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Abstract: The stable and efficient operation of power systems requires them to be optimized, which,
given the growing availability of load data, relies on load forecasting methods. Fast and highly
accurate Short-Term Load Forecasting (STLF) is critical for the daily operation of power plants,
and state-of-the-art approaches for it involve hybrid models that deploy regressive deep learning
algorithms, such as neural networks, in conjunction with clustering techniques for the pre-processing
of load data before they are fed to the neural network. This paper develops and evaluates four
robust STLF models based on Multi-Layer Perceptrons (MLPs) coupled with the K-Means and Fuzzy
C-Means clustering algorithms. The first set of two models cluster the data before feeding it to
the MLPs, and are directly comparable to similar existing approaches, yielding, however, better
forecasting accuracy. They also serve as a common reference point for the evaluation of the second set
of two models, which further enhance the input to the MLP by informing it explicitly with clustering
information, which is a novel feature. All four models are designed, tested and evaluated using data
from the Greek power system, although their development is generic and they could, in principle, be
applied to any power system. The results obtained by the four models are compared to those of other
STLF methods, using objective metrics, and the accuracy obtained, as well as convergence time, is in
most cases improved.

Keywords: short-term load forecasting; multi-layer perceptrons; K-Means; Fuzzy C-Means

1. Introduction

Two requirements of the Net Zero by 2050 initiative for “greener” power grids, such
as the integration of renewable energy sources, and the connection of volatile loads, such
as electric vehicles, affect the stable and efficient operation of power systems dramatically.
Satisfying load needs instantly and at all times becomes a major challenge, and all aspects
of the operation and management of power plants, such as economic dispatch [1], demand
side management [2], price forecasting [3,4], maintenance scheduling and the formulation
of an effective bidding strategy in power system markets [5], along with the financial
viability of electrical companies themselves, are increasingly relying on accurate load
predictions [6].

Electric load forecasting has, justifiably, been the focus of much research, and work in
the area is classified into three categories based on the time horizon and the operational
choice that must be made, namely short-term, medium-term, and long-term forecasting.
Long-term load forecasting generally spans 20 years and is required for planning purposes,
such as the construction of new power plants and the upgrade of transmission system
capacity. Medium term load forecasting ranges from a few weeks to a year and is mostly
used for scheduling maintenance and fuel supply [7]. The day-to-day functioning of
the power system necessitates Short-Term Load Forecasting (STLF), which is primarily
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influenced by temporal factors (for example, weekly periodicity and seasonal fluctuations)
and weather conditions (for example, humidity, temperature, wind speed, and cloud
coverage) [8]. STLF is considered essential for the smooth and uninterrupted operation of
a power system, because it enables load flow studies and contingency analysis, on issues
such as bus voltages, line currents, power generation, and line flows. Therefore, in order to
achieve high accuracy in forecasting results, various load forecasting models have been
developed and investigated [9].

Traditional methodologies for STLF include time series models, regression models,
and Kalman filtering-based procedures [10,11]. Artificial intelligence and deep learning
approaches, on the other hand, are considered state-of-the art and include Artificial Neural
Networks (ANNs) [12], such as Multi-Layer Perceptrons (MLPs) [13], Radial Basis Function
Neural Networks (RBFNNs) [14], Convolutional Neural Networks (CNNs) [15], Recurrent
Neural Networks (RNNs) [16], Support Vector Machines (SVMs) [17], Decision Trees (DT) or
Random Forests (RF) [18], and Fuzzy-Neural models, offering high accuracy and effective
convergence time for the STLF problem.

In the context of these deep learning approaches, the demand for even more accurate
predictions has led researchers to develop hybrid forecasting models, which integrate a clus-
tering algorithm for the pre-processing of data before it is used to train the neural network.
Typically, clustering methods are implemented in order to create clusters of the load data,
which is first pre-processed using an enhanced min-max scaling method [13].The subject of
short-term load forecasting coupled with a clustering strategy, has been extensively studied
using methods based on RNNs, Long Short-Term Memory (LSTM), CNNs, SVMs [19],
ANNs, Simple Exponential Smoothing (SES) and Group Method of Data Handling (GMDH)
algorithms [20].

