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Abstract: Infrared spectroscopy (IR) quantitative analysis technology has shown excellent devel-
opment potential in the field of oil and gas logging. However, due to the high overlap of the IR
absorption peaks of alkane molecules and the offset of the absorption peaks in complex environments,
the quantitative analysis of IR spectroscopy applied in the field puts forward higher requirements
for modelling speed and accuracy. In this paper, a new type of fast IR spectroscopy quantitative
analysis method based on adaptive step-sliding partial least squares (ASS-PLS) is designed. A sliding
step control function is designed to change the position of the local PLS analysis model in the full
spectrum band adaptively based on the relative change of the current root mean square error and
the global minimum root-mean-square error for rapid modelling. The study in this paper reveals
the influence of the position and width of the local modelling window on the performance, and
how to quickly determine the optimal modelling window in an uncertain sample environment. The
performance of the proposed algorithm has been compared with three typical quantitative analysis
methods by experiments on an IR spectrum dataset of 400 alkane samples. The results show that
this method has a fast quantitative modelling speed with high analysis accuracy and stability. It has
important practical value for promoting IR spectroscopy gas-logging technology.

Keywords: gas logging; infrared spectroscopy; fast quantitative modelling; adaptive step sliding;
partial least squares

1. Introduction

Gas logging refers to the process of measuring the type and content of hydrocarbon gas
contained in the analysis of the drilling fluid generated during the oil and gas exploration
process [1]. At first, it was mainly used as a pure safety system designed to monitor
the content of toxic or flammable substances. With the development of technology, the
measurement results of gas gushing from the well gradually transformed into a formation
evaluation tool [2]. Gas logging has been an important means of oil and gas discovery and
evaluation, and plays an irreplaceable role in natural gas exploration and development.
It has important guiding significance to accurately analyse and evaluate the oil and gas
content and type of downhole drilled formations in real time, for the timely discovery
and interpretation of the reservoir environment, improving the efficiency of oil and gas
exploration and ensuring the safety of drilling operations [3].

However, as oil and gas exploration move toward more efficient development in
deeper formations, the natural environment of underground oil and gas reservoirs have
become more and more complex. The requirements for gas-logging technology have
become higher and higher [4]. Gas chromatography (GC), as one main traditional gas-
logging technologies, uses chromatographic columns to separate the logging gas first, and
then sends it to a flame ionization detector (FID) to detect hydrocarbon gases [5]. J. Breviere
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et al. [6] increased the detection components from C1-C5 (methane, ethane, propane, butane
and pentane) to C8 (octane) and some acid gases through the analysis of GC combined
with a mass spectrometer. A. Brumboiu et al. [7] introduced the gas-permeable membrane
to high-speed GC in the analysis of drilling gas for the first time, so that the quantitative
analysis of C1 ∼C8 and aromatic hydrocarbons can be completed within 50 s. C. A. Cramers
et al. [8] gave the theoretical relationship between chromatographic analysis time and
related pressure drop. Their research pointed out that it was the best way to increase the
analysis speed by reducing the inner diameters of open-tube chromatographic columns
and packed chromatographic columns, but the inlet pressure required would also increase
correspondingly, resulting in high flow resistance inside the chromatographic column,
which would severely restrict the application of the chromatographic column in fast GC [9].

Nevertheless, due to the long analysis period and poor ability to distinguish between
hydrocarbons and non-hydrocarbons, GC is still difficult in terms of meeting the new
requirements of real-time monitoring of drilling to find rare oil and gas reservoirs [10].
Besides improvements in quantitative methods, adding peripheral ancillary equipment
and improving the structure of the chromatographic column are the main means to increase
the detection rate, which will lead to many challenges regarding usage and ongoing
maintenance cost [11]. Therefore, GC logging technology has gradually become more
difficult in terms of meeting the actual needs and exploration requirements of complex oil
and gas reservoirs.

With the development of spectroscopy technology and chemometrics, spectral technol-
ogy has been a promising logging technology [12,13] due to its advantages of flexible, fast
and nondestructive detection. Currently, Raman spectroscopy and IR spectroscopy are the
two main spectral gas-logging technologies. Raman spectroscopy was first applied to natu-
ral gas detection in 1980 [14], and more and more analytical methods have emerged since
then. I. Kosacki et al. [15] summarized the effective modelling spectral positions for C1 ∼C4
based on the principle of Raman spectroscopy. R. Sharma et al. [16] used the 64-channel
concentric cavity unit operating enhanced Raman signal under high pressure (5bar), and
the maximum error of repeated measurement of C1 ∼C4 reached 0.1%, but the scanning
time of each spectrum reached 30 s. D. Chen et al. [17] introduced the template-oriented
frog algorithm to extract useful Raman spectral features, finding the best combination of
spectral features with the least overlap in a multicomponent mixture.

