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Abstract: This work uses the outcome of a computational tool that performs Energy Performance
Certification (EPC) data processing and transforms raw data into comparable data. Multi-correlation
among variables results in probability distributions for the most relevant form and fabric building
parameters. The model consistently predicts the distributions for heating and cooling energy needs
for the Lisbon Metropolitan Area, with an error below 7% for the first, second and third quartiles.
Differences in the energy needs estimation are below 6% when comparing the seasonal steady-state
with the resistance-capacitance (RC) model, which proved to be a robust alternative algorithm
capable of modeling hourly user profiles. The RC model calculates electricity consumption for
actual, adequate, and minimum thermal comfort scenarios corresponding to different user profiles.
The actual scenario, built from statistics and a previous survey, defines a reference to evaluate other
scenarios for the mean electricity consumption for space heating and cooling in the building units with
those systems. The results show that the actual mean electricity consumption for heating (610 kWh/y)
is slightly above the minimum (512 kWh/y), with 37% of building units potentially under heated.
The electricity consumption (108 kWh/y) for cooling is below the minimum (129 kWh/y).

Keywords: building stock energy model; probability distribution; electricity consumption; heating;
cooling; residential

1. Introduction

Predicting the heating and cooling energy consumption of the building stock is critical
to delineate the required renovation strategies according to the Renovation Wave for Europe
program [1]. The same applies to understanding the paradox of excess mortality in mild
winter climates and its relation to energy poverty [2,3] or accounting for the building
sector’s share for regional and national energy and climate plans (NECP) [4]. It is not
less important to understand how buildings perform to more extensive heat waves, and
the corresponding impact on summer mortality [5]. Therefore, there is an urgent need
to promote operational tools to support energy policies and answer specific energy use
questions in the residential building stock.

The building stock energy modeling (BSEM), also known as urban building energy
modeling (UBEM), was in 2016 a nascent field [6] but has extensively increased during the
last years [7]. A recent review [8] cited almost 300 references, describing numerous models
and techniques with the common goal of predicting building stock energy consumption,
covering a spatial scale from a city block to an entire city.

The remarkable development of this research area required a revision of the previous
classification [9]. Therefore, Langevin et al. [10] updated it, using a multi-layer quadrant
scheme where top-down and bottom-up define the horizontal axis’s energy model design.
The degree of transparency (vertical axis) distinguishes white-box (meaning physics-based)
from black-box approaches. Models from all quadrants aim to address one or more of
the following issues: forecasting and prediction, profiling, mapping or benchmarking.
The determinant factors for the energy prediction corresponding to different layers are
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environmental context, building stock itself and occupants’ energy-related behaviors [10].
In their review, Hong et al. [7] identified two main areas requiring further developments:
modeling occupant behavior and end-use disaggregation for black-box models.

Energy Performance Certificates (EPC) provide important building-stock-related in-
formation not considered in the census but EPC data have flaws. For example, Ahern
and Norton [11] concluded that models overestimate primary energy up to 70% by using
default values for unknown parameters. In addition, Dall’O et al. [12] found 24% EPC
with unreliable information. Notwithstanding, EPC constitutes the large primary source
of updated building stock data. Except for a few countries with an operational rating
EPC system, such as Sweden [13], the EPC rating uses calculated energy consumption,
which may significantly differ from operational energy [14]. This negative performance
gap is higher in pre-retrofitted buildings when compared to those retrofitted [15]. The
uncertainty associated with determinant factors from the three layers certainly explains
performance gaps.

Furthermore, the simplified approaches developed for Northern and Central European
countries where heating is dominant, usually steady-state methods, are far from appropriate
for Mediterranean countries [16], where cooling is not negligible and intermittent heating
is the standard practice. Vivian et al. [17] compared the performance of two lumped
capacitance models, a first-order (5R1C) and a second-order (7R2C), with advanced energy
simulation tools (TRNSYS), considering intermittent heating and cooling in different climate
conditions. They concluded that the second-order model improves the peak loads and
energy consumption prediction compared to the first-order. Because of the resistance-
capacitance’s (RC) low complexity, both in inputs and computation load, they would have
a prominent role in the future of white-box bottom-up approaches [18].

Changing the object scale from the building to the urban scale requires a detailed eval-
uation of the complexity modeling level. Focusing the energy calculations on a few building
archetypes significantly decreases the computation load [19]. However, identifying the rep-
resentative buildings using pre-defined criteria such as typology and construction period
requires expert intervention and reduces the building stock heterogeneity. Goy et al. [20]
explored semi-supervised or unsupervised building clustering techniques to obtain rep-
resentative buildings. They showed that those are strictly related to the final indices (in
their study, heating demand), supporting that representative buildings are only valid for
specified indices. Assuming that descriptive parameters are distributions instead of fixed
values is an alternative approach to archetypes because it preserves the building stock
diversity [21]. By defining them as probability distributions, the unknown or uncertain
archetypes parameters result in a combined solution to the lack of variety of archetypes [22].
Moreover, Ben and Steemers [23] explored the extension of building archetypes to house-
holds to overcome the significant variations found in occupant behavior. Findings from
statistical analyses of behavioral patterns resulted in five household archetypes: active
spenders, conscious occupiers, average users, conservers and inactive users [24].

We have learned so far that adapting previous energy models is not a straightforward
solution because those were developed for a particular context, taking into account the
local climate, socio-economic and cultural aspects and building architecture. Due to the
interdisciplinary topic, predicting heating and cooling energy consumption at a large
scale is far from a deterministic science. Furthermore, energy models should consider the
variability that comes from the cultural context and socio-economic conditions.