Hernández et al. [21], use a hybrid clustering approach to evaluate short-term load
forecasts on the Soria microgrid. First, a Self-Organizing Map (SOM) is used to categorize
historical data and the K-Means clustering method is then applied to group the data
of each category. To achieve appropriate forecasts of the load curve, a separate MLP
for each data cluster is trained. Despite its complexity, this method achieves a Mean
Absolute Percentage Error (MAPE) near 2%. In a similar attempt, Farfar et al. [22] utilize a
hybrid forecasting model based on a clustering approach of load profiles alongside a daily
temperature estimator. Artificial neural networks for the daily load forecast for each cluster
are used in the regression phase, with initial weights computed through stacked denoising
autoencoders. Each cluster’s MAPE does not decrease below 1.9%.

In [23], K-Means is applied to cluster load data and CNNs are utilized to estimate
the following day’s load in conjunction with meteorological and consumer categorization
data. The researchers recorded for winter days forecast values with MAPE equal to 7.41%,
while for summer days the results showed MAPE close to 3.06%. Unlike prior studies,
where the K-Means application was solely used to load data, a novel clustering technique is
introduced in [24]. The authors suggest using the clustering technique to normalized input
variables, which include weather and label data that reflect seasonal features in addition to
load data. The MAPE of the predicted load values obtained using the suggested technique
is about 2%.

In addition to K-Means, there is a plethora of papers about the Fuzzy C-Means
(FCM) clustering method in the literature for both short-term load forecasting and power
generation forecasting by solar systems [25] and wind turbines [26].

Bian et al. [27], propose data grouping in clusters based on the strong or weak cor-
relation at adjacent moments and not on similar load profile. They apply FCM to further
cluster the data to display similar values. Finally, the sets are fed into the NNs, which is
used to STLF with MAPE at about 2.01%. In [28], the FCM clustering algorithm based on
Principal Component Analysis (PCA) is applied to cluster real-time load data of power
systems in NSW State, Australia, at half hourly intervals. The centers of an RBF neural
network are determined using PCA. Although the forecasted values obtained through
the proposed technique have a fairly high MAPE (specifically 5.1%), it is more accurate
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than other simpler techniques such as an approach based on a RBF neural network and an
approach based on a RBF neural network in conjunction with the FCM algorithm. A similar
attempt to utilize the FCM algorithm for load prediction with the Self-Normalizing Gated
Recurrent Units (GRU) application is described in [29]. FCM is applied to normalized data
in order to create clusters of data that belong to similar days. In this scenario, the MAPE
does not drop below 2.6%.

This paper presents four generic robust hybrid STLF models, which use MLPs neural
networks and the K-Means and Fuzzy C-Means clustering techniques. The models are
designed, tested, and evaluated using data from the Greek power system, however they
are generic, in the sense that they can be applied to the specific load data of any power
system. The first set of two models are developed by initially applying the K-Means and
Fuzzy C-Means clustering techniques to the load data, in order to generate optimal clusters,
and then feeding each cluster to a MLP to produce short-term load predictions. These
two models are similar to existing methods, and they were developed in order to serve as
a common reference point for comparison with the second set of two models. However,
these first two models contribute some novelty, though similar in spirit to existing methods,
because they achieve MAPE well below 2% (around 1.70, a 25% improvement), which is
the current best, as indicated by the preceding discussion of related work. The second set of
two models were developed in order to improve the first set further, by using a single MLP
per clustering method, which is fed with the original load data set and an additional input
variable containing the cluster label of each point in the load data set. Hence, one can think
of these two models as improved versions of the first set. The labeling information that
is used to extend the input to the MLP is produced by the K-Means and Fuzzy C-Means
clustering techniques and the use of the elbow optimization method. The forecasting results
obtained by the second set of models are also better than those of other approaches with
MAPE well below the current best of 2%. Moreover, all four models are compared to other
existing load forecasting approaches, and to each other and exhibit shorter convergence
time compared to classical data pre-processing approaches [21–24,27].

In the remainder of this paper we explain the clustering algorithms that were em-
ployed, as well as the performance measures, before proceeding with the details of the
four models that were developed. The results are shown and discussed for each model,
in relation to the other models and related work.

2. Materials and Methods
2.1. Clustering Methods for Short-Term Load Forecasting

Clustering is an unsupervised machine learning approach that partitions a dataset into
groups (clusters) so that data in the same cluster are close to one another and hence very
similar. K-Means [30] and Fuzzy C-Means [31] are two of the most prevalent clustering
algorithms used in STLF.