However, due to the weak Raman signal of gas, Raman spectroscopy requires a higher
power laser (>4 W) or a high pressure (>50 bar) to achieve gas detection for industrial
application. Generally, high-power lasers are bulky and need frequent maintenance, which
makes their deployment in the field impractical and expensive. On the other hand, it
is cumbersome and very unsafe to handle instruments operating under high pressure
(especially in the case of natural gas). Therefore, the current Raman gas-logging technology
has great difficulties in some extreme applications.

Relatively, IR spectroscopy has obvious advantages in detection speed and conve-
nience [18,19]. K. Indo et al. [20] designed an artificial neural network IR spectroscopy
analysis system to detect the content of pseudocomponents (not the true concentration)
of C1 ∼C6 in the laboratory. R. Piazza et al. [21] explained the importance of instanta-
neous measurement of CO2 in logging gas, and tested in five wells with nine formations,
test pumps out of the station using infrared quantitative analysis technology, and found
that the accuracy of carbon dioxide measurement was ±0.4% in the concentration range
of 1.5∼23%. Q. Ren et al. [22] used midinfrared spectroscopy to achieve high-precision
detection of CO2 content in the process of deep-sea natural gas exploration. Research by
M. K. Moro [23] et al. pointed out that the vibration mode of alkane molecules exhibited
complex differences in only the near-infrared band, and local modelling was one of the
main methods to reduce the complexity of the model and the effects of nonlinear absorption,
effectively.

Generally, the current application of IR spectroscopy in the field of gas logging depends
on the quantitative analysis based on Lambert–Beer law. Combined with chemometrics,
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more and more models have been developed to achieve high-precision quantitative infrared
spectroscopy analysis. U. Kamboj et al. [24] utilized partial least squares (PLS) analysis to
establish a quantitative analysis model of near-infrared absorbance and concentration, and
the root-mean-square RMSE error of prediction reached 0.04 on the sugar in milk dataset.
Q. Gao et al. [25] compared the prediction performance of the PLS after different spectral
preprocessing methods (Savitzky–Golay smoothing, multiplicative scattering correction,
moving average, median filtering, normalization, standard normal variable transforma-
tion, baseline, detrending, and direct differential first-order derivatives), and applied
data dimension-reduction methods (random frog [26], successive projections algorithm
(SPA) [27], and principal component analysis) for variable selection to obtain an optimal
fusion model with the best performance (RMSE is 0.271 on the Malus micromalus Makino
dataset). Y. Yu et al. [28] introduced the instance-based transfer learning framework into
extreme learning machine (ELM) [29] method combined with the two feature-extraction
algorithms of synergy interval [30] and genetic algorithm to enhance the accuracy and
stability of quantitative prediction models. H. Yu et al. [31] integrated machine learning
and correlation analysis to analyse the content of petroleum naphtha, and the accuracy
reached 90.48% on the petroleum naphtha dataset. T. Ouyang et al. [32] proposed the
infrared spectral quantitative analysis method of Deep-ELM, and the RMSE accuracy of
N2O, NO2 and NO reached 0.995, 0.984 and 0.985 respectively. L. Liu et al. [33] obtained
good results by using wavelet transform to compress data and back-propagation neural
network (BPNN) for quantitative analysis. Y. Li et al. [34] combined the two prescreening
methods of competitive adaptive reweighted sampling (CARS) [35] and principal compo-
nent analysis with the two quantitative analysis models of PLS and BPNN to improve the
prediction accuracy for different applications.

Although types of artificial intelligence algorithms have been introduced into quanti-
tative spectral analysis, the research on algorithm improvement based on PLS still has very
important application value due to its high analysis accuracy and excellent robustness and
modelling speed. Particularly, there are still many challenges in the popularization and
application of infrared spectroscopy in logging gas measurement, due to the following dif-
ficulties:

1. Because of the high similarity of the molecular structure of alkane gas, the infrared
absorption characteristic peaks are too overlapped to separate in multicomponent gas
mixtures;

2. Because of the great uncertainties of the composition of the logging gas and the limited
number of samples for modelling, fast modelling technology is becoming more and
more urgent with the increment of required spectrum range and spectral resolution
for analysis of more and more kinds of gases.

These two reasons make it important to establish an effective quantitative analysis
model for IR spectroscopy gas logging. IR spectra possess complex and overlapping
absorption bands, so mathematical procedures are needed for turning the spectra into
meaningful information. For different types of oil and gas reservoirs, it is necessary to
establish multiple quantitative analysis models with different applicability. This will
undoubtedly take up more computing resources and increase the hardware burden of the
analysis module, resulting in slow modelling speed.

