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Abstract: Fracture network is a crucial element to address in any model of the thermo-hydro-
mechanical behaviour of a reservoir rock. This study aims to provide quantified datasets and a
further understanding of the critical parameters of the fracture network pattern in crystalline rocks.
In the Northern Upper Rhine Graben, such rock units are targeted for multiple energy applications,
from deep geothermal heat extraction to heat storage. Eleven outcrops were investigated with
a combined LiDAR and 2D profiles analysis to extract faults and fracture network geometrical
parameters, including length distribution, orientation, connectivity, and topology. These properties
are used to decipher the structural architecture and estimate the flow properties of crystalline units.
Fracture networks show a multi-scale power-law behaviour for length distribution. Fracture topology
and orientation are mainly driven by both fault networks and lithology. Fracture apertures and
permeability tensors were then calculated for two application case studies, including the stress
field effect on aperture. Obtained permeabilities are in the range of those observed in the sub-
surface in currently exploited reservoirs. The dataset provided in this study is thus suitable to be
implemented in the modelling during the exploration stage of industrial applications involving
fractured crystalline reservoirs.

Keywords: fracture network properties; discrete fracture network; flow properties; crystalline rock;
faulted basement; geothermal reservoirs; heat storage reservoirs; structural analogues;
Upper Rhine Graben

1. Introduction

Geothermal energy and thermal energy storage are essential components of the bal-
ance required to ensure decarbonated energy supply by 2050. The Upper Rhine Graben
(URG) is a targeted area for deep geothermal and heat storage projects since petrophysical
rock properties of the faulted crystalline basement and the temperature field offer a high
potential in the area [1–5]. Geothermal anomalies are not distributed homogeneously in
the URG and are linked to lithological and structural changes [6,7]. Fault zones induce
convective flows, thus increasing the temperature field heterogeneity.

Basin-scale studies show the importance of fault zones, in the compartmentalisation
of fluid flow and control, on the architecture of a geothermal system in sedimentary and
crystalline rocks [8–11]. However, datasets of quantified structural network properties and
their local influence on flow properties within crystalline units are only sparsely available
in the literature [12–16]. The petrophysical and geo-mechanical behaviour of crystalline
rocks has been investigated in numerous studies at the sample scale in laboratory condi-
tions [17,18]. Significant structures and lithological boundaries within the basement have
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been determined and modelled by geophysical methods [3,19,20]. Possible architectures of
the fracture network and some conceptual models also exist [14,21–23]. In the area of inter-
est, i.e., the Northern Upper Rhine Graben and its crystalline shoulders, some local studies
characterise the fracture network at the outcrop scale in the granodioritic [15] and granitic
basement [24]. However, the aim of integrating the local outcrops’ structural analyses at the
massif scale has not yet been achieved in this part of the URG and is a target of this study.
The main limitations concern the quantification, before drilling wells, of the variability
and heterogeneity of the fracture network in the crystalline basement and its impact on
hydraulic behaviour at different depths. Semi-artificial Discrete Fracture Network (DFN)
models [16,25–27] can be implemented here in a renewed approach to estimate the effect
of fracture network heterogeneity, thus reducing uncertainty [28,29]. The semi-artificial
character addresses here the variety of information extracted from the outcrops [30,31], with
depth-modelled fracture variability. Indeed, at the exploration stage between seismic and
drilling stages, the semi-artificial model workflow combines parametrised fracture datasets
from field investigations, apertures estimations from different approaches [32–36], and geo-
logical studies a priori of the reservoir organisation in depth. These semi-artificial models
help to give a first order view of the permeability range, thus increasing the transferability
of outcrop analogues and derived conceptual models towards reservoir simulation.

This study aims to provide a near-surface analogue database of structural network
properties, then establish a series of sub-surface semi-artificial DFN models. Two case stud-
ies are proposed to estimate the hydraulic behaviour of crystalline reservoirs in exploitation
depths, with (1) an 800 m deep heat-storage reservoir (similar to that targeted in the project
SKEWS [37–39]) and (2) a 4000 m deep-geothermal reservoir.

2. Geological Context

The European Cenozoic Rift System (ECRIS) was developed in Western Europe to
respond to compressional intraplate stresses involved by the Pyrenean and Alpine oro-
gens [40]. Several rift basins are part of the ECRIS, from North to South, the Lower Rhine
Embayment, the Hessian Trough, the Upper Rhine Graben, the Bresse Graben, and the
Limagne Graben. The Upper Rhine Graben (URG) is the central part of the ECRIS [41–44].
The Upper Rhine Graben is divided into three segments, e.g., the northern segment, the cen-
tral segment and the southern segment [45,46]. In its northern part (NURG), the structural
architecture of the basement is complex and structured by four units, from North to South,
the Rhenohercynian Zone (RHZ), the Northern Phyllite Zone (NPZ), the Mid-German
Crystalline High (MGCH), and the Saxo-thuringian Zone (STZ) [47,48] (Figure 1).

The NURG basement subunits expose a diversity of lithologies. The RHZ domain in
the North is composed of Middle Devonian metamorphised paragenetic units [49]. Low
greenschist facies metasediments and volcanic rocks form the NPZ [50,51]. Metamorphic
and crystalline complexes from the MGCH constitute a significant part of the Northern URG
basement. The MGCH is seen as the southern active continental margin of the subduction
between Armorica and Laurussia [52,53]. The STZ comprises a Neoproterozoic gneiss
basement [19,54]. This basement is overlain by low-grade metamorphised sedimentary
and volcanic rocks deposited in a Cambrian-Devonian rift basin [3,19,55].

The Odenwald is the largest outcrop of the MGCH, valuable for investigating sub-
surface structural architecture. The MGCH represents a major part of the potential targets
in the NURG. Thus, the Odenwald as an outcrop analogue is a good target for exploration
workflow. Four units compose the Odenwald [54]: the Frankenstein Massif (Unit I);
the Flasergranitoid zone (Unit II); the South Odenwald (Unit III), and the Böllsteiner
Odenwald (Unit IV). Units I, II and III are grouped into the West Odenwald (also called
Bergsträßer Odenwald), which is separated from the East Odenwald (Unit IV) by the
N010◦ E striking Otzberg Fault Zone (OFZ). Unit I is composed of a paleo-volcanic arc and
cadomian remnants [52], later intruded by gabbroic, granodioritic and granitic plutons
during the Variscan orogeny [56,57]. Unit II is formed from the aggregation of genetically
unrelated mafic and felsic granitoid intrusions [54,58]. The host-rock of Unit III is composed
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of amphibolite-facies metamorphosed metasediments, basites and gneiss, which were
intruded by monzodiorite to granodiorite (Weschnitz pluton), granite (Tromm pluton) and
gabbro to diorite with later granite and granodiorite intrusions (Heidelberg pluton) [59]. A
Carboniferous sinistral strike-slip fault system delimits Unit I and Unit II [60]. The boundary
between Unit II and Unit III is also marked by a sinistral strike-slip fault system [48],
delimitating the Heppenheim Schieferzug meta-pelitic unit in the North and the Weschnitz
granodiorite in the South [54]. The activation of the trans-tensive regime started in the
Odenwald after the metamorphism and collision peak [48,53].

The variscan orogeny is subdivided into four steps [48]: D1 to D4. Compressional
phases D1 and D2 initiated thrust sutures during the Variscan orogeny [48]. In the late
Carboniferous, during the D3 phase, exhumation of the metamorphic rocks was accompa-
nied by NE–SW sinistral shear zones involving plutonic intrusion emplacement. Normal
faulting and NNE–SSW directed phase D4 expressed localised shear and fault zones and
contributed to brittle deformation structures. D4 is also accompanied by the intrusion of
dioritic to granitic magmas within this trans-tensive setting [58].

The Permian extension formed large intra-mountainous basins filled with coal and
siliciclastics (e.g., Saar-Nahe, Lorraine) [61,62], and records the beginning of the basement
weathering [63,64].