2.1.1. K-Means Clustering Algorithm

K-Means clustering begins with the selection of K representative points among the
dataset as the initial centroids. Based on the Euclidean distance metric, each point in the
dataset is subsequently assigned to the nearest centroid. The centroids for each cluster are
updated after the clusters are generated. The algorithm then iteratively executes these two
steps until the centroids do not change any further. The selection of the optimum number
of clusters, indicated by the parameter K, is derived by proper objective functions, the most
important of which is the Sum of Squared Errors (SSE), which is defined mathematically by
Equation (1), and must be minimized:

SSE(C) =
K

∑
k=1

∑
xi∈Ck

‖ xi − ck ‖2 (1)
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where C indicates a cluster, xi is an instance of the given dataset that consists of N points
and ck is the centroid of cluster Ck. The centroid of each cluster is updated iteratively
through Equation (2):

ck =
∑xi∈Ck

xi

|Ck|
(2)

where |Ck| is the total number of points in cluster k.

2.1.2. Fuzzy C-Means Clustering Algorithm

Strict assignment of points to clusters is not possible in incomplex datasets with
overlapping clusters (i.e., where the original dataset cannot be partitioned). As a result,
K-Means would produce an inappropriate segmentation of data into clusters. A fuzzy
clustering approach (often called soft K-Means clustering) may be used to retrieve such
overlapping structures. Each data point in the FCM technique is assigned a probability
score that reflects its membership to a given cluster, therefore point membership in various
clusters might range from 0 to 1, with 0 denoting no membership, 1 denoting total mem-
bership, and intermediate values denoting varying degrees of membership. The sum of
memberships of a given point to various clusters must be 1.

The purpose of FCM, as in the case of K-Means, is the reduction of SSE. The member-
ship weight of point xi belonging to cluster Ck is represented by wxik and is utilized as an
FCM update step. The calculation of wxik is derived from Equation (3):

wxik =
1

∑K
j=1(

xi−ck
xi−cj

)
2

β−1
(3)

where xi is an instance of the given dataset that consists of N points, ck is the centroid of
cluster Ck, and β is a parameter that determines the fuzziness of the cluster. Equation (4)
calculates the weighted centroid for Ck based on the fuzzy weights, and Equation (5)
provides the SSE function for each cluster C defined by the FCM:

ck =
∑xi∈Ck

wxik
β · xi

∑xi∈Ck
wxik

(4)

SSE(C) =
K

∑
k=1

∑
xi∈Ck

wxik
β· ‖ xi − ck ‖2 (5)

2.2. Elbow Optimization Method

The elbow method is a heuristic method used in cluster analysis to determine the
optimal number of clusters into which a given dataset may be segmented [32]. The elbow
technique depicts the value of the cost function, generally the Sum of Squared Errors
(SSE), produced by a certain number of clusters and then determines the optimal number
of clusters (K) by picking the value of K for which the change in SSE first appears to
reduce, thus forming an elbow in the curve, i.e., the point after which the distortion starts
decreasing in a linear fashion. As K increases, the SSE decreases because each cluster has
fewer data points that are closer to their respective centroids. The value of K at which the
improvement in distortion decreases the most is known as the elbow of the curve, and it is
at this point that splitting the dataset into additional clusters should cease.

2.3. Performance Metrics

Certain objective measures must be used to assess the predictive accuracy of a fore-
casting model, such as MLPs. Mean Absolute Percentage Error (MAPE) and coefficient of
determination (R2 score) are the two most commonly used metrics in the application of
neural networks to various regression problems, such as STLF.
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In statistics, MAPE is a measure of the predictive accuracy afforded by a forecasting
method. Because of its rather obvious definition in terms of relative error, it is often
employed as a loss function for regression tasks and model evaluation. MAPE is defined
by Equation (6) as follows:

MAPE =
100%

n

n

∑
i=1
|Ai− Fi

Ai
| (6)

where n is the number of data points, Ai is the actual value and Fi is the forecasted value of
each data point.

The R2 score is an important metric for evaluating the performance of a regression-
based machine learning model. It is the amount of the variation in the output dependent
attribute, which is predictable from the input independent variable. It provides a measure
of how well observed outcomes are replicated by the model, based on the proportion of
total variation of outcomes explained by the model. An R2 value of 1 means that the model
fits the data perfectly, and a value of 0 means that the model will perform badly on an
unseen dataset, i.e., it has a very poor predictive power. This implies that the closer the
value of the R2 score is to 1, the better the model is trained. The R2 score is calculated from
Equation (7) as follows:

R2 = 1− ∑i(yi − fi)
2

∑i(yi − ȳ)2 (7)

where yi is the actual output value that is associated with each input instance xi, fi is the
forecasted value for input instance xi, and ȳ is the mean value of the dataset.