In order to establish a rapid modelling method with good accuracy and to promote the
application of infrared spectroscopy gas-logging technology on site, this paper proposes
a fast modelling method based on adaptive step-sliding partial least squares (ASS-PLS).
Three types of infrared spectrum datasets of logging gas are obtained by mixing six gases
of methane (C1), ethane (C2), propane (C3), n-butane (nC4), n-pentane (nC5) and carbon
dioxide (CO2). A sliding control function is designed to change the position of the local
PLS analysis model in the full spectrum band adaptively, based on the relative change in
the current root-mean-square error and the global minimum root-mean-square error for
rapid modelling. The experiments are carried out to evaluate the influence of window
position and window width on the quantitative analysis accuracy and the performance of
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the proposed method on the three types of datasets. The results show that the ASS-PLS
method proposed in this paper can establish a rapid quantitative analysis model with good
accuracy of logging gas, and can meet the actual needs of gas-logging operations.

2. Adaptive Step-Sliding Partial Least Squares
2.1. Infrared Quantitative Analysis Principle

Based on Lambert–Beer law [36], the absorption of a certain wavenumber of light by a
substance is related to the concentration of the light-absorbing substance and the optical
path length, as shown in Figure 1:

I0 I

L

I0 I

L

Figure 1. Schematic diagram of Lambert–Beer law.

The specific relational formula is shown in Equation (1), wherein the absorbance
A(ν) of the substance with respect to infrared light of a specific frequency is defined as
Equation (2), so the relation of Equation (1) can be further expressed as Equation (3):

I(ν) = I0(ν) exp[−σ(ν)CL] (1)

A(ν) = − lg
I(ν)
I0(ν)

(2)

A(ν) = σ(ν)CL (3)

where ν is the frequency of incident infrared light, I0 and I are the intensity of incident
light and transmitted light, respectively, C is the concentration of the detected target gas,
σ(ν) is the absorption cross-section of the IR spectrum at frequency ν, and L is the optical
path length. For a multicomponent mixed gas with n components, the absorbance satisfies
the linear additive property of Equation (4):

A(ν) =
n

∑
1

Ai(ν) =
n

∑
1

σi(ν)LCi (4)

For the actual spectrum detection in engineering applications, L is known and deter-
mined because of the fixed optical path system, and σi(ν) is constant but unknown under
one stable pressure, temperature and other physical or chemical environments. Therefore,
the characteristic absorption coefficient k(ν) in the system can be defined as Equation (5):

k(ν) = σ(ν)L (5)

Then, the absorbance matrix A and the component concentration matrix C in the
mixed system have a linear relationship in Equation (6):

Am×n = km×pCp×n (6)
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where Am×n is the absorbance matrix of n samples at m wavenumber; km×p is the absorp-
tion coefficients of p components at m wavenumber, and Cp×n is the concentration of p
components in n samples. Generally, the number of target components is much smaller than
the number of wavenumber, that means p << m, so that the solution of the concentration
in Equation (6) is a linear, overdetermined, equation-solving problem. Quantitative analysis
modelling aims to establish the relationship between absorbance and the concentration of
some known samples according to Equation (6), and quantitative analysis aims to obtain
the concentration value of an unknown sample according to the established model.

2.2. Partial Least Squares Analysis

Partial least squares is one of the most effective methods to establish the linear relation-
ship between multiple variables in Equation (6). Compared with traditional multiple linear
regression, it combines the advantages of principal component regression and canonical
correlation analysis, meanwhile it can overcome the problem of much larger sample size
than variable dimensionality and the presence of multicollinearity within the variables [37].
Set the absorbance independent variable A and the substance concentration-dependent
variable C to E0 and F0, respectively, after data standardization in Equation (7): E0(i, j) = A(i,j)−mean(A(,j))

std(A(,j)) , i = 1, 2, . . . , m; j = 1, 2, . . . , n

F0(i, j) = C(i,j)−mean(C(,j))
std(C(,j)) , i = 1, 2, . . . , p; j = 1, 2, . . . , n

(7)

where mean() is an operator to calculate the average value, std() is an operator to calculate
the standard deviation, (i, j) denotes the element position in a matrix at i-th row j-th column,
(, j) denotes all elements in the j-th column. Suppose that the first principal components
extracted are t1 and u1 respectively, and the weight coefficients are w1 and m1 respectively.
So, t1 and u1 are the linear combination of E0 and F0, respectively, t1 = E0w1, u1 = F0m1.
According to the principle of principal components, the variance of t1 and u1 is required
to be maximized to make the principal components carry more information. According
to the canonical correlation analysis, the correlation between t1 and u1 is required to be
maximized for the best explanation from t1 to u1. Therefore, the covariance of t1 and u1 is
required to be maximized and the weight coefficients must be unit vectors in Equation (8):

max{Cov(t1, u1)} = max < E0w1, F0m1 >
s.t : w1

Tw1 = 1, m1
Tm1 = 1

(8)

