cool the system. Moreover, the shutter is closed, which is why
the fan is turned off. Each monitored temperature Ti within the system is compared to
its desired threshold Ti,Des. If a temperature exceeds its desired set point, a qualifying
timer t counts for as long as the temperature is exceeded. When the timer surpasses the
threshold tOn, the pump speed is increased depending on the temperature difference. In
addition, the shutter is opened and the fan is activated. The fan speed depends on the
maximum temperature exceedance, as well as the vehicle speed. With higher vehicle
speeds, the relative air velocity increase by the fan is reduced. Thus, the fan speed is
reduced with higher vehicle speeds. If all temperatures are below the desired threshold, a
timer starts counting and when it exceeds the threshold tO f f , the system is set back to the
default mode. The counting is reset if one of the temperatures exceeds its threshold during
the qualification.

6.2. Evaluation of the Potential of the Economic Model Predictive Control

In this section, the energy comparison of the different controllers is presented. Two
controllers were considered in detail—a rule-based controller (RB) with a shutter and
the economic model predictive control (MPC) with a shutter. Afterwards, a comparison
between the same MPC and the rule-based controller without a shutter is presented. All
simulations were carried out considering an ambient temperature of 20 ◦C.

For analysing the system, an energy balance around the powertrain including the
DCDC converter and the low voltage actuators is shown in (22). The energy balance
boundaries are in line with the system of interest shown in Figure 1b.

EHV = EWheel + EEM,Loss + EInv,Loss +
Eel,Pump + Eel,Fan

ηDCDC
(22)

The energy balance considers the high voltage energy draw EHV for the respective
controller case. The gear box and final drive efficiencies were assumed to be ideal and were
therefore excluded. The total wheel energy EWheel includes the energy demand reduction
by the shutter. The latter shifts the torque delivered by the motor and inverter and by
this, also influences the losses, as shown in Figure 3. For the acceleration case, the energy
demands EEM,Loss, EInv,Loss, Eel,Pump, and Eel,Fan are positive, which means an increase of
the energy drawn from the HV system, while during recuperation, all loss terms decrease
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the energy that is stored in the HV battery. Subtracting the recuperated energy from the
energy demand during acceleration leads to the overall energy demand, which is finally
used for the efficiency calculation.

The first cycle to be evaluated was the Eifel Cycle, with an ambient temperature of
20 ◦C, which was also the initial temperature of all the components. The results are depicted
in Figure 9. In the following figures, the shutter position φShtr = 1 indicates a closed shutter,
while φShtr = 0 reflects an open shutter. In the first half, the RB and the MPC both promote
heating of the system to save energy by running the pumps at their minimum speed while
keeping the shutter closed and the fan turned off. In rule-based strategies, it is common to
maintain a high-volume flow to avoid derating by overheating. Thus, the pump runs at a
base speed of 5000 rpm. The MPC has a minimum speed of 1000 rpm in order to avoid hot
spots, as temperature exceedances can be omitted with this approach using the predictive
information. For the economic MPC, the reason the system was not cooled is clear from the
losses in Figure 3 and the speed trace in Figure 7. Due to the low to mid speeds and torques,
the inverter losses were smaller at a high temperature, while the motor had generally small
losses in this operation area. In addition, potential actuator costs supported the heating.
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Figure 9. Comparison of MPC and rule-based strategy (RB) regarding motor temperature TEM, motor
outlet coolant temperature TCoE, pump speed nPump, and shutter position φShtr for the Eifel Cycle at
20 ◦C initial component temperature and 20 ◦C ambient temperature.