The remarkable low heating and cooling energy consumption of some Southern Euro-
pean countries emphasizes the critical research challenge. For example, in Portugal, achiev-
ing thermal comfort is still a non-priority expense even for large-income households [25].
Space heating and cooling are often perceived as no basic needs. In fact, during interviews,
Horta et al. [26] found those who consider that feeling cold (or hot) at home in winter (or
summer) is acceptable.

Specifically for Portugal, some studies used EPC data for the residential building
stock characterization. Magalhães and Leal [27] used EPC energy demand to quantify the
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heating performance gap. Palma et al. [28] used 176 different typologies to calculate the
energy performance gap by comparing the theoretical with actual energy consumption.
Silva et al. [29] estimated the energy use for mobility, space heating and space cooling for
Porto city using neural networks to study different urban configurations.

These studies consider seasonal steady-state energy demand, calculated using raw
data from buildings or EPC indicators. A significant step to support future BSEM con-
sisted of collecting, mapping, cleansing and integrating urban building data, resulting
in 18 archetypes of the residential building stock for a case-study of the Lisbon area [30].
Moreover, space heating and cooling energy demand obtained by building simulation for
10 building typologies were inputs for the Évora city energy model [31].

On the other hand, Fonseca and Panão [32] applied the Monte Carlo method to model
the residential building stock and calculate the energy performance indicators using input
data as probability distributions. Afterward, Panão and Brito [33] applied that building
stock characterization for profiling the electricity use in Lisbon city, adding stochastic
modeling of user behavior, which accurately predicted hourly profiling electricity use in
Lisbon dwellings. Figueiredo et al. [34] extended the hourly energy calculation to predict
electricity loads in future climates.

The identified barriers that this research intends to tackle are: (1) heating and cooling
steady-state energy models (based on degree-days) are not accurate predictive models
of intermittent heating and cooling; (2) archetypes or representative buildings narrow
the variability found in the building stock; (3) energy performance certificates collect
data but are useless in characterizing user profiles. This research is a step forward in the
previously developed models [32–34] since it intends to explore other statistical techniques
of generating the building stock model and shift to transient energy calculations using RC
modeling. Strengths and weaknesses of previous models developed by the authors are
summarized in Table 1.

Table 1. Strengths and weaknesses of previous models.

Model Spatial Resolution Strengths Weaknesses

Fonseca and
Panão [32] Portugal Building stock

variability

No statistical
correlation among

parameters;
Seasonal steady-state

energy balance;
EPC energy needs as

the outcome

Panão and Brito [33] Lisbon
Building stock and

user profile
variability;

No statistical
correlation among

parameters;

Figueiredo et al. [34] Portugal Hourly calculations; Steady-state energy
balance

Electricity
consumption as the

outcome

The paper is organized as follows. Section 2 describes the statistical techniques to
generate the building stock, the energy modeling approaches, the case-study area and other
modeling assumptions. The results and discussion section (Section 3) includes a first vali-
dation by comparing EPC data with the calculated energy needs. Furthermore, it compares
steady-state energy needs with those calculated by an RC model. Finally, it presents a
sensitive study of how user profiles influence energy needs and electricity consumption for
heating and cooling. The paper closes with the conclusion section (Section 4).
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2. Materials and Methods

The methodology flow diagram (Figure 1) summarizes the study methods and pur-
poses. Section 2.1 describes the statistical methods that generate the building stock, namely,
the building form—steps (1), (2), and (3)—and fabric (4). The method is applied to the
case-study area presented in Section 2.2. The energy needs calculated by EPC are used to
validate the building stock generation, which constitutes the first study purpose. Afterward,
statistical methods are applied in the generation of hourly user profiles for nominal, actual,
adequate and minimum conditions described in Section 2.3. The second purpose is to
compare the energy calculations using two different approaches: seasonal steady-state
and hourly RC (Section 2.4). Hourly profiles are required to test the use of the RC model
to compute the electricity consumption for space heating and cooling. The electricity
consumption is compared with average data from statistics (third purpose) for actual
conditions. Finally, to illustrate the model applicability and potential (fourth purpose), the
calculated electricity consumption for adequate and minimum conditions is compared with
the calculated electricity for actual consumption to infer the number of buildings without
thermal comfort (under-heated in Winter or overheated in Summer). Climate data used for
the case-study area are presented in Section 2.5.
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Figure 1. Methodology flow diagram.

2.1. Building-Stock Generation

The computational tool developed in [35] uses raw data from energy performance
certificates of residential building units in Portugal, issued during 2008 to 2018. It performs
data processing and analysis of the main parameters related to form (e.g., net floor area,
walls, roof, ground floor and window areas) and fabric (e.g., envelope U-values, glazing and
shading devices g-value and air permeability). Raw data are transformed into comparable
data, using normalization (e.g., window-to-floor area, opaque-to-floor area) or weighted
average values (e.g., mean window U-value and g-value). Evaluations can be performed
by context (new, existing, or major renovation), by NUTS III (corresponding to the third
territorial statistical subdivision of the Portuguese National Statistics) or by the mix of the
two. Probability distributions are the main output of the computational tool obtained by
searching for the best fitting considering the likelihood criteria.

Modeling building stock requires a dataset of building parameters capable of recreating
a theoretical sample of building units. The method tested here consists of applying the
Gaussian copula method [21,36]. The evaluation uses multi-correlation among seven main
parameters: opaque-to-floor area, window-to-floor area, window, external wall and roof U-
values, glazing and shading g-values (Table 2). The remaining are stochastically generated
based on independent probability distributions because no strong correlation is expected.
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Table 2. Generation method of building form and fabric parameters.