This conditional extremum can be solved by the Lagrangian multiplier method to
obtain w1 and m1 in Equation (9):

L = wT
1 E0

T F0m1 − λ(wT
1 w1 − 1)− θ(mT

1 m1 − 1) (9)

where λ and θ are both Lagrange multiplier. By solving Equation (9), the regression
equation of E0 and F0 to t1 can be established:{

E0 = t1qT
1 + E1

F0 = t1sT
1 + F1

(10)

where E1 and F1 are the residual matrix of the regression equation, q1 and s1 are the
regression coefficient vectors calculated by the least-square method, q1 = E0

Tt1/(t1
Tt1)

and s1 = F0
Tt1/(t1

Tt1).
Furthermore, the second principal components t2 and u2 can be obtained by replacing

E0 and F0 with the residual matrices E1 and F1. If the rank of the A matrix is r, then the
calculation will continue, to obtain:

F0 = t1sT
1 + t2sT

2 + . . . + trsT
r + Fr = E0

[
r

∑
j=1

wT
j sT

j

]
+ Fr (11)
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where Fr is the residual matrix when the maximum number of principal components r is
extracted. The more principal components extracted, the better the linearity of the model,
but the possible overfitting will lead to an unsatisfactory prediction effect.

A leave-one-out cross-validation test is adopted to determine the number of principal
components h to be extracted from the spectral data. Each time the i-th spectrum observa-
tion data is discarded (i = 1, 2, . . . , n), the remaining (n− 1) spectrum observation data
are used to fit a regression equation with h principal components, and then the discarded
i-th spectrum observation data are incorporated into the regression equation to obtain the
predicted concentration ĉ(−i)j(h). The above verification is repeated for i = 1, 2, . . . , n. Then,
we obtain the sum of squared prediction errors of the j-th concentration-dependent variable
(j = 1, 2, . . . , p) in Equation (12):

Sj(h) =
n

∑
i=1

(cij − ĉ(−i)j(h))
2, j = 1, 2, . . . , p (12)

then, the sum of squares of prediction errors of the concentration C is:

S(h) =
p

∑
j=1

Sj(h) (13)

In addition, all spectral data are used to fit the regression equation with h principal
components again. Defining the predicted value of the i-th spectral data as ĉij(h), then the
sum of the squared errors of the j-th concentration-dependent variable can be defined as
Equation (14):

S∗j (h) =
n

∑
i=1

(cij − ĉij(h))
2, j = 1, 2, . . . , p (14)

then, the sum of the squared errors of the concentration C is:

S∗(h) =
p

∑
j=1

SSj(h) (15)

When S(h) reaches the minimum value, the corresponding h is the number of all the
best principal components. Usually, there is always S(h) < S∗(h), and S∗(h) < S∗(h− 1)
at the same time. Define the cross-validity index Q2

h:

Q2
h= 1−S(h)/S∗(h− 1) (16)

After the principal component extraction process, the cross-validity index is hoped to
be as small as possible. The threshold of Qh is always set to 0.05, then S(h)/S∗(h− 1) ≤
(1− 0.05)2 = 0.952, and it is beneficial to the accuracy by increasing the number of the
principal components. Therefore, for the process of extracting the principal components, if
Q2

h ≥ 0.0975 at the h-th principal component, the model meets the accuracy requirements
and stops extracting. Otherwise, the (h + 1)-th principal component extraction should
be continued.

As shown in Equation (17), the root-mean-square error (RMSE, RMSECV for model
calibration) is adopted as one of the most important evaluation indexes of quantitative meth-
ods.

RMSE(RMSECV)=

√
n

∑
i=1

(Ci − Ĉi)
2/n (17)

where Ci is the real concentration of the sample, Ĉi is the predicted concentration, and n is
the number of predicted samples.
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2.3. Adaptive Step Sliding

Due to the uncertainty of the composition of the logging gas, the spectrometer is
often required to scan with a wider frequency band. This means that it is necessary
to abandon the irrelevant weak absorption and impurity absorption bands to establish
a quantitative analysis model with strong robustness and high precision. Further, the
similarity of the molecular structure of alkanes results in a continuous distribution of their
strong characteristic absorption bands.

As shown in Figure 2b (blue box), the usual strategy is to traverse the whole spectrum
with fixed sliding-step size in one search, and to establish the corresponding local model
in the moving process to calculate the corresponding RSMECV value; then repeat the
above process by changing the window width, and select the window with the minimum
RSMECV value as the optimal window to establish the optimal model. This undoubtedly
consumes a lot of computing resources and time [38].

.  .  ..  .  .