In the second half, starting at 3100 s, it can be seen that the pump and the shutter of the
base strategy started to cool the system, as the coolant temperature after the motor TCoE was
the first to exceed its target value. Since the cycle was very transient at this point, resulting
in high losses, the base strategy repeatedly cooled the system until the temperature dropped
sufficiently. Meanwhile, the MPC stayed in the heating mode, leading to a divergence of the
motor, inverter, and coolant temperatures between the RB and MPC. The final temperature
difference for the motor was 32.5 ◦C. The heating was targeted because over the deployed
horizon of 600 s, the high motor temperature is beneficial due to the higher driving speeds
ahead in the cycle. Around 5400 s, the shutter and the pump started to be controlled by the
MPC to cool the system. This is because the end of the horizon 600 s later was predicted to
exceed the coolant temperature limit. As it can be seen in Figure 9, the MPC controlled the
coolant temperature along its limit by slightly opening the shutter and increasing the pump
speed, consuming minimal actuation energy. The overall savings following (22) were 1.55%
less energy consumption at the HV level. The elevated temperatures of the powertrain led
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to a 0.61% efficiency increase, while the rest was achieved by reduced actuator usage and
the closed shutter.

Next to the Eifel Cycle, the Highway Cycle was analysed using a starting temperature
of 80 ◦C. The starting temperature reflected that the starting point is after a battery charging
break on the highway after a long drive. Thus, the prior loss-generated heat was already
distributed. In Figure 10, the results for both controllers are depicted. As the coolant
overheated at the beginning for the rule-based controller, it used the fan, shutter, and
pump for maximum cooling. As before, the strategy then cooled whenever one of the
temperatures exceeded its target temperature, leading to behaviour similar to what is
shown in Figure 9. The maximum temperature over the cycle for the motor was 96 ◦C with
the base controller.
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Figure 10. Comparison of MPC and rule-based strategy (RB) regarding motor temperature TEM,
motor outlet coolant temperature TCoE, pump speed nPump, and shutter position φShtr for the Highway
Cycle at 80 ◦C initial component temperature and 20 ◦C ambient temperature.

On the other hand, the MPC opened the shutter slightly at the start of driving, since
the predicted heat losses would have caused the coolant temperature to exceed due to the
high load of the cycle. Around 1000 s until 1300 s, the velocity decreased significantly due
to a traffic jam. Because of this, the MPC utilised the high-speed phase to save energy by
closing the shutter at around 700 s and guiding the coolant close to its temperature limit.

At 1000 s, finally, the speed was low, so opening the shutter is associated with a
low cost. This was required to avoid a temperature exceedance. Since the MPC already
predicted the upcoming high velocity, it maintained the shutter open to invest in cooling at
a low cost. However, as the cost due to increased losses at wheel level became high, the
shutter almost fully closed when accelerating again. In the following, having the shutter
slightly opened, the pump speed was increased in order to dissipate the heat such that
the coolant again ran at its temperature limit. The procedure of the shutter opening at low
speeds utilizing cooling at a low cost was repeated at around 2500 s and 2750 s. After this,
the MPC kept the shutter slightly more open than before while increasing the pump speed.
This was to maintain the motor temperature TEM below its temperature limit of 155 ◦C.
The maximum temperature difference between the strategies for the motor was 59 ◦C,
while the maximum inverter temperature difference was 30 ◦C. As the inverter has reduced
efficiency in high-speed operations for elevated temperatures, the additional losses evened
out with the benefit of the motor due to its higher temperature. However, the MPC had an
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HV power reduction of 0.83% compared to the rule-based strategy mainly by keeping the
shutter closed and running the system at its temperature limits.

After analysing the traces in detail, Figure 11a shows a variation over all three cycles
for a starting temperature range of 20–80 ◦C at a 20 ◦C ambient temperature. The WLTC
shows increasing savings with rising temperatures, starting at 0.79–1.76%. At low starting
temperatures, both control strategies promoted active heating. Thus, the majority of the
savings for the MPC were based on a lower usage of the actuators. With an increasing start
temperature, the rule-based strategy started to cool more, while the MPC remained in the
heating phase due to the low transience of the cycle. While at a 20 ◦C starting temperature,
the MPC saved only 0.02% due to the small motor temperature difference between the
controller cases, a 0.37% savings was achieved at an 80 ◦C start temperature due to the
increased motor temperature. This is a major contribution to increasing efficiency with a
rising start temperature. The Highway Cycle had savings of 0.69–0.83% with an increasing
start temperature. As seen in Figure 10, the inverter performed worse at high speeds
under hot conditions, so the entire powertrain had additional losses of up to −0.04% with
temperature variations. Nonetheless, the heating was functional as it enabled high shutter
savings due to the high speeds, which were the main contributor to the savings in this case.
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Figure 11. Efficiency increase using MPC in comparison to a rule-based strategy with shutter (RB) for
component starting temperatures of 20–80 ◦C at 20 ◦C ambient temperature: (a) overall efficiency
increase for all three driving cycles; (b) temperature-based efficiency increase for motor, inverter, and
overall powertrain for the Eifel Cycle.