2.4. Problem Formulation

This paper presents the development and evaluation of four hybrid STLF models
that lead to high accuracy with fast convergence time. The models employ MLPs neural
networks and optimized clustering methods, and they were developed and tested using
historical hourly load data of the Greek power system from the period 2013–2017, obtained
through ENTSO-E platform [33]. Air temperature was included in the input data of the
MLPs, in addition to load data, to increase the precision of the prediction. The data of the
period 2013–2016 are used for training purposes (a total of 35.040 data points), and the
data of the year 2017 are used as the test set to assess the accuracy of the predictions
(8.760 entries). The development and implementation of the K-Means and Fuzzy C-Means
algorithms for generating the optimum number of clusters with the use of the elbow
optimization method is discussed in what follows. In a nutshell, two experiments were
conducted: First, each of the two clustering methods, namely K-Means and FCM, are
applied to the input data, thus producing a set of clusters. For each cluster produced, a
separate MLP is trained to produce STLF predictions, thus yielding two models. In a second
experiment the two clustering methods are applied to the input data, thus producing a
set of clusters each. Then the resulting labeling values of the data that are generated by
the clustering method are fed, along with load and temperature data, back to one MLP
for each clustering method, thus resulting in two STLF models with faster convergence
and improved accuracy compared to existing approaches. The MLP neural networks,
the clustering algorithms, and the elbow optimization method were developed via Python’s
library scikit-learn [34] and implemented in a computer used with Intel Core i7-4510U CPU
and 8 GB installed RAM.

2.4.1. Calculation of Optimum Number of Clusters

Since STLF is inextricably linked to data concerning temperature, humidity, and his-
torical load values, the algorithms are applied to datasets that include weather and load
data. The load data are processed in order to form clusters based on the load profile of
each data point using the K-Means and FCM techniques. The variables considered for the
application of the clustering methods are the load value at the same time on the same day



Energies 2022, 15, 1295 6 of 14

of the previous week (D-7 Load), the load value of the previous day at the same time (D-1
Load), and the load value at the previous hour load (H-1 Load). The load data used for
clustering is pre-processed through the enhanced min-max scaling method, which leads
to improved forecasting results, compared to the simple min-max scaling technique [13].
Figure 1 illustrates the process by which clusters are formed for each of the two clustering
algorithms used.

Figure 1. Classification of data, based on their load profile, using clustering techniques.

The optimal number of clusters for the data of the Greek power system is derived by
using the Elbow optimization heuristic, which plots the explained variation as a function
of the number of clusters by calculating the SSE and picking the elbow of the curve as the
number of clusters to use. In order to generate the optimal number of clusters, the SSE
is computed for a range of clusters in the interval [1, 10], which is a common procedure.
Figure 2 shows the SSE for values of the variable K in the interval [1, 10]. After extensive
experimentation and comparison of forecasting results, using MAPE as a metric, the optimal
separation of data into clusters, based on the load profile for the specific dataset, occurs for
K = 4.

Figure 2. Variation of sum of squared errors for determining the optimum value of parameter K.

Since clustering is based solely on the three variables, D-7 Load, D-1 Load, and H-1
Load, each data point may be represented as a point in a three-dimensional space with
the values of these variables as coordinates. Figure 3 depicts the clusters produced by the
K-Means (on the left) and FCM (on the right) clustering algorithms, respectively, of the
dataset used.
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Figure 3. Clustered load data in space as a result of the implementation of K-Means (left) and FCM
(right) clustering techniques.

2.4.2. Short-Term Load Forecasting Approaches in Conjunction with Clustering Techniques

Clustering algorithms have been used to generate input for MLPs in classical ap-
proaches to STLF, where a separate MLP neural network is used for each cluster. In the first
experiment, the hybrid models created in this way are schematically shown in Figure 4.
The neural network input variables are:

• Hour: Input variable within the range [0, 23] indicating the load forecast’s time of day;
• Week Day: Input variable denoting the day of the week, within the range [1, 7] (1

corresponding to Sunday, and so on);
• Holiday: Binary values are used to indicate whether a day is a holiday (1), which

includes Greek state holidays, religious holidays and the weekends, or a normal
working day (0);

• Temperature: Input variable indicating the temperature of the hour (in Celsius) for
which the load is predicted, scaled by min-max technique;

• D-7 Load: Input variable denoting the corresponding load at the same hour on the
same day in the prior week;

• D-1 Load: Input variable denoting the corresponding load at the same hour in the
prior day;

• H-1 Load: Input variable denoting the corresponding load in the prior hour.