B e s t  m o d e l( a )

( b )
( c )

R M S E C V

S l i d i n g
 S t r a t e g y
S p e c t r a l  
f e a t u r e s  

S t r o n g  f e a t u r e sW e a k  f e a t u r e s

U n i f o r m  s t e p  s i z e  M W - P L S A d a p t i v e  s t e p  s i z e  M W - P L S

Figure 2. Process diagram of sliding window local modelling strategy: (a) RMSECV values during
the sliding window. Red dots indicate ASS-PLS and blue dots indicate MW-PLS. (b) Window position
for local modelling. (c) Analyse characteristic intensities of spectral bands.

Different from the uniform sliding strategy of MW-PLS, the ASS-PLS shown in
Figure 2b (red box) can adaptively adjust the step size of each sliding according to the
RMSECV value. This strategy can skip the spectral band information with more redundant
information (blue dot) to achieve high-efficiency modelling. To this end, this paper designs
an adaptive step-sliding control function of Equation (18) to determine the optimal local
modelling interval with the best position of the moving window in only one search in the
full spectrum. The real-time ∆RMSECV change value input by this function has an obvious
nonlinear relationship with the output step size δ. In this way, the window can quickly
slide on the weak feature band, and realize fine sliding on the strong feature band, so as
to ensure that the window will not skip the ideal modelling interval during the sliding
process.

δ = δ0+β(1− exp(−(π · ∆RMSECV/ξ)2/
√

2)) (18)

where δ is the moving step size; δ0 is the basic moving step size, which is a very small con-
stant to avoid the function falling into dead loops when ∆RMSECV = 0; β is the maximum
offset of the moving step size; ξ is the kernel of the function, denoting the offset degree of
∆RMSECV; ∆RMSECV is the offset value of real-time RMSECV relative to the minimum
RMSECV*, ∆RMSECV = RMSECV− RMSECV∗, and exp() is the exponential function.

In ASS-PLS shown by Algorithm 1, when the offset degree of RMSECV is not consid-
ered (ξ → ∞), the ASS-PLS algorithm degenerates into moving window PLS (MW-PLS)
with fixed moving speed.
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Algorithm 1: ASS-PLS local modelling algorithm
Input :A: Absorbance matrix, C: Concentration matrix;

W∗L : The origin point of spectral band to be analysed;
W∗R: The end point of the spectrum to be analysed;
[β, ξ]: Sliding step size control factor;
Wd = [W1

d , W2
d , . . . , Wm

d ]: Set m test window widths.
Output :W∗: Global optimal local modelling interval;

K∗: Global optimal local modelling interval.

1

[
Acal Ccal
Atest Ctest

]
Separation←−−−−−

k
[A C]

2 for j ≤ m do
3 WL = W∗L ; WR = W j

d
4 RMSECV∗ max←−− [Ccal Ctest]
5 while WR ≤W∗R do
6 Wi = [WL, WR]

7 Ki
Ccal←−−
Acal

Establish local PLS model in window Wi

8 Ĉ = Ki ×Ctest

9 RMSECVi=

√
q
∑

p=1
(Ctest,p − Ĉp)

2/q

10 ∆RMSECV = RMSECVi − RMSECV∗

11 if ∆RMSECV < 0 then
12 RMSECV∗ = RMSECVi
13 W∗ = Wi, K∗ = Ki
14 end
15 δ = δ0+β(1− exp(−(π · ∆RMSECV/ξ)2/

√
2))

16 Wi = Wi + δ

17 end
18 end

3. Experiment and Discussion
3.1. Experiment Dataset

Three types of spectral datasets are obtained by the designed infrared spectrum data
acquisition system, shown in Figure 3. With methane (C1, 99.999%), ethane (C2, 99.999%),
propane (C3, 99.999%), n-butane (nC4, 4.999%), n-pentane (nC5, 3.999%), carbon dioxide
(CO2, 99.999%) and its mixture as the target gas, the test sample with nitrogen (N2, 99.999%)
as the carrier gas is fed into the gas-mixing system (LFIX-7000, Laifeng, Chengdu, China),
the output error is ±1% of the input concentration), which realizes the mixed gas by
controlling the intake flow. After being dehumidified by the drying tube (MD-070-24F-
4091119-02, Perma Pure, US), the test sample is introduced into the airtight light path pool
with a volume of 400 mL and an effective light range length of 4.8 m (PMG10030, YingSa,
Shanghai, China). The internal temperature of the light path pool is kept constant at 27.5 °C
by the heat preservation controlled by the temperature controller. Finally, the infrared
spectrum data are acquired by the IR spectrometer (ALPHA II,Bruker, Germany) controlled
by the computer.

The collection spectral range of the spectrometer is 2000∼6000 cm−1, the sampling
interval is 1.03 cm−1, and the number of collection points for a single sample is 3882.
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Computer

27.5℃27.5℃

Temperature 

controllerGas Sylinders
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Computer
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27.5℃

(a)

(b)

Figure 3. IR spectrum acquisition system. (a) Schematic diagram of collection process. (b) The actual
hardware structure of gas-logging instrument.