Generation Method Building Form Building Fabric

Independent probability distribution Net floor area 1 Internal 3 envelope U-value
Windows orientation Linear thermal bridge ψ-value

Thermal bridge length-to-opaque area Thermal inertia class
Internal 3 envelope-to-opaque area Mean air infiltration

Ceiling-to-floor length

Multi-correlation using Opaque-to-floor area 2 Mean windows U-value
Gaussian copula method Window-to-floor area Mean external walls U-value

Mean external roofs U-value
Mean glazing g-value
Mean shading g-value

1 Primary parameter used to generate opaque and window areas. 2 Secondary parameter used to generate thermal
bridge length and internal envelope area. 3 Envelope separating the net volume from unheated spaces.

The Gaussian copula method uses a training dataset—the EPC processed data—to
compute the covariance matrix used in the sample generation. The training data are form
and fabric parameters from the computational tool split into (i) building units with an
external roof (e.g., detached, semi-detached houses, last floor apartments) and (ii) without
an external roof (e.g., middle floor apartments). For each parameter, the original vector xk
is transformed into a vector τk formed by the corresponding percentiles obtained to each
position k. Afterward, the distribution of values within the interval [0,1] is converted into a
normal distribution with a mean and standard deviation equal to 0 and 1, respectively, by
applying the following transformation:

χ→
√

2erf−1(2χ− 1) (1)

The covariance matrix results directly from the matrix composed of the transformed
vectors, and it is used in the random generation of normal distributions for the seven
parameters. The theoretical sample is obtained by reversing the initial transformation.

The primary parameter used to rebuild geometry is the net floor area. The generation
of windows and opaque envelope areas comes directly from the net floor area, window-
to-floor area and opaque-to-floor area. The secondary parameter is the opaque envelope
area, used to determine the thermal bridge length and the envelope area separating the
net volume from unheated spaces. Selecting primary and secondary parameters prevents
the generation of unrealistic geometries. The overall descriptive parameters required
to calculate energy needs are obtained after generating the geometry of a sample of N
theoretical building units. Examples of those are opaque envelope heat conductance (Hop)
and window heat conductance (Hw), directly resulting from multiplying envelope U-values
and areas. The same applies to effective solar collection areas (Asol,j) for each orientation j,
considering the product of window areas, correction factors and g-values.

2.2. Case-Study Area

The regional building stock energy model is similar to that applied nationally in [33]
but downscaled to the Metropolitan Area of Lisbon (Área Metropolitana de Lisboa, hereafter
AML), taking into account a total of 242,860 energy performance certificates of new and
existing residential building units. AML covers 3000 km2 (Figure 2) and has a population
of 2.86 million. It includes two NUTS III regions, corresponding to North and South of
Tagus riverside regions (Figure 2), hereafter North-AML and South-AML (‘Grande Lisboa’
and ‘Península de Setúbal’, respectively). The total number of building units in this area is
about 1.5 million, and 75% of them are regularly occupied (Table 3). EPC data represent
16% of the total building units, a considerable large sample of the building stock.
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Figure 2. Metropolitan Area of Lisbon (AML) according to NUTS II classification and subdivision of
Portuguese territory. NUTS III regions: North AML (orange) and South AML (green).

Table 3. Building units and all end-use electricity consumption of Metropolitan Area of Lisbon
(AML).

Data Source 2011 2015 2020

Census [37] Residential building
units 1,487,098

Units regularly
occupied 1,129,789

Units with heating
equipment 956,955

Units with electric
heating equipment 750,412

Households Budget
Survey [38]

Units regularly
occupied 1,156,539

Units with heat pumps 180,581

Directorate General for
Energy and

Geology [39]

Residential electricity
contracts 1,449,911 1,408,733 1,505,847

Residential electricity
consumption [GWh/y] 3558 3135 3413

Mean electricity
consumption [kWh/y] 2454 2226 2266

Building units not regularly occupied with an electricity contract still use electricity
(e.g., refrigerator, freezer, other appliances), even if the electricity might be much lower than
those that are regularly occupied. Considering not regularly occupied units explains the
mean electricity consumption (e.g., 2226 kWh/y in 2015) being lower than values obtained
from smart metering (e.g., for Lisbon city 3927 kWh/y in 2015–2016 [33]) and the data
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reported by the two national surveys on the residential energy consumption [40,41] (for
national territory 3674 kWh/y in 2010 and 3360 kWh/y in 2020).

This study focuses on the building stock electricity consumption for space heating and
cooling. For that reason, it excludes other heating systems (gas burners, boilers, fireplaces,
etc.) still used in about 18% of the regularly occupied units (data from 2011). Since there
are no available regional disaggregated data, the best knowledge comes from the 2010
national survey on household energy consumption [40] that estimated mean electricity
consumption 333 kWh/y for space heating and 59 kWh/y for space cooling. According to
the preliminary results of the updated survey for 2020 [41], this figure for heating decreased
to 138 kWh/y. No information is available for cooling. It is noteworthy that the percentage
of AML regularly occupied units with resistive heating equipment represented, in 2011,
51% [37] and those with heat pumps (including air conditioning units) for heating and
cooling, in 2015, represented 16% [38].

Distributions in Table 4 are direct outputs of the tool [35] applied to AML and support
the generation of some of the building form and fabric parameters. Since no regional
differences for other form and fabric parameters are expected, the independent distributions
already applied in [33] are kept invariant.

Table 4. Independent probability distributions for building form and fabric.