The third cycle to be evaluated was the Eifel Cycle, which had overall savings of
1.55–2.02%, as can be seen in Figure 11a. This includes all losses from (22). In contrast,
in Figure 11b, only the efficiency increases due to temperature-dependent losses of the
motor, the inverter, and the overall powertrain are depicted. Here, the start temperature
variation was also considered. A clear trend can be seen that higher start temperatures were
beneficial for the savings. The motor had temperature-dependent savings of 0.37–0.64%,
while the inverter at high temperatures saved 0.24–0.38%, as a major share of the cycle
is in the medium speed range where the inverter has NTC behaviour. Comparing the
efficiency increase between 20 ◦C and 80 ◦C of 0.47% for all losses from Figure 11a with the
gain of 0.41% for the powertrain in Figure 11b, it can be seen that the additional savings
mainly increased due to the higher temperature levels of the MPC. As a result, the share of
the powertrain regarding the overall savings at 20 ◦C starting temperature was 39% and
increased to 51% at an 80 ◦C starting temperature.

As a final evaluation, the rule-based approach with no shutter (RB-NoShtr) was
simulated again with a start temperature variation of 20–80 ◦C. The resulting efficiency
differences to the MPC approach are depicted in Figure 12. In comparing Figure 12 with
Figure 11a, it can be seen that the trends in savings for the different cycles were similar
across the temperature variation, but the magnitude of the savings was higher. On the
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one hand, this was due to the reduced temperatures of the components because of the
missing shutter. On the other hand, the MPC kept the shutter mostly closed in all cases,
so that the drag coefficient was reduced. These effects increased the efficiency advantage
for the Eifel Cycle to 3.7–4.2%. The absolute savings of the powertrain due to temperature-
dependent efficiencies for this case were 1.2–1.67%, which in turn increased with the start
temperature. The higher temperature-dependent savings compared to the rule-based case
with a shutter were due to the colder components in the baseline approach, since the
pump was running at least at 5000 rpm and the shutter was open, as before. The same
applies to the WLTC, which had overall savings of 2.94–3.77%. For the Highway Cycle,
savings of around 2.8% were achieved. As for the rule-based comparison with a shutter,
the temperature-dependent gains of the motor balanced out with the losses of the inverter.
Thus, the additional savings were due to the reduced drag coefficient, and therefore, the
savings were mostly temperature independent.
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Figure 12. Overall efficiency increase for all three driving cycles using MPC in comparison to a
rule-based strategy without shutter (RB-NoShtr) for component starting temperatures of 20–80 ◦C at
20 ◦C ambient temperature.

7. Conclusions

In this paper, a novel approach was presented to utilise the temperature-dependent
efficiencies of the powertrain for a BEV in combination with a grille shutter in front of the
radiator to reduce the energy demand and promote active heating of the components.

After introducing the economic model predictive control approach, the system model
was explained in detail, which used lumped parameter thermal networks. The model
was parametrized and validated against transient wind tunnel measurements. Then, a
comparison between the MPC and a rule-based controller with a shutter was made. For
the analysis, the efficiency increase by the temperature-dependent loss mechanisms was
given special attention. Furthermore, the comparison of the MPC to a rule-based strategy
without a shutter was shown.