The obtained IR spectrum dataset contains 400 samples. The datasets can be divided
into three types. The first dataset (one-component dataset, sample serial number 1∼100)
consists of one component of six elementary gases C1, C2, C3, nC4, nC5 and CO2 with
the concentration distribution in Table 1. As shown in Figure 4, the second dataset (three-
component dataset, sample serial number 101∼300) consists of three components (C1, C2,
C3) with the concentration of one component increasing and the other two random. As
shown in Figure 5,the third dataset (six-component dataset, sample serial number 301∼400)
consists of six components (C1, C2, C3, nC4, nC5, CO2) with the concentration random.

Table 1. Standard concentration and sample concentration distribution of the one-component dataset.

Substance Standard Gas Concentration Concentration Gradient Sample Index Number

C1

99.999% 5%

1∼20
C2 21∼40
C3 41∼60

CO2 61∼80
nC4 4.999% 0.5% 81∼90
nC5 3.999% 0.4% 91∼100
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Figure 4. The concentration value of each sample in the three-component dataset. The horizontal
axis represents the sample index number, and the vertical axis represents the sample concentration.
(a) C1 increments. (b) C2 increments. (c) C3 increments.
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Figure 5. The concentration value of each sample in the six-component dataset.

Figure 6 shows the spectral curves of part samples (cutting the range of 2200∼2700 cm−1).
It has a good absorption linearity with the increment of concentration of the samples in
one-component dataset. As the number of components increases, the absorption peaks of
different components are seriously covered up and overlapped in Figure 6d.
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Figure 6. Spectral curve of the sample of the IR spectrum dataset. (a) Sample serial number 1∼20
(C1). (b) Sample serial number 21∼40 (C2). (c) Sample serial number 41∼60 (C3). (d) Sample serial
number 101∼120 (mixed dataset).

3.2. Influencing Factors on Local Modelling

In this paper, experiments were carried out firstly in the six-component dataset in order
to explore the influence of the window width and window position (the centre position
of the window is recorded as the position of the window) during the movement of the
local modelling window for the six substances. Taking RMSECV as the model evaluation
index, Figure 7 shows the effect of the local PLS model under different window positions
(2050∼4750 cm−1, in increments of 100 cm−1) and different window widths (5∼300 cm−1,
in increments of 5 cm−1).
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Figure 7. The accuracy of the local PLS model is affected by the width and position of the window.

Conclusions can be obtained from Figure 7 as follow:

1. The RMSECV of different substances are distributed in the range of 0∼16%, and all of
them show similar wavelike distribution in the direction of the window position;

2. The RMSECV of the same substance shows obvious stripe distribution on the win-
dow position;

3. The stripe distributions of C1 ∼C5 are similar, but are obviously different from CO2.

This indicates that the influence of the window position is much greater than the
influence of the window width in the local PLS modelling; the influence of the window
position to C1 ∼C5 is alike, but is obviously different from CO2, which is determined by
the same C-H and C-C chemical bond in C1 ∼C5 but the C=O chemical bond in CO2.
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3.2.1. Influence of the Window Position

In order to further confirm the influence of the window position, the RMSECV distri-
butions of six substances with a window width of 5∼300 cm−1 (in increments of 5 cm−1)
at 28 different positions (2050∼4750 cm−1, in increments of 100 cm−1) were counted in
Figure 8. Each box represents the RMSECV statistics of the local PLS modelling of all
different window widths at the specified window position. The average value of each
position is connected to observe the change trend (the red solid line in Figure 8).
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Figure 8. The influence of the local modelling position on the quantitative analysis model of six
substances. The statistics include the range of 25% to 75%, the range of 1.5 times the interquartile
range (1.5 IQR), the median, mean value and abnormal value (outliers).

It can be clearly seen that the influence of the window position fluctuates greatly,
and the best window position for modelling of each hydrocarbon substance is around
2750 cm−1, which is mainly determined by the symmetrical stretching vibration frequency
of -CH3 and -CH2 [39]. A good quantitative analysis model can be established around
4250 cm−1 in the near infrared band or around 3350 cm−1 in the middle infrared band, but
its analytical accuracy decreases greatly as the carbon chain grows from C1 to C5. It no
longer has obvious modelling advantages when the carbon chain grows to C4. Comparing
the performance of the PLS models around 2750 cm−1, 2650 cm−1 and 2850 cm−1, it is found
that the modelling window position is very important to build an optimal quantitative
analysis model.

3.2.2. Influence of the Window Width

In order to further confirm the influence of the width, the RMSECV distributions of
six substances in the range of 2050∼4750 cm−1 and 30 different widths (10∼300 cm−1,
in increments of 10 cm−1) were counted in Figure 9. Similarly, each box represents the
RMSECV statistics of the local PLS modelling of all different window positions under the
specified width of the window.
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Figure 9. The influence of local modelling width on the quantitative analysis model of six substances.