Figure 4. Short-term load forecasting using a MLP for each optimally generated cluster of the dataset.
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In the second experiment, a single MLP, fed with an input variable containing the
clustering label, produced by either K-Means or Fuzzy C-Means optimized via the elbow
method clustering technique, is used for STLF.

The STLF model for this approach is shown in Figure 5. The input variables of the
neural network include, in addition to the ones of the first experiment, the labeling of
each data point of the load data produced and optimized by each clustering algorithm.
The variable Label f or Cluster receives integer values from 0 to 3, (since the separation
of the dataset into four clusters was determined to be optimum) and indicates in which
cluster each data point belongs. In total, four STLF models emerged, two from the first
experiment which follows classical hybrid approaches, and two from the second, which
augments/informs the neural network input with clustering information. The four models
were applied to a dataset of the Greek power system and the forecasting results were
compared to each other and to other existing load forecasting approaches. Moreover,
this comparison indicates which of the clustering algorithms is more appropriate for
partitioning a dataset into clusters. Extensive testing and experimentation show that
the conjunction of MLPs neural networks with optimized dataset clustering, leads to
improvement of the accuracy and the convergence time of the forecasting model.

Figure 5. Short-term load forecasting using a single MLP with the optimized clustering labels fed
as input.

3. Results

This section presents the results obtained from the four STLF models that emerged
from the two experiments. MAPE and R2 score are used as metrics, in order to evaluate the
accuracy of the prediction of each model.

Table 1 shows the total MAPE and R2 score for the predictive method, and for each
cluster individually, for the first model, where K-Means clustering followed by separate
MLPs for each cluster was used. Table 2 provides the same information for the second
model, where Fuzzy C-Means clustering followed by separate MLPs for each cluster was
used. Figure 6 provides a graphical comparison of the actual load values and the prediction
results obtained from these two models. Both approaches performed well, in terms of
MAPE and R2 score, compared with existing methods.
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Table 1. MAPE and R2 score of the MLPs’ forecasted values via K-Means implementation.

Cluster Number of Data MAPE (%) R2 Score

Cluster 0 2052 1.66 0.95132
Cluster 1 2330 1.76 0.89331
Cluster 2 2955 1.67 0.88591
Cluster 3 1423 1.65 0.88591

Total 8760 1.69 0.98643

Table 2. MAPE and R2 score of the MLPs’ forecasted values via Fuzzy C-Means implementation.

Cluster Number of Data MAPE (%) R2 Score

Cluster 0 1423 1.74 0.87951
Cluster 1 2128 1.66 0.95198
Cluster 2 2308 1.75 0.89383
Cluster 3 2901 1.70 0.88200

Total 8760 1.71 0.98632

Figure 6. Actual and predicted load curves resulting from the method using a distinct MLP for
each cluster.

Table 3 presents the MAPE and the R2 score of the third and fourth model, where the
MLP input is informed with labeling information acquired from the application of K-Means
and FCM clustering algorithms, respectively. Figure 7 provides a graphical comparison
between real load values and the forecasted load values, indicatively for some days in
February 2017, calculated using the third and fourth model.

Table 3. MAPE and R2 score of the forecasted values using clustering labels as input variables to MLP.

Approach MAPE (%) R2 Score

MLPs and K-Means—Labels are fed as input to MLP 1.77 0.98583
MLPs and Fuzzy C-Means—Labels are fed as input to MLP 1.70 0.98678
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Figure 7. Actual and predicted load curves by MLPs with the use of K-Means and FCM.

Figure 8 focuses on the K-Means clustering method and graphically compares the
results obtained from the first and third model. A similar graphical comparison of the
results obtained with the use of Fuzzy C-Means clustering method, which is from the
second and fourth models, is presented in Figure 9.

Apart from the MAPE and R2 score, the performance for STLF using MLPs in con-
junction with K-Means and Fuzzy C-Means, is also evaluated by measuring the execution
time required for each approach. Table 4 provides the time (in seconds) needed for the load
forecasting of the year 2017 in all four models.

Table 4. Execution time for the four proposed forecasting models.