Basaltic and rhyolitic volcanic episodes (lamprophyres) alternate with Permian de-
posits [65,66]. Continuous subsidence affected the area from the Permian up to the Early
Cretaceous [67,68]. This was followed by a regional uplift of the Rhenish Massif, at the
NNW side of the URG, from Late Cretaceous to Paleocene, which eroded the sedimentary
units down to the Lower Triassic and Permian units [45,69,70].

During the Cenozoic, the URG development, by passive rifting in the alpine fore-
land [40,41,71,72], reactivated variscan fault systems [45,46,73]. The initiation of the rift
started in the Eocene, in response to the Alpine N–S compression. In the late Oligocene and
Miocene, NE–SW directed systems were reactivated in a sinistral trans-tensive regime, with
the maximal horizontal stress shifting from WNW to NNW orientation. During this new
stress field phase, the depocenters drifted towards the NURG, while the southern URG
uplifted, reactivating meanwhile NE to ENE striking faults [55]. The current stress field,
active since the Pliocene, which affects the NURG, exhibits maximum horizontal stress
striking N145◦ E [74]. This orientation leads to active subsidence and a trans-tensive regime
in fault zones of the NURG [55,73–75]. Associated extensive and trans-tensive regimes
induced local basaltic and trachytic volcanism (Kaiserstuhl, Vogelsberg) [60,76,77].

High-temperature anomalies tracing geothermal potential are linked to the stress field
variability [6,7]. These anomalies are located preferentially in extensional shear and normal
context, facilitating geothermal brine flow. Trans-pressive and uplift regimes dominate in
the URG central segment, while trans-tensive and normal faulting prevail in the NURG at
the boundary with the Odenwald [50,54,78].
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Figure 1. Geological map adapted from [79] for crystalline basement lithologies from the Odenwald, 
and [3] for lithological and tectonic boundaries based on the interpretation of the joint inversion of 
gravity and magnetics. Gravity and magnetics boundaries were extracted from [3], copyright Else-
vier (2021). Outcrops are marked and colour coded according to their main lithology. Horizontal 
stresses are from [80]. Domain labelling: RHZ: Rheno-Hercynian Zone, NPZ: Northern Phyllite 
Zone, MGCH: Mid-German Crystalline High, STZ: Saxo-thuringian Zone, OTZ: Otzberg Fault sys-
tem. Outcrops labelling: MZB: Mainzer Berg, LD: Lichtwiese, Darmstadt, MUT: Mühltal, HOX: Hox-
hohl, ZBG: Zwingenberg, HP: Heppenheim, WV: Weschnitz valley, HB: Hammelbach, SD: 
Streitsdölle, ZBA: Zotzenbach, OM: Ober-Mengelbach. 

3. Materials and Methods 
In this study (Figure 1), a total of 11 locations involving 21 profiles were investigated 

to assess fracture network properties for an extensive range of lithologies and structural 
contexts (Figure 2, Table 1). The presented multi-disciplinary approach is divided into two 
main panels, which are (1) structural characterisation and (2) discrete fracture network 
(DFN) modelling to quantify flow patterns. The dataset includes a quarry investigation 
(Figure 2) at Mainzer Berg [15,81] and a structural study in the Tromm area [24,82], along 
with the newly acquired datasets from Lichtwiese, Mühltal, Hoxhohl, Zwingenberg and 
Heppenheim outcrops (Table 1). 

  

Figure 1. Geological map adapted from [79] for crystalline basement lithologies from the Odenwald,
and [3] for lithological and tectonic boundaries based on the interpretation of the joint inversion
of gravity and magnetics. Gravity and magnetics boundaries were extracted from [3], copyright
Elsevier (2021). Outcrops are marked and colour coded according to their main lithology. Horizontal
stresses are from [80]. Domain labelling: RHZ: Rheno-Hercynian Zone, NPZ: Northern Phyllite Zone,
MGCH: Mid-German Crystalline High, STZ: Saxo-thuringian Zone, OTZ: Otzberg Fault system.
Outcrops labelling: MZB: Mainzer Berg, LD: Lichtwiese, Darmstadt, MUT: Mühltal, HOX: Hoxhohl,
ZBG: Zwingenberg, HP: Heppenheim, WV: Weschnitz valley, HB: Hammelbach, SD: Streitsdölle,
ZBA: Zotzenbach, OM: Ober-Mengelbach.

3. Materials and Methods

In this study (Figure 1), a total of 11 locations involving 21 profiles were investigated
to assess fracture network properties for an extensive range of lithologies and structural
contexts (Figure 2, Table 1). The presented multi-disciplinary approach is divided into two
main panels, which are (1) structural characterisation and (2) discrete fracture network
(DFN) modelling to quantify flow patterns. The dataset includes a quarry investigation
(Figure 2) at Mainzer Berg [15,81] and a structural study in the Tromm area [24,82], along
with the newly acquired datasets from Lichtwiese, Mühltal, Hoxhohl, Zwingenberg and
Heppenheim outcrops (Table 1).

3.1. Structural Data Acquisition and Treatment

At the regional scale, lineaments are investigated, using a DEM with 25 m and 5 m
resolution (Figure 3). This regional analysis aims to extract length, orientation, density
(number of lineaments per surface unit) and intensity (total lineament length per surface
unit) (Table 2), following the workflow previously published in [12,13].

The chosen 11 outcrops exhibit the diversity of crystalline lithologies encountered in
the Bergsträsser Odenwald. They also allow sampling in different structural contexts, from
shearing fault systems to normal URG border faults (Figure 2).
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Table 1. Sampling location and profile information, with number of items identified on LiDAR and
digitised with GIS.
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Mainzer Berg 483,094 5,528,012 Granite 1076 1 N010 542

[15]
(MZB) 2 N120 414

3 N120 1377
4 N170 380
5 N095 516

Lichtwiese, Darmstadt 477,176 5,523,147 Granodiorite - 1 N175 141 This study
(LD) - 2 Horizontal

plane 629

Mühltal 478,635 5,515,978 Gabbro 1197 1 N010 309
This study(MUL) 2 N150 492

3 N075 841

Hoxhohl (HOX) 480,333 5,510,764 Flasergranitoid 572 1 N100 257 This study

Zwingenberg (ZBG) 472,627 5,508,186 Granodiorite 228 1 N090 413 This study

Heppenheim 477,885 5,497,621 Granodiorite 2212 1 N170 785

This study
(HP) 2 N080 470

3 N020 510
4 N080 310
5 N015 150

Weschnitz (WV) 486,775 5,501,752 Granite 169 1 N090 1842 [24]

Hammelbach (HB) 487,401 5,497,948 Granite 159 1 N080 1351 [24]

Streitsdölle (SD) 486,817 5,495,632 Granite 456 1 N100 521 [24]

Zotzenbach (ZBA) 485,183 5,494,821 Granite 289 1 N130 1111 [24]

Obermengelbach 484,957 5,492,114 Amphibolite,
Granite 1243 1 N150 767

[24](OM) 2 N095 1647
3 N150 2383
4 N045 981

Table 2. Lineament analysis statistics, with dimension features, power-law parameters a, b, and r2,
and areal fracture density and intensity.