Model Parameter Probability Distribution

Net floor area [m2]
Generalized extreme value (a = 0.204,

b = 29.284, c = 65.29)

Air infiltration rate [ach] Generalized extreme value (a = 0.021, b = 0.276,
c = 0.464)

2.3. User Profiles

EPC data do not contain enough information to generate user profiles, but those are
critical to computing electricity consumption. To that end, different data sources support the
model inputs selection. The first set of conditions regards occupancy patterns, temperature
set-points, heating and cooling time of use and heated and cooled floor area. Four scenarios
regarding how users interact with their houses and equipment are explored:

• Nominal conditions (A)—Internal gains are fixed and constant (4 W/m2), accounting
for heat dissipation of occupants, lighting and appliances. Heating/cooling equipment
is available during heating/cooling season, whenever air temperature goes below
18 ◦C (for heating) and above 25 ◦C (for cooling). These assumptions align with those
defined by the EPC seasonal approach [42].

• Actual conditions (B)—Internal gains are calculated from occupant’s metabolism
assuming an occupancy profile that is stochastically generated, based on data collected
during a survey study [33]. The same applies to space heated/cooled floor areas and
heating/cooling time of use. The number of occupants is obtained from statistics [38]
by a probability distribution that generates an integer between 1 and 6 as output,
with a mean occupancy of 2.45 per building unit. Heat dissipation by lighting and
appliances comes from measured daily mean electricity profiles [33,43], with a mean
value of 3 W/m2 (maximum at 10:30 p.m. and minimum at 5:30 a.m.). Heating and
cooling set-points are the minimum (for heating) and the maximum (for cooling) of
the air temperature range for living spaces in class II residential buildings, according
to EN 15251 [44], 20 and 26 ◦C, respectively. The conditions mentioned above aim
at describing actual conditions to provide an output close to the actual electricity
consumption.

• Adequate conditions (C)—Scenario (C) is similar to (B) except for the space heated/
cooled floor area and heating/cooling time of use. Heated and cooled floor area is
computed by the minimum room area required by the number of occupants based
on 12 m2 per occupant (equivalent to a bedroom or small living room). The use time



Energies 2022, 15, 1420 8 of 21

for heating/cooling equipment is the same as the occupancy profile. This scenario
provides an estimation of the required electricity consumption to provide adequate
thermal comfort conditions.

• Minimum conditions (D)—The scenario (D) is similar to (C), except for heating/cooling
set-points. Heating and cooling set-points are the minimum (for heating) and the max-
imum (for cooling) of the air temperature range for living spaces in class III residential
buildings [44], 18 and 27 ◦C, respectively. This scenario provides an estimation of the
required electricity consumption to provide minimum thermal comfort conditions.

A summary of scenarios (A) to (D) is presented in Table 5. A user profile is randomly
generated for each building unit for (B) to (D) conditions. For nominal conditions (A), the
user profile is the same for all building units.

Table 5. Conditions to generate user profiles: Model inputs and assumptions.

Model Conditions Model Inputs Model Assumptions

A—Nominal conditions Occupants, lighting and appliances continuous, 4 W/m2

Space heating set-point 18 ◦C
Space cooling set-point 25 ◦C

Fraction of heated floor area 1
Fraction of cooled floor area 1

Time of use of heating and cooling
systems always

Units with resistive heating and efficiency 50.8%, η = 1
Units with heat pumps for heating and

COP 15.6%, Weibull (λ = 3.601, κ = 5.267)

Units with heat pumps for cooling and
EER

15.6%, Burr (λ = 2.581, κ = 14.336,
ν = 0.686)

Units with other heating equipment 18.3% (no electricity consumption)
Units without heating equipment 15.3% (default, η = 1)
Units without cooling equipment 84.4% (default, EER 3.0)

B—Actual conditions
(same as A except for) Number of occupants 1 (24.3%), 2 (33.1%), 3 (22.1%), 4 (15.0%),

5 (4.3%), 6 (1.2%)
Occupation profile weekdays and weekend profiles [33]

Lighting and appliances daily profile [33,43]
Space heating set-point 20 ◦C
Space cooling set-point 26 ◦C

Fraction of heated floor area Weibull (λ = 0.490, κ = 1.704)
Fraction of cooled floor area Weibull (λ = 0.415, κ = 1.619)

Time of use of heating and cooling
systems weekdays and weekend profiles [33]

Units without heating equipment 15.3% (no electricity consumption)
Units without cooling equipment 84.4% (no electricity consumption)

C—Adequate conditions
(same as B except for) Heated and cooled floor area 12 m2 per occupant

Time of use of heating and cooling
systems occupied hours

Units without heating equipment 15.3% (default, η = 1)
Units without cooling equipment 84.4% (default, EER 2.9)

D—Minimum conditions
(same as C except for) Space heating set-point 18 ◦C

Space cooling set-point 27 ◦C

Calculating the building stock total electricity consumption under actual conditions
(B) assumes no electricity consumption for building units without heating or cooling
equipment, which are 15.3% and 84.4%, respectively. On the other hand, for scenarios (A),
(C) and (D), potential electricity consumption is additionally calculated assuming a default
equipment, which are resistive heating and a heat pump for cooling. Default EER values
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are 2.9 (the mean value of the generated distribution) for (C) and (D) and 3.0 (the EPC
default) for (A). For all scenarios, no electricity consumption is accounted for the building
units that use other energy sources for heating. For heating and cooling, the heat pump
performance is stochastically obtained by the independent distributions obtained for AML
building units [35].

2.4. Energy Needs Calculation

Two different approaches are used to calculate space heating and cooling energy
needs: quasi-steady-state on a seasonal basis (seasonal steady-state) and RC model on an
hourly basis (hourly RC). Despite inputs being similar, approaches significantly differ in
considering transient heat processes.