Approach Time (s)

MLPs and K-Means—Individual MLP for each cluster 1690.27835
MLPs and Fuzzy C-Means—Individual MLP for each cluster 1353.51278

MLPs and K-Means—Labels are fed as input to MLP 1223.64124
MLPs and Fuzzy C-Means—Labels are fed as input to MLP 808.320161

Figure 8. Actual and predicted load curves resulting from the two methods using K-Means.
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Figure 9. Actual and predicted load curves resulting from the two methods using FCM.

4. Discussion

The use of a clustering algorithm, which properly groups the data based on their load
profile, clearly improves the accuracy of STLF results, as acknowledged by several related
works in this area. The current best MAPE obtained is around 2%, although it should be
noted that different datasets from different power systems are used. MAPE is equal to
1.80% in [13], which uses the same load data from the Greek power system as this work,
and as in Tables 1 and 2, which demonstrate that the first set of models that we developed
are more accurate with a better MAPE value, for both clustering methods employed.

The results presented in Table 3 demonstrate that for the second set of models, where
a single MLP is employed, informed explicitly with the clustering labels of the input data
points, both K-Means and FCM improve the load prediction compared to [13], and the
FCM specifically has the best overall accuracy. However, both models yield slightly lower
accuracy than their counterparts from the first set, but converge faster than them. In fact,
Table 4 demonstrates that the fourth model using FCM performs remarkably better than
the others.

A comparison of the results obtained from all four proposed models with similar
STLF methods, which use neural network prediction techniques in conjunction with the
application of a clustering algorithm, reveals that the methods described in this paper
perform in most of the cases similarly or better. However, note that an exact comparison
requires comparison on exactly the same dataset. In [21–24,27], who use similar techniques
for short-term load forecasting, the MAPE gets values close to 2%, while in the present
work the lowest MAPE is equal to 1.69%. Table 5 presents the results in terms of the
achieved MAPE of various techniques suggested by other researchers considered in the
related literature review. It is obvious that the models proposed here lead to improved
MAPE and therefore greater prediction accuracy for STLF.
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Table 5. MAPE for various forecasting techniques examined in the literature.

Approach Proposed by MAPE (%)

SOM—K-Means—MLP Hernandez et al. [21] 3.18
K-Means—Stacked Denoising Autoencoders - ANNs Farfar et al. [22] 1.85

Sparsified K-Means—ANN Seon-Ju Ahn et al. [24] 2.06
K-Means—SVM Xishuang Dong et al. [23] 2.92
K-Means—MLP Xishuang Dong et al. [23] 3.12
K-Means—CNN Xishuang Dong et al. [23] 3.06

K-Means—FCM—MLP Bian Haihong et al. [27] 2.15
Enhanced STLF via MLPs Arvanitidis et al. [13] 1.80

MLPs and K-Means—Individual MLP for each cluster Proposed algorithm 1.69
MLPs and Fuzzy C-Means—Individual MLP for each cluster Proposed algorithm 1.71

MLP and K-Means—Labels are fed as input to MLP Proposed algorithm 1.77
MLP and Fuzzy C-Means—Labels are fed as input to MLP Proposed algorithm 1.70

5. Conclusions

This paper examines the integration of clustering algorithms with neural networks
for the purposes of developing fast and accurate STLF models. Two ways in which such
integration can be implemented were considered, and as a result two sets of models were
designed, tested, and evaluated on the same dataset. The first set of models followed
the standard for hybrid STLF model development, in which first the dataset is clustered
and then each cluster is used to train a MLP. Since we experimented with two clustering
algorithms, namely K-Means and Fuzzy C-Means, this first set produced two models,
which were used as a reference point. These first two models do present an improvement
on the current best score in the relevant literature, because the dataset is initially subjected
to enhanced scaling, which has been evaluated in a separate paper [13].

The second way in which clustering algorithms can be integrated with neural net-
works is explored in the second set of models that were developed. In this case, first the
dataset is clustered (using K-Means and Fuzzy C-Means, again), and then a single MLP is
trained, whose input variables are augmented with the inclusion of the labeling information
produced by the clustering.

All four models were evaluated using load data of the Greek power system as a
common reference point. All models yielded better accuracy than other methods (as
reflected by MAPE values below 2%). Moreover, the models of the second set, where the
MLP is informed by clustering, converged significantly faster. The experiments suggest that
the FCM informed MLP is the fastest model, however, to be precise, it needs to be evaluated
on other datasets as well, and this is one direction for future work. A second direction for
future work involves experimenting with other clustering algorithms to establish whether
they might offer even better accuracy and convergence time.
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