Obviously, the mean and median values of each substance changed gently under
different window widths. From the change in the range of 25∼75% and 1.5 IQR, the
stability of the C1∼C5 models decreased, but it remained unchanged for CO2, when
the window width increased gradually. It can be explained that the performance of local
models for hydrocarbons may be more easily affected by irrelevant interference information
introduced due to too large a window because of the narrow band infrared absorption
peak of hydrocarbons. As the length of the molecular carbon chain increases, the range of
1.5 IQR became narrower, further indicating that the search of the window position will
become more important than the window width.

Figure 10 shows the IR spectra of three different samples with the same C1 concentra-
tion of 15% and the selected modelling interval of ASS-PLS. Affected by other components,
the absorption peaks (around 2750 cm−1) of C1 overlapped badly, which makes it very
difficult to build a good quantitative analysis model based on absorption peaks directly.
However, the ASS-PLS algorithm proposed in this paper can adaptively find the optimal
modelling position (the red dashed box area) free from interference of other components,
which is a great improvement for high-precision quantitative analysis of multicompo-
nent mixtures.
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Figure 10. The IR spectra of three different samples with the same concentration of C1 and the
modelling interval selected by ASS-PLS (the red dotted box). The black line represents a sample in
the one-component dataset. The red line represents a sample in the three-component dataset. The
blue line represents a sample in the six-component dataset.
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3.3. Quantitative Analysis Results

All the programs are implemented in MATLAB (Ver. R2021a) software with the
computer processor Intel(R) Core (TM) i5-9600KF CPU @ 3.70 GHz. Quantitative tests were
performed on the three types of datasets. Each dataset was divided into a training set and
test set according to a random ratio of 7:3.

Figure 11 shows the correlation between the actual concentration and the predicted
concentration of 30 samples in the one-component test set. It can be seen that the prediction
accuracy of each substances is the best when the concentration is near 50%, but it starts to
show a small degree of deviation toward the two ends gradually. This is probably caused
by the instrument error of the mixed gas system in the preparation of experimental samples,
which is ±1% of the concentration of the input gas source. However, the ASS-PLS model
still has good analysis accuracy within ±0.4% of RMSE for one-component samples.
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Figure 11. The correlation between the actual concentration and the predicted concentration of
samples in the one-component test set. The horizontal axis is the real concentration, and the vertical
axis is the predicted concentration of ASS-PLS model, the black line means predicted concentration
equal to real concentration. (a) Prediction of C1, C2, C3 and CO2. (b) Prediction of nC4 and nC5.

Figure 12 shows the correlation between the real concentration and the predicted con-
centration of 60 samples in the three-component dataset and 30 samples the six-component
dataset. Compared with the prediction of one-component samples, the quantitative analysis
accuracy of mixed components reduced, especially in the low-concentration section. On the
one hand, as the number of components increases, the IR characteristic absorption peaks of
different substances overlap to varying degrees. On the other hand, the absorption intensity
of low-concentration components is small in multicomponent samples, which makes the IR
absorption characteristic peaks of low-concentration components more susceptible to noise
and other components.
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Figure 12. Prediction results in three-component dataset and six-component. (a) Prediction of the
three-component dataset. (b) Prediction of the six-component dataset.
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In addition, the actual concentration of CO2 and the predicted concentration still
maintain a good correlation away from the obvious overlap of the infrared characteristic
absorption peaks because of the different molecular structure.

The performance of the proposed ASS-PLS method was further compared with full-
spectrum PLS (F-PLS, blank contrast group), successive projections algorithm PLS (SPA-
PLS), competitive adaptive reweighting sampling PLS (CARS-PLS) and moving window
PLS (MW-PLS) by 10 repeated tests in the six-component dataset. Figure 13 shows the
performance of the five models.
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Figure 13. The performance of five different quantitative analysis methods for 10 repeated tests in the
six-component dataset. The horizontal axis represents the number of repeated tests, and the vertical
axis represents the model accuracy by RMSE.

It can be seen that the stability and accuracy of ASS-PLS and MW-PLS models are
significantly better than the other three modelling methods, while the performance of F-PLS
modelling is extremely poor. In addition, the prediction accuracy of CO2 is always higher
than that of the other five components, which also verifies that the prediction accuracy of
hydrocarbons has been affected by the overlapping infrared absorption due to the similar
molecular structure. The bolded text indicates the best prediction.