The first considers thermal inertia by including an empirical input—the utilization
gain factor ηg—which is a function of γ, the ratio between heat transfer (Qht) and heat gains
(Qgn). Heat transfer and heat gains are energy values integrated during the calculation
period (heating or cooling season). The computation of heat transfer and heat gains might
include simplifications. Heating and cooling energy needs are obtained, respectively, from:

Qnd,H = Qht − ηgQgn (2)

Qnd,C = (1− ηg)Qgn (3)

The equations to compute heat transfer, heat gains and gain utilization factor follow
EN ISO 13790 [45] considering the simplifications and assumptions of the EPC approved
method in Portugal [42]. It is noteworthy that energy needs on the EPC database were
calculated by the seasonal steady-state method, and that is the reason why EN ISO 13790 is
still used, even if it was revised and replaced by ISO 52016 [46]. The latter does not include
the seasonal approach but only the monthly approach.

The second approach uses thermal inertia, simplifying the building unit to a lumped
single heat capacitance (5R1C) [47]. The thermal grid includes five thermal resistances—
expressed as the inverse of the thermal conductances—connecting the thermal nodes
(Figure 3): outdoor air, θe, supplying ventilation air, θv (if different from outdoor), and
indoor, θi. Heavy and light elements are separately modeled.

Figure 3. Hourly RC model: Lumped single heat capacitance (5R1C).

The mass temperature, θm, connects to a lumped thermal capacitance, C, modeling
the energy storage capability of heavy elements. The star temperature, θs, is the weighted
indoor, outdoor and mass temperatures. Total heat gains are split into nodes Φi, Φs and Φm.
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Node energy balance equations are solved by a Cranck–Nicolson scheme with an hourly
time-step. For further details on the approaches equations, refer to [45].

Both approaches are simplified and low computational demanding, critical modeling
issues when computing energy needs for many building units. Direct outputs of the model
are distribution functions for space heating and cooling energy needs (per unit of net floor
area). However, for evaluating the building stock, integrated values are as relevant as
distributions. For simplicity, the mean value per building unit is adopted as the primary
parameter to compare scenarios.

2.5. Climate Data

Climate data for the selected region are available on an hourly and seasonal basis
for North-AML and South-AML. The energy calculations consider the hourly data of air
temperature and façade solar radiation (horizontal, cardinal and ordinal orientations) for
the reference altitude of each region [48] (CLM#2). On the other hand, seasonal climate
data used for model validation are those defined by EPC [42] (CLM#1), considering heating
degree-days and mean air temperature corrected to local altitude. Tables 6 and 7 compare
the seasonal data (CLM#1) with the same parameters calculated from the hourly dataset
(CLM#2).

Table 6. Heating season climate parameters.

NUTS III Region Climate Dataset Season Length
[Days]

Heating
Degree-Days

[◦C d]

Daily South Solar
Radiation
[kWh/m2]

Daily Horizontal
Solar Radiation

[kWh/m2]

North-AML #1 159 1033 a 5.00 4.45
#2 159 874 3.67 3.63

(#1–#2)/#2 — −15% −27% −18%
South-AML #1 141 1034 a 4.83 4.30

#2 139 790 3.65 3.19
(#1–#2)/#2 −1% −24% −32% −26%

a Mean value of the probability distribution that accounts for the local altitude.

Table 7. Cooling season climate parameters.

NUTS III Region Climate Dataset Season Length
[Days]

Mean Air
Temperature [◦C]

Daily South Solar
Radiation
[kWh/m2]

Daily Horizontal
Solar Radiation

[kWh/m2]

North-AML #1 122 22.8 a 3.36 6.88
#2 122 22.8 a 3.34 6.83

(#1-#2)/#2 — — −1% −1%
South-AML #1 122 21.9 a 3.36 6.93

#2 122 21.7 3.29 6.87
(#1-#2)/#2 — −1% −2% −1%

a Mean value of the probability distribution that accounts for the local altitude.

The main differences between climate datasets are found for heating degree-days and
winter daily solar radiation (Table 6). The calculated parameters for CLM#2 are 15% to 32%
lower than the tabulated CLM#1. The most probable explanation for these differences is
that CLM#1 inadvertently refers to an 8-month season (from October to May) instead of
considering a variable heating season. The hourly model uses a shorter heating season,
agreeing with the heating season length of 159 days (5.3 months) for North-AML and
139 days (4.6 months) for South-AML, both starting on the last days of November. The
heating season for CLM#2, in agreement with [49], begins on the first day of the first 15-day
period with a daily mean air temperature not above 15 ◦C and it ends on the last 15-day
period with values not below 15 ◦C. Fewer heat gains during winter may counterbalance
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fewer heat losses due to the decrease in heating degree-days and daily solar radiation of
CLM#2. No significant differences are found for the cooling season (Table 7).

3. Results Analysis and Discussion

The study purposes are fourfold (Figure 1). The results and discussion are structured
accordingly:

1. Validate the building stock model validation (Section 3.1);
2. Compare hourly and seasonal methods (Section 3.2);
3. Compare actual electricity consumption with average data from statistics (Section 3.3.2);
4. Compare calculated electricity consumption for adequate and minimum conditions

with the calculated for actual conditions (Section 3.3.3).

3.1. Building Stock Model Validation

The EPC dataset includes the building form and fabric parameters as well as heating
and cooling energy needs. However, not all the parameters required to compute energy
needs are collected. The stochastic generation of the building stock is validated by com-
paring the calculated energy needs for the theoretical sample with those collected by EPC.
Energy calculations use CLM#1 climate data since they are set for EPC calculations. Further-
more, the same methodological simplifications are applied. For example, the EPC method
does not consider heat transfer through the envelope separating the net volume from
the non-heated spaces for cooling energy calculation or solar gains through the opaque
envelope for heating energy calculation. Since the goal is to model the building stock of the
case study area, convergence between the obtained and the EPC distributions is expected.
The comparison uses three parameters: the distribution median (Q2, second quartile), the
first quartile (Q1) and the third quartile (Q3). The stochastic generation depends on the
building unit sample, N, which should be large enough to represent the building stock.
Therefore, model validation includes a sensitivity evaluation of N.