Layer Min Length (m) Max Length (m) Mean
Length (m) a b r2 P20

(lin·m−2) P21 (m·m−2)

DEM 25 m
regional

(Figure 3a)
143 84,253 6247 4.09 × 10−3 −1.41 0.98 5.74 × 10−8 3.58 × 10−4

DEM 25 m
Odenwald
(Figure 3b)

611 23,405 3419 1.07 −1.91 0.99 5.43 × 10−7 1.86 × 10−3

DEM 5 m
Northern

Odenwald
(Figure 3c)

9 5606 845 2.06 × 10−1 −1.69 0.99 5.77 × 10−6 4.87 × 10−3

DEM 5 m
Southern

Odenwald
(Figure 3d)

50 5112 872 3.26 −2.2132 0.98 2.47 × 10−6 2.16 × 10−3
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Figure 2. Field acquisition photographs targeted at specific lithologies and local structural context, 
(a) Fracture network outcropping at the top of the granodioritic pluton of Darmstadt, Unit I 

Figure 2. Field acquisition photographs targeted at specific lithologies and local structural con-
text, (a) Fracture network outcropping at the top of the granodioritic pluton of Darmstadt, Unit
I (Lichtwiese, Darmstadt). The background map shows the LiDAR reflectivity (b) Fault zone in
the gabbroic unit of Unit I (Mühltal) (c) Fault zone related to the URG border fault system, in the
granodioritic unit of the Weschnitz pluton, Unit III (Heppenheim) (d) Close-up of a secondary fault
core in granodiorite (Unit III) (Heppenheim), (e) Fractured network in the Tromm granite, Unit III
(Streitsdölle), in the vicinity of the Otzberg shearing fault system.
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to extract their orientation. Plane dip directions are converted into strikes following the 
Left-Hand Rule. 

The GIS interpretation is necessary to capture the apparent length, the topology of 
the fracture network and its potential clustering. Additionally, the GIS approach helps 
interpret fracture sets on outcrops with relatively flat surfaces (for instance, Lichtwiese pit 
walls) for which LiDAR workflow is not appropriate. For this purpose, the LiDAR data is 
rasterised via the SAGA cubic spline tool [84]. The rasters are then converted into hill 
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pretation of the lineament and fracture network, as explained in [12,13]. The following 
properties of the fracture network are extracted from GIS views (Table 3, Figures 4 and 5): 

Figure 3. Lineament maps from the Northern URG, (a) 25 m resolution regional map, (b) close-up
on the Odenwald, (c) 5 m resolution close-up of the southern Odenwald and (d) 5 m resolution
close-up on the northern Odenwald [15]. For b, c and d; the colour code corresponds to the geological
background and is adapted from [79] (see Figure 1 for the legend).

The description of field methods from a ground-based LiDAR and GIS acquisition
methodology is similar to that used in a previously published study [15].

The LiDAR point cloud is oriented, normalised, and plane extraction from the Ransac [83]
algorithm is applied. The obtained auto-recognised fracture planes are then analysed to
extract their orientation. Plane dip directions are converted into strikes following the
Left-Hand Rule.

The GIS interpretation is necessary to capture the apparent length, the topology of the
fracture network and its potential clustering. Additionally, the GIS approach helps interpret
fracture sets on outcrops with relatively flat surfaces (for instance, Lichtwiese pit walls) for
which LiDAR workflow is not appropriate. For this purpose, the LiDAR data is rasterised
via the SAGA cubic spline tool [84]. The rasters are then converted into hill shade layers,
with N000◦ E, N045◦ E, N090◦ E, and N135◦ E orientation, to avoid misinterpretation of the
lineament and fracture network, as explained in [12,13]. The following properties of the
fracture network are extracted from GIS views (Table 3, Figures 4 and 5): length, orientation,
linear density (P10), areal density (P20), areal intensity (P21), connectivity (CL) [85], spacing
(CV) [86] and node topology [87,88]. The fracture clusters are extracted from the LiDAR
and GIS analyses, with the input parameters for a stochastic distribution modelling, to be
implemented in the DFN models (Tables 4 and 5).
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Table 3. GIS Fracture network statistics, with dimension features, connectivity (CL), power-law parameters a, b, and r2, number of artificial scanlines (Nscanline),
number of nodes per scanline (Nf), and spacing (Cv).
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MZB 1 610 414 0.48 13.90 1.97 1.32 0.68 1.34 2.06 1.13 −1.95 0.99 36 19.36 0.94 0.54 1.55
2 129 542 0.17 4.73 1.01 3.03 4.20 4.24 1.53 1.06 −1.71 0.99 36 4.00 0.92 0.59 1.41
3 400 1377 0.04 11.68 1.01 3.05 3.44 3.48 2.82 1.12 −1.55 0.99 7 56.71 0.93 0.67 1.41
4 3870 380 1.02 32.58 5.23 0.44 0.10 0.51 2.55 0.71 −1.87 1.00 12 28.67 1.10 0.74 1.89
5 2525 516 0.50 33.47 4.22 0.76 0.20 0.86 2.78 0.27 −1.95 0.99 17 30.41 1.00 0.54 1.29

LD 1 44 141 0.11 5.12 0.94 2.05 3.20 3.02 3.78 1.04 −1.51 0.97 14 27.36 1.02 0.65 1.91
2 375 629 0.01 8.46 1.18 3.06 1.68 1.98 3.45 0.72 −1.43 0.99 10 13.20 0.94 0.61 1.26

MUL 1 745 309 0.62 16.86 3.00 1.29 0.41 1.24 5.37 0.61 −1.37 0.99 12 23.92 0.94 0.72 1.22
2 2926 492 0.17 23.81 5.26 0.77 0.17 0.88 4.48 0.38 −1.13 0.97 13 44.62 0.98 0.51 1.39
3 3278 841 0.55 48.92 3.96 0.76 0.26 1.01 4.74 0.52 −1.40 0.99 16 39.25 0.94 0.77 1.20

HOX 1 238 257 0.34 11.30 1.72 1.77 1.08 1.86 5.39 0.63 −1.02 0.97 14 21.64 1.00 0.68 1.49

ZBG 1 920 413 0.21 14.89 2.33 0.85 0.45 1.05 2.44 0.40 −1.17 0.97 17 23.00 1.13 0.66 1.67

HP 1 885 785 0.16 13.34 2.26 1.41 0.89 2.01 2.01 1.23 −1.69 0.99 14 42.07 1.00 0.74 1.43
2 1233 470 0.75 36.23 4.15 0.80 0.38 1.58 5.64 1.36 −2.00 0.99 17 37.29 0.89 0.68 1.14
3 3289 510 0.40 13.19 2.30 0.80 0.16 0.36 5.59 0.43 −2.30 0.99 23 23.26 0.93 0.64 1.22
4 454 310 0.24 13.25 1.85 1.53 0.68 1.26 4.56 0.92 −1.69 1.00 29 25.90 0.91 0.58 1.41
5 14,798 150 4.60 49.26 16.82 0.15 0.01 0.17 4.45 0.29 −1.57 0.99 19 15.26 0.79 0.55 1.19

WV 1 119 1842 0.03 7.57 0.81 6.02 15.48 12.54 4.09 2.02 −2.11 1.00 28 46.25 1.09 0.69 2.40

HB 1 67 1351 0.03 3.91 0.54 7.74 20.16 10.89 3.94 1.62 −2.34 1.00 30 42.53 0.88 0.64 1.55

SD 1 288 521 0.06 12.96 1.57 2.23 1.81 2.84 3.44 0.92 −1.48 0.99 28 24.11 0.98 0.57 2.21

ZBA 1 475 1111 0.10 11.22 1.28 1.98 2.34 2.99 2.96 1.28 −2.54 1.00 29 31.14 1.04 0.77 1.61

OM 1 200 973 0.05 7.27 0.98 2.65 4.87 4.77 3.02 1.08 −1.80 0.99 20 31.20 0.91 0.67 1.17
2 300 1981 0.06 6.24 0.89 3.26 6.60 5.88 3.11 1.38 −1.91 0.99 33 48.27 0.93 0.53 1.40
3 250 2895 0.02 7.74 0.62 4.00 11.58 7.18 3.30 1.07 −2.20 1.00 31 52.13 0.98 0.65 1.54
4 300 1280 0.06 10.28 1.10 2.50 4.27 4.69 3.43 1.12 −1.75 0.99 36 30.61 1.05 0.70 1.79
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fracture lengths from GIS analysis, (b) Connectivity ternary diagram. The applied colour code
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Outcrops labelling: MZB: Mainzer Berg, LD: Lichtwiese, Darmstadt, MUL: Mühltal, HOX: Hoxhohl,
ZBG: Zwingenberg, HP: Heppenheim, WV: Weschnitz valley, HB: Hammelbach, SD: Streitsdölle,
ZBA: Zotzenbach, OM: Ober-Mengelbach.
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Table 4. Fracture network cluster inputs selected for the stochastic DFN models simulated.
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LD
(Case 1)

1 3.06 33.9 16 2.2 2.7 30.4 1.03
2 3.06 99.4 14.3 2 2.4 52.7 0.71
3 3.06 132.6 15.4 2 2.5 64.7 0.54
4 3.06 345.1 16.3 2.1 2.6 44.1 0.77

HP
(Case 2)

1 1.53 199.4 13.8 14.5 18.2 4.4 0.48
2 1.53 130.4 18.5 4.6 5.8 25.2 0.66
3 1.53 307.6 8.8 6.1 7.6 26 0.38

Table 5. Model features parametrisation, with fracture law used, and associated parameters, fracture
clusters name (for fracture cluster properties, see Table 4), termination (with (x) or without (o)),
percentage of open fracture considered, and aperture parametrisation (with (x) or without (o) shear-
dependent aperture).