The main outcome is that temperature-dependent efficiencies are a relevant effect
for inverters and permanent magnet synchronous machines in BEV applications. While
it was shown that overall savings of up to 4.2% are possible, an efficiency increase at
an HV level of up to 1.67% was achieved solely based on the temperature-dependent
efficiencies of the powertrain. The savings resulted in a range increase for every battery
charge—as a result, the battery can be sized smaller. This is one contributor to the goal of
the CEVOLVER project, which is to enable long-distance travelling using small batteries [9].
As the components are being operated at their limits, the results imply an economic driver
who closely follows a speed advice, which needs to be provided by another function, such
as the eco-driving algorithm developed in the CEVOLVER project [80]. A sportive driver
who does not follow the predicted speed profile can bring the system into derating or
even cause damage amongst others due to the demagnetization of the permanent magnets.
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Considering a modified component design, for example, of the internal coolant routing,
lower time constants, and thus, even higher efficiencies may be possible.

The savings, which were due in particular to the temperature difference, depended
to a large extent on the drive cycle considered as well as on the ambient temperature. In
future work, these effects shall be investigated more. Additionally, detailed models to
simulate different temperatures within the components are necessary to better understand
and exploit the thermal behaviour and will therefore be the subject of future work as well.
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62. Shah, R.K.; Sekulić, D.P. Fundamentals of Heat Exchanger Design; John Wiley & Sons: New York, NY, USA/Chichester, UK, 2003;

ISBN 0-471-32171-0.
63. Großmann, H. Pkw-Klimatisierung. Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-39840-7.
64. Rajamani, R. Vehicle Dynamics and Control; Springer: Boston, MA, USA, 2012; ISBN 978-1-4614-1432-2.
65. Pfeifer, C. Evolution of Active Grille Shutters; SAE Technical Paper 2014-01-0633; SAE International: Warrendale, PA, USA, 2014.

[CrossRef]
66. Bouilly, J.; Lafossas, F.; Mohammadi, A.; van Wissen, R. Evaluation of Fuel Economy Potential of an Active Grille Shutter by the

Means of Model Based Development Including Vehicle Heat Management. SAE Int. J. Engines 2015, 8, 2394–2401. [CrossRef]
67. Cho, Y.-C.; Chang, C.-W.; Shestopalov, A.; Tate, E. Optimization of Active Grille Shutters Operation for Improved Fuel Economy.

SAE Int. J. Passeng. Cars—Mech. Syst. 2017, 10, 563–572. [CrossRef]
68. El-Sharkawy, A.E.; Kamrad, J.C.; Lounsberry, T.H.; Baker, G.L.; Rahman, S.S. Evaluation of Impact of Active Grille Shutter on

Vehicle Thermal Management. SAE Int. J. Mater. Manf. 2011, 4, 1244–1254. [CrossRef]

http://arxiv.org/pdf/2003.02547v2
http://doi.org/10.1137/16M1081543
http://doi.org/10.1049/iet-est.2015.0050
http://doi.org/10.2528/PIERB12110715
http://doi.org/10.3390/en13215562
http://doi.org/10.1109/PEDES.2014.7042140
http://doi.org/10.1109/ACCESS.2020.2995971
http://doi.org/10.1109/OJIA.2021.3091870
http://doi.org/10.1109/TPEL.2009.2027905
http://doi.org/10.1109/TIE.2008.2011622
https://www.semikron.com/dl/service-support/downloads/download/semikron-application-note-estimation-of-liquid-cooled-heat-sink-performance-at-different-operation-conditions-en-2015-10-16-rev-00/
https://www.semikron.com/dl/service-support/downloads/download/semikron-application-note-estimation-of-liquid-cooled-heat-sink-performance-at-different-operation-conditions-en-2015-10-16-rev-00/
http://doi.org/10.1109/TIA.2016.2540614
http://doi.org/10.4271/2014-01-0633
http://doi.org/10.4271/2015-24-2536
http://doi.org/10.4271/2017-01-1513
http://doi.org/10.4271/2011-01-1172


Energies 2022, 15, 1476 21 of 21

69. Wolf, T. Developing a Theory for Active Grille Shutter Aerodynamics—Part 1: Base Theory; SAE Technical Paper 2019-01-5063;
SAE International: Warrendale, PA, USA, 2019. [CrossRef]

70. Kremheller, A. The Aerodynamics Development of the New Nissan Qashqai; SAE Technical Paper 2014-01-0572; SAE International:
Warrendale, PA, USA, 2014. [CrossRef]