The results show that generating more than 105 building units is enough to keep
almost invariable RMSEs and the relative differences Q1, Q2 and Q3 between the calculated
energy needs and EPC dataset (Table 8). For N = 106, the model generates a building stock
with a similar distribution for heating and cooling energy needs (Figure 4), with an RMSE
of about 4× 10−3 (16 bins). It performs better for cooling energy needs, where the relative
differences from Q1 to Q3 are in the range of ±2%, than for heating energy needs, where
the same relative differences are in the range ±6%.

Table 8. Model validation: RMSE and relative differences of calculated energy needs compared to the
EPC dataset.

Sample RMSE Relative Difference [%]
N (16 Bins) Q1 Q2 Q3 Mean

Heating

103 4.91 × 10−3 1.3 −7.7 −9.2 −3.5
104 4.00 × 10−3 2.2 −6.3 −5.4 −0.9
105 3.96 × 10−3 1.5 −6.3 −5.5 −1.0
106 4.08 × 10−3 1.7 −6.5 −5.9 −1.0
107 4.07 × 10−3 1.7 −6.4 −5.8 −1.0

Cooling

103 4.12 × 10−3 −3.2 −3.7 0.4 1.1
104 3.59 × 10−3 −0.9 −2.1 2.6 4.2
105 3.56 × 10−3 −0.7 −1.9 2.0 4.0
106 3.77 × 10−3 −1.0 −2.3 1.8 3.9
107 3.70 × 10−3 −1.0 −2.2 1.8 3.9
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Figure 4. Calculated energy needs for the generated building-stock (N = 106) compared with EPC
data. The bin interval that contains the median (Q2), first (Q1) and third quartiles (Q3) are identified:
(a) Heating energy needs (top); (b) Cooling energy needs (bottom).

3.2. Energy Calculations: Hourly and Seasonal Methods

After testing the model potential to generate the building stock, the two energy
calculation approaches are compared: (i) the seasonal steady-state and (ii) the hourly RC.
Both methods consider CLM#2 climate data. Considering that the seasonal approach does
not apply to intermittent heating/cooling profiles, both approaches are compared under
nominal conditions (A). Even if this assumption seems unrealistic, it is justified for better
comparison between methods.

The differences in the estimated mean energy needs are +6% and −3% for heating and
cooling, respectively (Table 9). The distributions for heating energy needs do not signif-
icantly differ (Figure 5a). On the other hand, the cooling energy needs calculated by the
seasonal steady-state method are significantly lower in the first quarter (Figure 5b), which



Energies 2022, 15, 1420 13 of 21

is confirmed by the 15% relative difference for Q1. Considering the whole distribution,
cooling energy needs estimated by the seasonal steady-state are significantly lower in the
first quarter, meaning that the hourly approach leads to more building units with energy
needs in the range of 0–10 kWh/m2 and less in the range of 10 to 40 kWh/m2.

Seasonal quasi-steady state Hourly RC
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Figure 5. Calculated energy needs for the generated building-stock (N = 106) using quasi-steady-
state and RC hourly approaches: (a) Heating energy needs (top); (b) Cooling energy needs (bottom).

Table 9. Energy needs calculation (N = 106) for nominal conditions (A).

Approach and
Climate Data Q1 [kWh/m2 y] Q2 [kWh/m2 y] Q3 [kWh/m2 y] Mean [kWh/y]

Heating

H2 25.6 37.3 52.8 3662
S2 24.7 37.8 56.3 3883
S1 37.9 58.2 88.1 6132

(S2–H2)/H2 −3% +1% +7% +6%
(S1–S2)/S2 +54% +54% +56% +66%

Cooling

H2 14.3 20.6 29.0 2053
S2 12.2 19.0 28.7 2001
S1 25.6 33.7 45.0 3316

(S2–H2)/H2 −15% −8% −1% −3%
(S1–S2)/S2 +110% +78% +57% +58%
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This study also compares the energy needs considering EPC assumptions (method
and climate data) and the alternative approach. The first uses the seasonal approach with
some simplifications and CLM#1 data to calculate the EPC indicators. The second still uses
the seasonal approach but considers the hourly heat transfer and heat gains computed
terms (no simplifications) and CLM#2 data.

For the seasonal steady-state approach with simplifications and using CLM#1 (S1),
energy needs are much higher than the same approach without simplifications and CLM#2
(S2). The mean values increase by 66% for heating and by 58% for cooling (Table 9). The
main conclusion is that EPC energy needs are highly overestimated by more than 50%.
Differences are mainly explained by simplifications assumed during heat transfer and heat
gains calculation. Furthermore, climate data might influence the results for heating only.

It is expected that this conclusion also applies to other detailed simulation tools using
hourly climate data series, making EPC energy needs a weak indicator of actual energy
demand. Nevertheless, the EPC method is still valid for labeling since the calculated values
compare with the obtained for a reference building in the same conditions.

3.3. User Profiles and Heating/Cooling Electricity Consumption

The evaluation of energy needs should be considered an intermediate stage since the
model aims to estimate space heating and cooling electricity consumption. To compute it,
the model additionally considers the heated/cooled floor area, the equipment efficiency (or
heat pump performance) and the number of occupied units with electric equipment. For
building units without heating/cooling equipment, the model also calculates a potential
electricity consumption applying the default solutions (see details in Table 5).