Model Model nb. Fracture Law Fracture
Clusters Termination % Open

Fractures

Shear
Dependent
Aperture

LD
(case 1)

9 powerlaw (2,2) LD1, LD2, LD3, LD4 o 100 x
12 powerlaw (2,2) LD1, LD2, LD3, LD4 o 100 o
3 powerlaw (2,2) LD1, LD2, LD3, LD4 x 100 o
8 powerlaw (2,2) LD1, LD2, LD3, LD4 o 100 x
10 powerlaw (2,2) LD1, LD2, LD3, LD4 x 10 x
4 powerlaw (2,2) LD1, LD2, LD3, LD4 o 10 o
5 powerlaw (2,2) LD1, LD2, LD3, LD4 o 10 x
2 powerlaw (2,2) LD1, LD2, LD3, LD4 x 10 o
7 powerlaw (2,2) LD1, LD2, LD3, LD4 x 1 x
6 powerlaw (2,2) LD1, LD2, LD3, LD4 o 1 o
11 powerlaw (2,2) LD1, LD2, LD3, LD4 o 1 x
1 powerlaw (2,2) LD1, LD2, LD3, LD4 x 1 o
13 deterministic - - 100 o
14 deterministic - - 100 x

HP
(case 2)

1 powerlaw (2,2) HP1, HP2, HP3 o 100 x
2 powerlaw (2,2) HP1, HP2, HP3 o 100 o
3 powerlaw (2,2) HP1, HP2, HP3 x 100 o
4 powerlaw (2,2) HP1, HP2, HP3 x 100 x
5 powerlaw (2,2) HP1, HP2, HP3 o 10 x
6 powerlaw (2,2) HP1, HP2, HP3 o 10 o
7 powerlaw (2,2) HP1, HP2, HP3 x 10 x
8 powerlaw (2,2) HP1, HP2, HP3 x 10 o
9 powerlaw (2,2) HP1, HP2, HP3 o 1 o
10 powerlaw (2,2) HP1, HP2, HP3 x 1 o
11 powerlaw (2,2) HP1, HP2, HP3 o 1 x
12 powerlaw (2,2) HP1, HP2, HP3 x 1 x
13 deterministic - - 100 o
14 deterministic - - 100 x

3.2. DFN Properties Modelling from the Near-Surface Dataset

DFN models presented in this study were generated using the FracMan software.
Such DFN models aim to integrate the fracture network properties estimated on outcrops
and upscale these to quantify the hydraulic properties of the fractured crystalline basement
in sub-surface conditions [27,30–32].
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The fracture generation follows the DFN workflow in the FracMan software [89]. Two
cases studies were implemented (Figure 6a,b), with (1) a heat-storage test site at 800 m depth
in the granodiorite below Lichtwiese (LD); and (2) a deep geothermal faulted reservoir at
4000 m within a granitic body in the NURG. Previous studies in crystalline rocks [9,56–58]
have suggested that natural fracture networks are mineralised to a large extent at reservoir
depth, thus reducing fluid flow. Three ratios of effectively opened fractures are therefore
tested (1, 10 and 100%) [24]. Stochastic DFN is modelled in a 150 * 150 * 50 m box, as the
input dataset does not provide enough information to implement vertical heterogeneity. For
case (1), fracture orientations are extracted from the GIS map of the LD horizontal surface
outcrop (Table 4), assuming a similar organisation in the subsurface, 800 m below. For
case (2), fracture orientations and length distribution are extracted from the Heppenheim
outcrop (Table 5) and modelled for a depth of 4000 m to represent a deep geothermal
granodioritic reservoir, by applying a related vertical stress field. Each fracture cluster is
parametrised following the Levy Lee generation model [90] and calibrated with the average
P10 extracted from the GIS analysis. Fracture orientation follows a Fisher distribution [91].
A random seed number is reinitiated at each realisation. The fracture length distribution
was set according to the computed power law, with a coefficient of −2.02, lmin of 1 m
and lmax of 50 m. Aperture was parametrised (a) as fracture length-dependent, following
the relation a = FractureRadius (m)× 10−6 [21], and (b) as shear dependent. For this second
scenario of aperture estimation, a regional pattern with highest principal stress σ1 and
vertical and extensive σ3 oriented N145◦ E [74,92] is considered. For the two case studies,
the far-field regional stress field is implemented from [92] for depths of 800 m and 4000 m.
The effective stress magnitude of the fracture plane is calculated following Mohr-Coulomb
criteria [32], with the cohesion of 28 MPa [93] and pore pressure of 20 MPa for case (1), and
80 MPa for case (2). The resulting stress magnitude is integrated into fracture aperture
estimation [32,94], following linear elastic fracture mechanics (Equation (1)) [95].

a =
√

L
Kc

(
1− ν2)

E
√
π/8

(1)

where a is the fracture aperture, ν, the Poisson Ratio, E the Young Modulus, L the fracture
radius and Kc the fracture toughness, dependent on the maximum stress.

The fractured rock is considered as an anisotropic porous medium, in which the
rock matrix is parametrised as impermeable, and those flow pathways are restrained to
connected fractures. The permeability of each fracture (kf) is determined by cubic law of
the aperture [96], following Equation (2).

k f =
a2
12

(2)

The equivalent permeability tensor is then calculated for each DFN model, following
the Oda approach [97]. Permeability tensors are calculated in a regularly spaced grid, with
a cell size of 0.8 × 0.8 × 0.625 m. Such cell size allows modelling of the properties of
high-intensity fracture clusters and thus quantification of their impact on permeability at a
metric scale.

Additionally, for the two case studies, deterministic DFN models were implemented
(Figure 6c), in which matrix permeability is fixed with a normal distribution of 10−18 ±
1.10−19 m2. The fracture aperture is parametrised with the two approaches, identical to
those applied for stochastic DFNs.

The use of outcrop datasets to estimate rock properties from DFN is potentially affected
by several uncertainties. Following the work of [98], uncertainties can be categorised into
three types, applicable to DFN:

Type (1) Measurement errors due to faulty observations, imprecision and bias.



Energies 2022, 15, 1310 13 of 30

Energies 2022, 15, x FOR PEER REVIEW 14 of 32 
 

 

instance, to transfer the DFN from near-surface to deep subsurface conditions, a local 
stress field that has not been recorded may change the nature of the fractures altogether. 
Whilst type 3 errors are impossible to reduce, type 1 and type 2 uncertainties can be lim-
ited by additional data and analysis. 

 
Figure 6. Semi-artificial DFN models, (a) Case n°1: Heat-storage purpose (800 m depth in a granodi-
oritic unit), (b) Case n°2: Deep-geothermal faulted granitic reservoir (4000 m), (c) deterministic 
model for case 1. 

Figure 6. Semi-artificial DFN models, (a) Case n◦1: Heat-storage purpose (800 m depth in a gran-
odioritic unit), (b) Case n◦2: Deep-geothermal faulted granitic reservoir (4000 m), (c) deterministic
model for case 1.