71. Blacha, T.; Islam, M. The Aerodynamic Development of the New Audi Q5. SAE Int. J. Passeng. Cars—Mech. Syst. 2017, 10, 638–648.
[CrossRef]

72. Larose, G.; Belluz, L.; Whittal, I.; Belzile, M.; Klomp, R.; Schmitt, A. Evaluation of the Aerodynamics of Drag Reduction
Technologies for Light-duty Vehicles: A Comprehensive Wind Tunnel Study. SAE Int. J. Passeng. Cars—Mech. Syst. 2016,
9, 772–784. [CrossRef]

73. Larson, L.; Woodiga, S.; Gin, R.; Lietz, R. Aerodynamic Investigation of Cooling Drag of a Production Sedan Part 1: Test Results.
SAE Int. J. Passeng. Cars—Mech. Syst. 2017, 10, 628–637. [CrossRef]

74. Klingbeil, M.; Weissert, J.; Yilmaz, Z. The new Porsche 911 Carrera—Evolution in aerodynamics, thermal management and heat
protection. In 16. Internationales Stuttgarter Symposium; Bargende, M., Reuss, H.-C., Wiedemann, J., Eds.; Springer: Wiesbaden,
Germany, 2016; pp. 315–330, ISBN 978-3-658-13254-5.

75. Feng, L.; Wikander, J.; Li, Z. Fuel Minimization of the Electric Engine Cooling System With Active Grille Shutter by Iterative
Quadratic Programming. IEEE Trans. Veh. Technol. 2020, 69, 2621–2635. [CrossRef]

76. Li, J.; Deng, Y.; Wang, Y.; Su, C.; Liu, X. CFD-Based research on control strategy of the opening of Active Grille Shutter on
automobile. Case Stud. Therm. Eng. 2018, 12, 390–395. [CrossRef]

77. Shigarkanthi, V.; Damodaran, V.; Soundararaju, D.; Kanniah, K. Application of Design of Experiments and Physics Based Approach
in the Development of Aero Shutter Control Algorithm; SAE Technical Paper 2011-01-0155; SAE International: Warrendale, PA,
USA, 2011. [CrossRef]

78. Scherer, A. Neuronale Netze; Vieweg+Teubner Verlag: Wiesbaden, Germany, 1997; ISBN 978-3-528-05465-6.
79. Wolf, T. Developing a Theory for Active Grille Shutter Aerodynamics—Part 2: Effect of Flap Thickness and Shape; SAE Technical Paper

2019-01-5095; SAE International: Warrendale, PA, USA, 2019. [CrossRef]
80. Ngo, C.; Solano-Araque, E.; Aguado-Rojas, M.; Sciarretta, A.; Chen, B.; Baghdadi, M.E. Real-time eco-driving for connected

electric vehicles. IFAC-PapersOnLine 2021, 54, 126–131. [CrossRef]

http://doi.org/10.4271/2019-01-5063
http://doi.org/10.4271/2014-01-0572
http://doi.org/10.4271/2017-01-1522
http://doi.org/10.4271/2016-01-1613
http://doi.org/10.4271/2017-01-1521
http://doi.org/10.1109/TVT.2019.2962866
http://doi.org/10.1016/j.csite.2018.05.009
http://doi.org/10.4271/2011-01-0155
http://doi.org/10.4271/2019-01-5095
http://doi.org/10.1016/j.ifacol.2021.10.152

	Introduction 
	Overview of the Setup 
	Model Predictive Control as a Method for Controlling Temperatures of the Powertrain 
	Discussion of Temperature-Dependent Electrical Efficiencies of Motor and Inverter 
	Temperature-Dependent Motor Losses 
	Temperature-Dependent Inverter Losses 

	System Modelling and Validation 
	Thermal and Electrical Modelling of Motor and Inverter 
	Modelling of Thermal System Components 
	Active Grille Shutter (AGS) 
	System-Level Model Validation 

	Simulation Results: Efficiency Increase Using Model Predictive Control 
	Introduction: Driving Cycles and Rule-Based Baseline Strategy 
	Evaluation of the Potential of the Economic Model Predictive Control 

	Conclusions 
	References