3.3.1. Energy Needs

Energy needs correspond to the required thermal energy; therefore, equipment type
and performance do not apply. On the contrary of nominal conditions (A) that consider the
same user profile, for scenarios (B) to (D), the model calculates heating and cooling energy
needs considering a theoretical sample of 106 building units and the equivalent number
of randomly generated user profiles. The number of heated/cooled hours decreases from
nominal conditions (A) to scenarios (B) to (D). Actual conditions (B) only consider heating
and cooling during the hours people answered they effectively use the equipment, while
(C) and (D) heating and cooling hours correspond to those occupied.

For all scenarios, heating and cooling energy needs are calculated for the net floor area,
i.e., all rooms are heated/cooled. Comparing results from scenario (C) with the obtained
applying actual conditions (B) is a measure of the impact of extending the heating/cooling
hours to the occupied hours. As a result, mean energy needs for heating increase 70% and
115% for cooling (Table 10). Modifying the heating and cooling set-point temperatures to
less restrictive thermal comfort conditions—scenario (D)—result in a lower increase, even if
mean energy needs are still higher than (B): 17% for heating and 57% for cooling (Table 10).
These results indicate that the number of hours people use heating and cooling equipment
is below the expected number to provide adequate thermal comfort.

Table 10. Energy needs (N = 106) for the hourly method using climate data CLM#2. The mean
considers that all rooms are heated/cooled.

Scenarios Q1 [kWh/m2 y] Q2 [kWh/m2 y] Q3 [kWh/m2 y] Mean [kWh/y]

Heating

A 25.6 37.3 52.8 3662
B 9.5 16.3 27.7 1897
C 21.7 31.5 44.3 3230
D 13.0 20.8 31.3 2228

(C–B)/B 128% 93% 60% 70%
(D–B)/B 37% 28% 13% 17%
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Table 10. Cont.

Scenarios Q1 [kWh/m2 y] Q2 [kWh/m2 y] Q3 [kWh/m2 y] Mean [kWh/y]

Cooling

A 14.3 20.6 29.0 2053
B 2.6 6.6 11.7 682
C 10.2 15.5 22.2 1466
D 6.3 11.0 17.0 1074

(C–B)/B 292% 135% 90% 115%
(D–B)/B 142% 67% 45% 57%

3.3.2. Actual Conditions and Average Data from Statistics

Energy needs help to compare the thermal quality of the building stock (e.g., level
of thermal insulation, solar gains exposure, air tightness). Still, they are insufficient to
assess the electricity consumption for space heating and cooling. The latter also depends on
the occupancy level, how people interact with heating and cooling systems, their thermal
comfort preferences and their availability to pay for energy. Therefore, the model calculates
the electricity consumption for building units with heating/cooling equipment, considering
a partial use of heating/cooling equipment for a fraction of the net floor area.

The mean electricity consumption for space heating and cooling is computed consid-
ering: (i) all regularly occupied building units and (ii) all regularly occupied building units
that have electric heating equipment (resistive heating or heat pump). A similar procedure
is implemented for space cooling. The results in Table 11 show that the computed mean
electricity consumption for heating under actual conditions (B), 444 kWh/y, is, in fact,
higher than the mean value for national territory (333 kWh/y in 2010 and 138 kWh/y in
2020). Table 11 does not show values normalized per unit of floor area since scenarios differ
on the heated/cooled floor area.

Table 11. Mean electricity consumption for space heating and cooling.

Mean Electricity Consumption [kWh/y]
Model

Conditions (A) (B) (C) (D)

Heating

All regularly
occupied units 1 893 444 566 385

Units having
electric heating

equipment 2
1188 610 753 512

Cooling

All regularly
occupied units 1 34 12 22 16

Units having
electric cooling

equipment 3
270 108 173 129

1 1,156,539. 2 587,522. 3 180,581.

Building stock aggregated values consider the regularly occupied building units (about
1.16 million in 2015, Table 3). The calculated electricity for heating and cooling compares
with all end-use electricity consumption of the case study area, which is 3135 GWh/y
(2015, Table 3). This figure corresponds to the residential building electricity consumption,
including regularly and not regularly occupied building units. Knowing that electricity con-
sumption of not regularly occupied units may be lower but not null, and it can be inferred
that the mean electricity consumption is somewhere in the interval 2226–2711 kWh/y,
below the obtained from smart metering [33] and national surveys [37,41].
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The results show that the computed electricity for space heating in actual conditions
(B) represents 17% of the overall building stock electricity consumption (Figure 6), which
is above the accounted consumption in 2010 and 2020 national surveys, 9.1% [40] and
4.1% [41], respectively. As expected, this figure does not account for the electricity con-
sumption of building units without heating equipment (15.3%) and those using other
non-electric equipment (18.3%).
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Figure 6. Calculated electricity consumption in regularly occupied units in AML: (a) space heating
(top) and (b) space cooling (bottom).

The procedure to set model inputs is collecting the best available information from
statistics and surveys. Even if scenario (B) intends to represent actual conditions, the lack
of reliable data on electricity consumption for space heating and cooling makes the model
validation for estimating the energy demand impossible. Nevertheless, the results are still
a rough approximation of the electricity consumption for the space heating and cooling of
AML building stock.

3.3.3. Actual, Adequate and Minimum Conditions

To understand if the used electricity is enough to keep thermal comfort conditions, it
is relevant to compare the actual conditions scenario with alternative theoretical scenarios
that compute the required electricity consumption to achieve thermal comfort conditions
without changing the equipment.