According to the RSME values in Table 2, the prediction accuracy in the one-component
dataset is much higher than that in the multicomponent dataset for the same substance
by the same quantitative analysis method, indicating that it is more difficult to establish
a good quantitative analysis model for multicomponent mixtures. It is noticeable that
the prediction accuracy of CO2 has a smaller reduction in the multicomponent dataset
because the characteristic infrared absorption band of CO2 is not obviously affected with
the increased number of hydrocarbon components. Furthermore, the prediction accuracy
of ASS-PLS model is slightly better than the MW-PLS model, and significantly better than
the CARS-PLS and SPA-PLS models.

It is extremely necessary to realize rapid modelling of quantitative analysis models in
completely unknown application sites to promote the application of IR spectroscopy gas
logging. Table 3 shows the number of wavenumber variables extracted by the modelling
algorithm, analysis time and the modelling time (with the Qh of PLS in (16) is 0.05) of the
several algorithm models mentioned above in the six-component dataset.

Since the analysis time is small enough, the difference in the analysis time is almost
negligible for practical applications. In addition to the higher model accuracy, the smaller
modelling time will become more practical to update the model in time. Even CARS-PLS
and SPA-PLS have a smaller modelling time, but the stabilities of the models are insufficient
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(shown in Figure 13) because of the less wavenumber variables extracted. Even MW-PLS
and ASS-PLS have better prediction accuracy (shown in Table 2), but the modelling time of
MW-PLS is nearly 349 times that of ASS-PLS due to lots of meaningless repetitions.

Experiments show that ASS-PLS has ideal modelling time with good prediction accu-
racy. Therefore, the robust accuracy and high-efficiency modelling of the ASS-PLS model
is significantly more in line with the requirements of gas-logging applications for high
stability, high precision and fast analysis.

Table 2. Comparison of the effects of five different analysis methods in three types of datasets.

Substance Dataset RMSE (%)
F-PLS CARS-PLS SPA-PLS MW-PLS ASS-PLS

C1

A 1 3.8690 0.8772 1.0151 0.4902 0.3586
B 2 7.5254 3.3254 1.3851 1.1743 1.1628
C 3 10.7304 3.8698 1.8750 1.9742 1.5020

C2

A 3.6831 1.4582 1.3080 0.7736 0.5228
B 7.2151 1.6526 1.8951 0.9414 1.4882
C 10.7826 1.2329 2.1340 1.6683 1.3673

C3

A 5.0227 1.5765 1.6862 0.5816 0.7659
B 8.7754 1.7951 2.2651 1.1151 1.2864
C 12.2141 2.3778 3.9925 1.6114 1.5182

nC4
A 7.2256 0.7946 1.2773 0.2026 0.1930
C 11.6557 6.4614 5.5224 1.7623 1.4150

nC5
A 5.8746 0.2965 0.1137 0.1584 0.1874
C 9.6520 4.1198 5.6541 1.4386 1.5524

CO2
A 4.2137 0.2237 0.0963 0.1236 0.1731
C 4.9388 0.7007 0.6676 0.3152 0.2897

1 A is the one-component test set; 2 B is the three-component test set; 3 C is the six-component test set.

Table 3. Comparison of the number of wavenumber variables extracted, analysis time and the
modelling time of several algorithm models in the six-component dataset.

Model (Qh = 0.05) Wavenumber
Variables Analysis Time (s) Modelling Time (s)

F-PLS 3882 0.0208 41.2200
CARS-PLS 56 0.0056 32.6267
SPA-PLS 27 0.0033 27.2036
ASS-PLS 100 0.0047 32.7247
MW-PLS 100 0.0043 11,443.6870

4. Conclusions

This paper proposes a new ASS-PLS infrared spectroscopy gas-logging modelling
method. The algorithm searches for the optimal quantitative analysis modelling interval of
each component of mixtures in the full spectrum by sliding a window determined by an
adaptive step-sliding control function. Three types of infrared datasets for the logging gas
are constructed in this paper. Based on the datasets, it has been analysed that the ASS-PLS
method can adaptively determine an optimal modelling interval within 2000∼6000 cm−1

of infrared data. Comparative experiments show that the stability, speed and accuracy of
ASS-PLS modelling are better than those of the other four modelling methods. In addition,
the experimental results in different mixed types of samples also show that the gas-logging
technology realized by infrared spectroscopy has the following distinct unique features
compared with other industrial applications.

1. The infrared characteristic distribution of logging gas has an obvious concentration,
and the local modelling strategy of continuous interception can effectively retain
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the characteristic information and improve the prediction accuracy and stability of
the model.

2. The accuracy of the local model under the continuous interception strategy is much
more sensitive to the modelling position than the interception width.

3. The similarity of the alkane molecular structure can lead to a shift in the optimal
modelling interval under different mixing types.

The proposed ASS-PLS modelling method can fit the above characteristics very well,
and is helpful for improving IR spectroscopy gas-logging technology, and it will also have
a great contribution to other molecular spectroscopy analyses with high similarity.
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