This first category issues from limitations of the measurement devices in accuracy
and precision in both detection and output. Uncertainty from mis-observations in reading
measurements and detecting data, like simply missing a fracture, is also included in cate-
gory 1. Bias, including over- and underestimation, also falls under this type of uncertainty.
These uncertainties can usually be reduced by acquiring new data or improving the mea-
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surement devices [29]. For instance, here there is a possibility that the number of fractures
is overestimated at the surface, due to weathering and mining processes, hence the interest
in comparing to subsurface data.

Type (2) Variability and stochasticity. This uncertainty is related to the description
of the natural heterogeneity seen in geological features [28]. Geostatistical methods and
processes limit these types of uncertainty. The uncertainties can be estimated through, for
instance, data relationship analysis and (stochastic) interpolation [98,99].

Type (3) Knowledge gaps, simplifications and ignorance. This uncertainty is impossi-
ble to quantify because it is based on unknown or non estimated information [100]. For
instance, to transfer the DFN from near-surface to deep subsurface conditions, a local stress
field that has not been recorded may change the nature of the fractures altogether. Whilst
type 3 errors are impossible to reduce, type 1 and type 2 uncertainties can be limited by
additional data and analysis.

4. Results
4.1. Structural Pattern of the Northern URG

Four lineament strikes dominate the structural trend of the NURG, i.e., N000–N015◦ E,
N050–N075◦ E, N100–N115◦ E and N150–N165◦ E (Figure 3a). The same orientations charac-
terise the Odenwald itself. However, lineaments striking N100–N115◦ E and N055–N070◦ E
are in a dominant proportion, compared to N000–N015◦ E and N150–N165◦ E, contrary to
the regional trend (Figure 3b). Within the Odenwald, the major strike also varies locally.
The granitic and granodioritic southern Odenwald, previously investigated for the Tromm
pluton by [24], mainly exhibits lineaments oriented N100◦ E, and three wider groups
oriented NNE–SSW, ENE–WSW, and NNW–SSE (Figure 3c). The Northern Odenwald
(Unit I, Figure 3d), regionally investigated by [15], is affected mainly by lineaments trend-
ing N010–N025◦ E, N055–N070◦ E and N150–N165◦ E. Lineaments striking N110–120◦ E
are also observed but in a smaller proportion than in the Odenwald pattern.

Table 2 summarises the lineaments’ geometrical statistics from the regional study.
The power–law slope parameter b ranges from −1.41 to −2.2 and increases with the
analysed resolution.

4.2. Fracture Network Patterns and Their Structural Context

Several patterns of fracture network architecture were observed in the field and by
LiDAR imaging (Figures 1, 2 and 4). Involving multiple clustering levels, presence of
normal and shearing fault zones, fracture infills and mineralised fault cores, the dataset
covering these 11 outcrops exhibits the diversity of structures that may be encountered
in the Odenwald massif within the vicinity of large shearing and normal fault zones. In
Mainzererg, the granodiorite is characterised by an enhanced heterogeneity of fracture
intensities around weathered fracture and fault corridors [15]. At Lichtwiese (LD), the
outcrop exhibits a complex fracture at the top of the granodioritic pluton (Figure 2a). This
outcrop is located near the discordance separating the granodioritic basement (Unit I) from
Permian sediments (belonging to the Sprendlinger Horst on the East). This discordance
might be a fault zone, but further investigations are required. In Mülhtal (MUL), gabbroic
intrusion, oriented mainly NE–SW, exhibits fault zones with clay infill and a fault damage
zone, with thicknesses from 1 to 10 m and oriented NNW–SSE and NNE–SSW (Figure 2b).
Several of the fracture corridors within the fault damage zone exhibit cataclasis. In Zwin-
genberg (ZBG), located near the URG border fault oriented N010–N020, the granodiorite
outcrop presents an excellent example of a background fracture network which affects
crystalline rocks in the vicinity of a large fault zone. In Hoxhohl (HOX), the flaser-granitoid
outcrop also exhibits background fracturing affecting a heterogeneous rock mass at the
metric scale. The flaser-granitoid typically exposes a lithological anisotropy at the 10 m
scale, constituted by the stacking of meta-basalt and meta-granitoid lineated units. The
quarry in Heppenheim (HP) (Figure 2c,d) includes a large volume of a faulted granodiorite
affected by a normal to trans-tensive fault system at the URG border. Fault cores with
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strong fracture intensity and clay alteration are exhibited (Figure 2c). These examples
allow an investigation of the topology and dimensions of fracture properties in granodi-
oritic rocks. In the southeastern part of the Unit III, the Tromm Granite is a medium- to
coarse-grained, orthoclase-rich, biotite-bearing and often reddish granitic rock, with local
amphibolite bodies preferentially present in its southern part (named Schollenagglomerat)
(Ober Mengelbach (OM)). The Tromm Granite is delimited in the East by the major shearing
Otzberg fault zone (Figure 1), and several outcrops are sampled along the fault damage
zone, with variable distance, in Weschnitz Valley (WV), Hammelbach (HB), Streitsdöll (SD)
and Borstein, Zotzenbach (ZBA). This diversity of outcrops within the Tromm provides
an overview of the variability of the architectures of fracture networks within a faulted
granitic pluton, with various degrees of fracture intensities and fracture directions (parallel
to the main fault system, and conjugated structures (Figure 2e)).

4.3. Geometrical Features of the Fracture Network

Orientation from the LiDAR dataset was extracted from 10 locations (Figure 4). The
Lichtwiese orientation dataset is extracted from the GIS interpretation as the investigated
fracture planes do not have sufficient relief to be detected by the Ransac algorithm.

The main orientations identified are NNW–SSE (MZB, LD, MUL, ZBG, HOX, HB,
SD, OM), NW–SE (MZB, ZBG, WV), NE–SW (MZB, SD, WV and HP), and NNE–SSW
(MZB, MUL, ZBA). Fracture length distributions are extracted from the GIS interpretation
(Figure 5a), and reflect the apparent length of the fractures. Mean fracture length varies
from 0.54 to 16.82 m on the sampled sections, a minimum length of down to 0.01 m,
and a maximum sampled length of 49.26 m overall. The fracture length distribution
shows variable power-law trends depending on the lithology, with b values varying from
−2.54 to −1.02.

Linear fracture density (P10) varies in the sampled locations from 0.15 to 7.74 frac·m−1,
with an average P10 of 2.17 frac·m−1. Areal fracture density (P20) varies from 0.01 to
20.16 frac·m−2, with an average P20 of 3.4 frac·m−2. The low value of minimal P20 is
explained by the resolution of the concerned profile in Heppenheim. Profile 5 is a long-
distance profile in which few fractures are identifiable in the image. Thus, the apparent
density is low. Profiles 1 to 4 in the same location were acquired closer to the quarry wall
and allowed a better resolution and a higher number of identified fractures. Areal fracture
intensity (P21) varies from 0.17 to 12.54 m·m−2, with an average P21 of 3.15 m·m−2.

Fracture spacing (Cv, unitless) varies between 0.51 and 2.4, with an average Cv of 0.97,
near to 1. Fracture network connectivity (CL,unitless) varies from 1.53 to 5.64, with an
average of 3.6 and a dispersion of 0.31 (Figure 5b). The fracture connectivity is variable de-
pending on the lithology, with granodiorites from Heppenheim and gabbros from Mühltal
presenting the higher connectivities.

4.4. Semi-Artificial Discrete Fracture Network Models

The fracture network characteristics and statistics are implemented in two DFN models
(Figure 6). These two cases illustrate two sub-surface configurations. Case 1, LD, refers
to the dataset from Lichtwiese and is parametrised for an 800 m depth to conceptualise
a medium-deep borehole heat-storage reservoir. For this model, four fracture sets are
parametrised. The fracture length distribution follows a power law of 2.2, and the DFN
model fits density and orientation features referenced in Table 4, case 1.