The results in Table 11 show that the computed electricity consumption for space
heating under actual conditions (B) is in between scenarios (C) and (D), which represent
the ‘adequate’ and the ‘minimum’ thermal comfort conditions, respectively. On the other
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hand, actual conditions (B) result in the lowest electricity consumption of all scenarios for
space cooling.

For scenario (C), the model calculates a heating electricity share of 20%. The figure
increases to 26% by adding the potential electricity consumption of building units without
heating equipment, where the default solution is applied (resistive heating). On the other
hand, assuming nominal conditions for building units with electric equipment leads to a
share of 33% for space heating.

The results of scenarios (B) and (C) show that the electricity consumption for heating
under actual conditions does not ensure adequate thermal comfort in all building units
having electric equipment. This conclusion is even more evident for building units without
heating equipment. A low mean value reveals a potentially high number of building units
where the heated floor area or the heating hours are well below the required for good
thermal comfort. Both situations represent a heating gap potentially caused by energy
poverty conditions [25].

Making use of the distribution information, we have applied the following procedure
to quantify the number of building units with a lower than expected electricity consumption.
Building units were divided into groups according to the expected electricity consumption
for adequate thermal comfort conditions during the heating season. It is noteworthy that
the energy consumption is a direct function of the building characteristics, the minimum
heated floor area (12 m2 per occupant) and the number of occupied hours. Therefore, the
selected groups are the five-tenths below the median (Table 12).

Table 12. Building units by electricity consumption intervals.

Model
Conditions

Tenth Applied
to (C) 1st 2nd 3rd 4th 5th

Adequate (C)

Electricity
consumption

for space
heating

[kWh/y]

0–175 175–279 279–381 381–488 488–611

Actual (B) Building units
fraction 1 45.3% 11.8% 8.0% 6.0% 5.1%

Difference
(B)–(C) 35.3% 1.8% −2.0% −4.0% −4.9%

1 Do not include units that have other energy sources for space heating.

The results show that there are 4.5 times more building units in the first tenth than ex-
pected. The excess corresponds to 35.3% of building units with low electricity consumption
(lower than 175 kWh/y). In the second tenth, the excess still exists, 1.8%, which corre-
sponds to building units where the electricity consumption is higher but is still insufficient
to ensure adequate thermal comfort conditions. As expected, for higher tenths, there is a
deficit of building units. Though it can be concluded that about 37% of the building units
not using any other energy sources have an electricity consumption below the required
level to achieve adequate thermal comfort.

For all scenarios, the share of electricity used for space cooling does not exceed 2%. The
adequate and minimum conditions lead to an electricity consumption above the estimated
under actual conditions. Adding electricity consumption of building units without heat
pumps significantly increases the potential electricity consumption. Scenarios (C) and (D)
show that the residential building stock cooling gap is very high, which is a direct result of
the lack of installed heat pumps.
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4. Conclusions

The developed building stock energy model combines the building form and fabric
characterization with energy systems and user profiles. Using a decade EPC dataset
(2008–2018) and the corresponding probability distribution functions, the model generates
a theoretical sample of building units and calculates the electricity consumption for space
heating and cooling for the case-study region: the Metropolitan Lisbon Area (AML).

Despite the uncertainty regarding some missing parameters not collected in the EPC
process, the building stock model consistently predicts the distribution of energy needs per
unit of net floor area with an error lower than 7% of the first, second and third quartiles.
The mean value of heating energy needs per unit of floor area is slightly underestimated by
1%, while the cooling energy needs are overestimated by 3%. This comparison considered
the same approach (the seasonal steady-state) and climate dataset (CLM#1).

A further step was to compare the seasonal steady-state with the hourly RC approach,
using the climate dataset CLM#2, since there is no hourly data for CLM#1. Relative
differences are low for energy needs mean value (per building unit): seasonal steady-state
overestimates the heating energy needs by 6% and underestimates the cooling energy
needs by 3%. The study also points out that EPC energy needs are not appropriate to
compute energy demand since they are much higher than those calculated by the RC
hourly approach in the same conditions.

The study was extended to other scenarios, taking advantage of the model capability
of defining hourly profiles different from constant assumptions. The scenario defining
actual conditions (built from survey) leads to electricity consumption for space heating,
representing 17% of all end-use electricity consumption (3135 GWh in 2015). For cooling,
the estimated value is less than 1%. The mean electricity consumption for the regularly
occupied building units group is 444 kWh/y for space heating; by restricting the group
to building units without electric heating equipment, a more appropriate parameter, the
mean increases to 610 kWh/y. The same procedure applied to space cooling increases the
mean from 12 to 108 kWh/y. In the impossibility of an explicit validation due to lack of
available data at the regional scale, the electricity consumption presented here should be
taken as indicative approximations.

Two other scenarios were evaluated, assuming different user profiles scenarios for
what might be the minimum energy consumption required to ensure adequate and minimum
thermal comfort (controlling only indoor air temperature). The results show that the
actual electricity consumption for space heating (610 kWh/y) is close to the minimum
(512 kWh/y), indicating a potential number of underheated building units. In addition,
with the electricity consumption distributions, it is possible to estimate that 37% of regularly
occupied units are under heated. Due to the lack of installed cooling equipment in building
units, the electricity consumption is clearly under the required to ensure thermal comfort.

The building stock energy model here presented consists of an alternative approach to
the deterministic models. Its stochastic characteristic helps handle data uncertainty and
missing values. Furthermore, it is ready to be fed with more updated EPC datasets (e.g.,
collected data after 2018) and survey results on user profiling. Future developments should
compare model estimates with the electricity consumption for space heating and cooling
obtained from statistics and surveys for case-study areas.
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