The second case is based on the Heppenheim dataset and aims to represent the fracture
network of a clustered and faulted deep geothermal reservoir. Thus, the parametrised depth
is 4000 m. Fracture length distribution follows a power law, and three fracture clusters
are implemented, with orientation features listed in Table 4, case 2. In these two cases,
different scenarios considering fracture topology (termination), the influence of the stress
field on aperture, and different ratios of effective fractures are tested (Table 5), and aperture
distribution and permeability tensor terms are analysed (case 1, Table 6; case 2, Table 7).
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Table 6. Case 1 DFN models; aperture and permeability tensor distribution, with Kxx, Kyy and Kzz and permeability tensor magnitudes (K1, K2 and K3), as well as
main tensor orientation (KTS, strike and KTD, dip).
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LD 1 1 1 o 2.66 × 10−6 1.33 × 10−6 −16.32 −16.62 −16.20 −16.28 −16.38 −16.73 179 64
LD 2 1 10 o 2.92 × 10−6 1.42 × 10−6 −15.78 −15.81 −15.58 −15.57 −15.67 −15.98 127 34
LD 3 1 100 o 2.91 × 10−6 1.41 × 10−6 −14.66 −14.70 −14.47 −14.47 −14.60 −14.78 163 16
LD 4 0 10 o 2.91 × 10−6 1.40 × 10−6 −16.06 −15.99 −15.81 −15.03 −15.12 −15.49 128 36
LD 5 0 10 x 1.48 × 10−5 8.56 × 10−6 −13.29 −13.33 −13.16 −15.12 −15.23 −15.48 141 56
LD 6 0 1 o 2.92 × 10−5 1.48 × 10−5 −13.47 −13.66 −13.31 −13.32 −13.45 −13.73 177 63
LD 7 1 1 x 2.41 × 10−6 1.93 × 10−6 −16.38 −16.71 −16.28 −16.28 −16.38 −16.73 179 64
LD 8 1 100 x 1.52 × 10−5 1.99 × 10−5 −15.01 −15.51 −14.98 −14.97 −15.02 −15.51 179 38
LD 9 0 100 x 1.52 × 10−5 1.99 × 10−5 −11.89 −12.21 −11.82 −11.81 −11.90 −12.22 179 31
LD 10 1 10 x 1.48 × 10−5 8.56 × 10−6 −16.82 −17.02 −16.67 −16.66 −16.80 −17.05 168 30
LD 11 0 1 x 2.57 × 10−6 1.94 × 10−6 −16.32 −16.62 −16.20 −16.20 −16.31 −16.63 179 63
LD 12 0 100 o 2.91 × 10−6 1.41 × 10−6 −14.77 −14.77 −14.56 −14.56 −14.69 −14.87 110 16
LD 13 0 100 o 8.67 × 10−4 3.22 × 10−4 −16.84 −16.70 −16.55 −16.55 −16.63 −17.10 172 68
LD 14 0 100 x 3.10 × 10−6 4.67 × 10−6 −17.08 −17.61 −17.03 −17.02 −17.08 −17.63 179 72

Table 7. Case 2 DFN models aperture and permeability tensor distribution, with Kxx, Kyy and Kzz and permeability tensor magnitudes (K1, K2 and K3), as well as
main tensor orientation (KTS, strike and KTD, dip).
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HP 1 0 100 x 1.98 × 10−6 1.39 × 10−6 −16.19 −16.34 −16.10 −16.08 −16.19 −16.38 172 35
HP 2 0 100 o 2.66 × 10−6 9.63E−07 −16.17 −16.08 −15.93 −15.92 −16.03 −16.26 141 25
HP 3 1 100 o 2.31 × 10−6 1.12 × 10−6 −16.20 −16.10 −15.95 −15.94 −16.05 −16.29 135 25
HP 4 1 100 x 1.72 × 10−6 1.37 × 10−6 −16.22 −16.37 −16.13 −16.11 −16.22 −16.41 171 34
HP 5 0 10 x 1.60 × 10−6 1.61 × 10−6 −17.28 −17.26 −17.09 −17.07 −17.18 −17.42 167 51
HP 6 0 10 o 2.66 × 10−6 9.71 × 10−7 −17.07 −17.04 −16.87 −16.85 −16.96 −17.22 166 47
HP 7 1 10 x 1.51 × 10−6 1.63 × 10−6 −17.80 −18.04 −17.82 −17.08 −17.18 −17.42 168 51
HP 8 1 10 o 2.48 × 10−6 1.06 × 10−6 −17.09 −17.05 −16.89 −16.87 −16.98 −17.24 166 47
HP 9 0 1 o 2.65 × 10−6 9.45 × 10−7 −15.77 −15.84 −15.57 −16.17 −16.32 −16.57 178 70
HP 10 1 1 o 2.49 × 10−5 1.02 × 10−5 −14.65 −14.64 −14.41 −14.40 −14.54 −14.80 178 70
HP 11 0 1 x 1.04 × 10−5 3.94 × 10−6 −17.64 −17.62 −17.39 −15.56 −15.71 −15.96 178 70
HP 12 1 1 x 1.79 × 10−6 1.40 × 10−6 −17.59 −17.82 −17.47 −17.46 −17.59 −17.86 178 71
HP 13 0 100 o 3.12 × 10−6 1.17 × 10−6 −17.60 −17.08 −17.00 −16.99 −17.05 −17.75 174 77
HP 14 0 100 x 3.75× 10−7 2.16× 10−6 −17.62 −18.01 −17.51 −17.51 −17.60 −18.06 179 82
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4.4.1. Aperture Distributions

Two methodologies were considered to estimate fracture aperture. They show a
slightly variable mean aperture and exhibit a difference of heterogeneity in the fracture
aperture distribution within the 3D models (Figure 7; Tables 6 and 7). Aperture distribu-
tions, in case (1) (LD, Table 6), considering aperture as a function of fracture length, vary
between 7.7 × 10−8 m and 2.46 × 10−3 m, with an average aperture of 1.30 × 10−4 m. In
the same case (1) model, shear-dependent apertures vary between zero and 7.7 × 10−8 m
and 5.15 × 10−4 m, with an average aperture of 9.73 × 10−6 m. Apertures determined by
shear dependency are more than one magnitude smaller than apertures that are length-
dependent. For case (2) (HP; Table 7), aperture as a function of fracture length shows a
minimum value of 0, i.e., closed fractures, a maximum of 1.95 × 10−4 m and an average of
5.83 × 10−6 m. When parametrised as a shear dependent, aperture varies between 0 and
8.33 × 10−5 m, with a mean aperture of 2.77× 10−6 m. For shear dependent apertures, frac-
tures favourably oriented within the stress field exhibit two to three times larger apertures
(Figure 7b,d) than in the case where apertures are a function of fracture radius (Figure 7a,c),
but only for a small numbers of fractures.
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4.4.2. Permeability Field

The permeability tensor is calculated after ODA [97] and results summarised for case
(1) in Table 6 and for case (2) in Table 7. For case (1) (Figure 8a,b), from the 12 models issued,
the average Kxx is 10−14.9 m2, with lower values for the deterministic models (10−16.9 m2).
Kyy average is 10−15.1 m2, and 10−17.1 m2 for the deterministic models. Kzz average is
10−14.7 m2, with lower values for the deterministic models (10−16.7 m2). Tensor terms in the
12 models of case 2 (Figure 8c,d) show lower values, with an average Kxx of 10−16.7 m2, Kyy
of 10−16.8 m2 and Kzz of 10−16.5 m2. Deterministic models for case 2 also show low values
of Kxx (10−17.6 m2), Kyy (10−17.5 m2) and Kzz (10−17.2 m2). The heterogeneity induced by
the distribution of fracture aperture is also overprinted on the permeability field, with
a more substantial anisotropy for shearing dependent permeability grids (Figure 8b,d).
Maximum magnitudes of the permeability tensor (K1,K2,K3) shows a similar trend. The
orientation of the permeability tensor is similar for the models in which the stress field is
integrated. The permeability tensor orientation variability observed for models that do
not integrate the stress field suggests that the maximum permeability is oriented along the
direction in which most of the fractures are present.
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5. Discussion
5.1. Near-Surface Architecture of Crystalline Reservoirs
5.1.1. Fracture Network Topology and Clustering

The fracture network topology is a key parameter in assessing the flow behaviour in
crystalline rocks (Figure 5b). The fracture network exhibits Y-I nodes preferably within
shearing fault zones, whereas background fracturing and normal fault deformations tend
more toward an X node dominated network. Such an outcome is implemented in the
choice of termination scenarios in DFN models. Models with an active fracture termina-
tion represent the Y-node prone network, and the X-node prone is represented by a non
terminated network. Clustering of the fracture network is an essential component of the
quantitative fracture network analysis. The clustering indeed increases the heterogeneity
and the anisotropy of transfer properties with crystalline fractured reservoirs. This het-
erogeneity, occurring at different scales, and in fault zones and in background fracture
network, needs to be characterised quantitatively to increase the accuracy of reservoir
models and potential assessments. The diversity of fault zone configuration investigated in
this study also reflects various ranges of fracture network clustering, which can be assessed
by the variability of relative spacing profiles in distance occurrence frequencies diagrams
(Figure 9). With such representations, the potential clustering of the fracture distribution
can be detected [15,101]. The black line represents a random distribution, and the higher
the deviation from this curve, the stronger the clustering. In granitic and granodioritic
outcrops, the clustering is marked by the presence of strong deviations from the normal
distribution, by Cv values greater than 1, and by a Y node connected network. In the
core of outcropping fault zones, as in Heppenheim (Figure 9e,f), the fracture is marked
by a mixed X and Y topology, indicating a discretisation and a preferential localisation
of the deformation volumes around these corridors. At a further distance from the fault
core (Streitsdölle, Tromm granite), the background fracture network is also showing a Y
node-prone topology. However, the clustering is also relatively intense, as translated by the
numerous slope break points (Figure 9g,h). In the Lichtwiese pit, the top view also exhibits
a well-connected Y node dominated fracture network, in which the clustering is slightly
less intense (Figure 9a,b). In this particular case of background fracture network at the top
of the weathering zone, some fractures may be harder to identify, as the hardness of the
granodiorite is weakened by weathering. In the more mafic lithologies sampled, e.g., in
Mühltal (Figure 9c,d) and Obermengelbach (OM) (Figure 9i,j), the fracture network also
exhibits good connectivity, with X nodes predominant outside of the faulted zones for the
gabbro in Mühltal. A few profiles, orthogonal to the fault zone, show a tendency to clusteri-
sation, underlining the localisation of deformation in such structures. The amphibolite-rich
rock volume characterised in Obermengelbach is affected by a Y node dominated fracture
network, in which fracture spacing has a random distribution, also marked by the smaller
size of fracture segments, compared to the rest of the lithologies. This fracture network
affecting the amphibolite might result from volume deformation linked to the intrusion of
granitic and felsic bodies in southern crystalline Odenwald [102].

5.1.2. Multi-Scale Behaviour from Regional Scale to Outcrop Scale

The 11 sampled localities allow depiction of a multi-scale behaviour of the fracture
network depending on lithology and structural context. The typology of the fracture
network is linked to the lithology. Several regional shearing and faulting directions were
identified on the regional lineament survey and are identical to the typical Hercynian
deformation directions reported [13,45,74,103]. The major shearing and crustal boundaries
of the NURG basement increase the expression of NE–SW lineaments. NNE–SSW striking
lineaments on the western side of the Odenwald are associated mainly with the Cenozoic
rift activity [44,45,103].
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Figure 9. Clustering of the fracture network in the Odenwald. (a) Fracture map from the granodio-
ritic Lichtwiese (LD) damage zone, (b) Distance-occurrence frequency diagram associated with 
mapping. (a,c) Fracture 2D profile in a faulted gabbro (Mühltal (MUL)). (d) Distance–occurrence 
frequency diagram associated with mapping, (c,e) Fracture 2D profile in a faulted granodioritic 
Weschnitz pluton, in Heppenheim quarry (HP), (f) Distance–occurrence frequency diagram associ-
ated with mapping, (e,g) Fracture 2D profile in the granitic Tromm pluton (Streitsdölle (SD)), (h) 
Distance–occurrence frequency diagram associated with mapping, (g,i) Fracture 2D profile in an 
amphibolite outcrop in Obermengelbach (OM), (j) Distance–occurrence frequency diagram associ-
ated with mapping (i). For maps and profiles (a,c,e,g,i), black lines represent the digitised fractures, 
and red lines and dots the artificial scanlines used to compute clustering features. The applied col-
our code in the distance–occurrence frequency diagrams in (b,d,f,h,j) is related to the sampled li-
thology (see Figure 1). 
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power-law behaviour, with a slope value of −2.02 similar to previous investigations, in 

Figure 9. Clustering of the fracture network in the Odenwald. (a) Fracture map from the granodioritic
Lichtwiese (LD) damage zone, (b) Distance-occurrence frequency diagram associated with mapping.
(a,c) Fracture 2D profile in a faulted gabbro (Mühltal (MUL)). (d) Distance–occurrence frequency dia-
gram associated with mapping, (c,e) Fracture 2D profile in a faulted granodioritic Weschnitz pluton,
in Heppenheim quarry (HP), (f) Distance–occurrence frequency diagram associated with mapping,
(e,g) Fracture 2D profile in the granitic Tromm pluton (Streitsdölle (SD)), (h) Distance–occurrence
frequency diagram associated with mapping, (g,i) Fracture 2D profile in an amphibolite outcrop
in Obermengelbach (OM), (j) Distance–occurrence frequency diagram associated with mapping (i).
For maps and profiles (a,c,e,g,i), black lines represent the digitised fractures, and red lines and dots
the artificial scanlines used to compute clustering features. The applied colour code in the distance–
occurrence frequency diagrams in (b,d,f,h,j) is related to the sampled lithology (see Figure 1).

The normalised cumulative length distribution (Figure 10) exhibits a multi-scale
power-law behaviour, with a slope value of −2.02 similar to previous investigations, in
crystalline rocks outcropping on the URG shoulders (Vosges, −2.05 [13], Schwarzwald
between −2.0 and −2.5 [103], Odenwald −2.03 [15]).
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The hydraulic behaviour of each of these structures depends on the stress field. The
dilation-slip tendency [63] suggests that shear reactivation in the strike-slip regime affects
mainly NNE–SSW and ENE–WSW systems, thus indicating a preferential fluid flow, along
with structures with a similar orientation within the current stress field.

5.2. Estimation of Flow Properties in Deep-Seated Reservoirs

The permeability field was assessed from the DFN models with an ODA approach and
considers variable aperture distribution controlled by fracture size or shear dependency,
e.g., influence of the stress field. Datasets from the Soultz-sous-Forêts site present mean
permeabilities for the granitic basement ranging from 1.10−17 to 11.10−15 m2 [104,105].
When compared to these pre-existing permeability fields in crystalline rocks, several of
these values are out of range, suggesting that several of the scenarios exhibiting 100% of
active fractures are not realistic. Stochastic models for case 1 considering 1% and 10% active
fractures present permeabilities between 10−16.8 and 10−13.1 m2, and aperture distributions
between 2.10−7 and 3.10−3 m. Permeabilities estimated in previous models refer to the
range between 1.10−17 to 1.10−15 m2 [104,105] compared with deep reservoirs. In case 1, the
heat storage site is situated only at 800 m. Thus the high permeabilities between 1.10−15 and
1.10−13 in fractured areas are likely to be encountered. For case 2, permeability values range
between 10−18 and 10−14.5 m2, also coherent with the observations in Soultz-sous-Forêts
granite on the lower and upper boundary. These values are also coherent with the range
estimated in previous studies for deep-seated crystalline reservoirs [24,104,106,107].

The DFN and ODA calculations illustrate critical parameters of aperture estimation
(Figures 7 and 8). The fracture aperture distribution shows here a clear impact on perme-
ability. Calculated permeability field average values show the influence of shearing and
depth on fracture aperture, thus on the anisotropy of the permeability field for shearing
dependent permeability grids (Figure 8). Heterogeneity of the permeability tensor on
xy- and yz-planes is increased in DFN models, which include the shear correlated aper-
ture distribution (Figure 11). When comparing in a cross-plot the relationship between
Kxy and Kyz (Figure 11), shear dependent permeability estimations induce a larger lateral
and vertical heterogeneity, with points situated on the top right or bottom left part of the
cross-plot. On the contrary, permeability ranges issued from the length dependent aperture
are situated in the central part of the graph. This exhibits a more homogeneous permeability
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tensor for apertures directly extracted from fracture length. The modelling of aperture
distribution in further steps should include subsurface well datasets and transmissivity
quantification to upscale reservoir transfer properties. For this first-order estimation, the
Mohr-Coulomb criteria are considered here. Shear dependency and additional methods to
approach this [32,33,36,108–110], and the deciphering of fracture aperture behaviour at the
sub-seismic scale, should be extensively considered in further studies. Additional inves-
tigation of the fracture aperture and characterisation of the hydraulically active fracture
network can be implemented for borehole investigations.

5.3. Structural Uncertainties Related to Sub-Surface Transfer

Transferring analogue datasets to subsurface conditions requires several strong hy-
potheses, which could be addressed both by stochastic or deterministic approaches to
permeability estimation [111,112]. This study examined stress field and shear influence
on fracture aperture at different depths, following the primary hypothesis that stress field
depends on depth, without considering additional fluid pressure or local overpressure
and/or dilation. In the frame of an upscaling to reservoir conditions for a real case study,
only borehole datasets with in-situ stress fields can help to validate such a hypothesis.
though, even with borehole data, uncertainties remain.

The type 1 uncertainty can be reduced by acquiring and implementing borehole data.
This type of uncertainty can include orientation spacing and distribution of fractures that
are recovered from the fracture logging. Additionally, borehole data are the only way to
deterministically assess aperture distribution. Indeed, this aperture distribution is not
representative at surface conditions, as it is enhanced by weathering and outcropping.
Fracture network properties change with depth, as demonstrated by the comparison with
the datasets for Soultz wells [104,105].

Not only the nature of the fractures themselves are subject to uncertainty; as subsur-
face conditions are different, there is an inherent heterogeneity on a larger scale as both
lateral conditions change. Thus, intrinsic properties can differ from their surface analogue
counterparts. This means that, even if borehole data is present to calibrate DFN models,
uncertainties increase along with distance to the borehole. Next to borehole data, high
density 3D seismic data can indicate porosity, including secondary porosity induced by
fractures [113], reducing some of the type 1 and type 2 errors.

Outcrops are useful to reduce uncertainty about heterogeneity under the hypothesis of
the similarity of the fracture network organisation (clustering, fracture spacing, topology).
They also indicate fracture orientations and dimensions and their variability. While these
uncertainties are present, outcrop analogue investigations remain a reliable method to
estimate fracture network features in the subsurface.

5.4. Applicability of the Conceptual Model of Crystalline Faulted Rocks

With increasing depth, for large size fractures aperture range is affected by the vertical
stresses and can modify the orientation of the permeability anisotropy in fractured zones.
Thus, this emphasises the need for discrete subsurface datasets, from well logs and cores,
to acquire calibration data for fracture models in order to achieve a proper permeability
field assessment in subsurface conditions. The stochastic approach used here provides
a first-order estimation of the permeability field in the sub-surface, which is helpful in
decreasing the uncertainties related to the hydraulic behaviour of the rock mass. Still,
such an explorative DFN model approach can not replace exploration wells and in-situ
measurement of hydraulic properties.
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Figure 11. Kxy versus Kyz cross plot showing heterogeneities of permeability tensor term implied
by the shear dependency of fracture aperture and fracture termination parametrisation, values from
case 1 (LD).

A strong emphasis should be placed on thermo- and poro-elastic stress fields, as they
impact transfer properties in such rock types. Fracture network geometry and porosity
are critical factors in modelling fluid transfer, thus affecting the technical potential of
geothermal exploitation or heat storage at a specific depth interval in the subsurface. This
conceptual model approach needs also to include fluid behaviour and critical fluid pressure
stresses involved in the aperture distribution in the subsurface [105,114]. No matter which
application is planned in the subsurface, the effect of the stress field has to be considered,
i.e., target closed fracture intervals for heat storage, to avoid any heat loss due to fluid
flow. On the other side of the spectrum, targeted intervals are where fractures may be
reactivated for productive geothermal intervals, and a favourable stress field maintains this
aperture effective.

The realistic permeability range obtained here suggests that only a fraction of the ob-
served fracture network displays effective flow behaviour. Permeability tensor anisotropy,
showing up to one order of magnitude difference, should also be considered in geo-energy
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projects. In the case of a geothermal plant, the geothermal doublets trajectory should be
designed accordingly. Adapted well designs should emphasise open-hole sections orthogo-
nal to fracture orientation with a favourable effective aperture. Such favourable fractures
are mainly orthogonal to the principal deviatoric strain in models that integrate the stress
field. Such features indeed exhibit the most promising permeabilities. In contrast, if heat
storage is targeted, these highly permeable fractures are to be avoided, as such structural
features could lead to a leak of heat through the migration of the thermal plume through
such structures. Such process would lead to a decrease in storage efficiency.

Secondly, the flow behaviour in such fractured crystalline reservoirs is also linked
to overpressure and stress releases. These processes can contribute to seismicity, both
near-well and far-field. Induced seismicity, particularly in well enhancement and well
stimulation, aims to improve the permeability of the rock mass. Structures with a dense
and connected 3D network have to be targeted rather than localised and highly clusterised
structures to avoid large seismic events and ensure a favourable permeability. Fracture
network characterisation and modelling also help to interpret and localise the seismic
response of the reservoir under perturbed stress conditions [1,115]. Stress magnitudes and
their relationship with the fracture network, its potential reactivation, as single seismic
event or as creep mechanisms [116], and its hydraulic behaviour also have to be assessed to
ensure efficient geothermal reservoir management [117].

6. Conclusions

Characterising crystalline rocks within various structural contexts and fracture net-
work configurations is essential for semi-artificial DFN workflow. As the crystalline base-
ment is not homogeneous in terms of lithology and structural framework, the aim is to
provide a variety of fracture network datasets and property distributions, from the length,
orientation, and topology. These datasets increase the quantified knowledge of the struc-
tural architecture of such rock materials at a sub-seismic scale. Their analysis reflects the
particularities linked to lithological and local structural contexts. The topology of the
fracture network is dependent on the lithology and the structural context. The regional
lineament analysis, combined with the local outcrop analogue study, underline the multi-
scale character of the crystalline fault and fracture network. The normalised cumulative
length distribution exhibits a power-law behaviour over seven ranges of magnitude, with a
slope value of −2.02, similar to previous investigations, in crystalline rocks outcropping
on the URG shoulders. Two case studies for heat-storage and deep-geothermal reservoirs
were implemented following three-dimensional and geometrical fracture network insights
from surface analogues and applying different scenarios to assess fracture aperture. The
fracture aperture distribution strongly affects the permeability field in the approach used
here. The stress field dependency of the fracture hydraulic behaviour is critical compared
to the lithology, as the fracture network controls the flow in such crystalline rocks. In
comparison with pre-existing subsurface data, it is essential to implement the stress field
dependency to assess a proper hydraulic model of the fracture network, including the
permeability anisotropy implied by the fracture network. Thus, this study gives valu-
able insights into integrating outcrops’ analogue data in the pre-feasibility approach to
industrial applications.
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