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Abstract: This paper proposes a machine-learning-based framework for voltage quality analytics,
where the space phasor model (SPM) of the three-phase voltages before, during, and after the event
is applied as input data. The framework proceeds along with three main steps: (a) event extraction,
(b) event characterization, and (c) additional information extraction. During the first step, it utilizes a
Gaussian-based anomaly detection (GAD) technique to extract the event data from the recording.
Principal component analysis (PCA) is adopted during the second step, where it is shown that the
principal components correspond to the semi-minor and semi-major axis of the ellipse formed by the
SPM. During the third step, these characteristics are interpreted to extract additional information
about the underlying cause of the event. The performance of the framework was verified through
experiments conducted on datasets containing synthetic and measured power quality events. The
results show that the combination of semi-major axis, semi-minor axis, and direction of the major
axis forms a sufficient base to characterize, classify, and eventually extract additional information
from recorded event data.

Keywords: anomaly detection; machine learning; power quality; principal component analysis; space
phasor model

1. Introduction

Among power quality (PQ) disturbances, three of the main voltage events are voltage
dip, voltage swell, and (voltage or supply) interruption. Each of these events can result in
undesired process or production interruptions or malfunctioning of sensitive loads such
as PLC controllers, industrial installations, etc. [1]. Mitigation or compensation of these
events results in a more reliable and high-quality electrical power supply.

Standard methods for PQ analytics are part of the RMS-voltage framework, where
the RMS-voltage is used for detection, classification, and characterization, as prescribed
in IEC 61000-4-30 [2] and IEEE 1564 [3]. The term “rms voltage variations”, which is
generally used in IEEE power-quality standards, is a clear reference to the existence of such
an RMS-voltage-based framework. Within the IEC document, the one-cycle rms voltage is
used to characterize dips, swells, and interruptions, A 10 or 12-cycle rms voltage is used to
characterize slow variations in voltage magnitude. The RMS-based framework has resulted
in the extensive use of power-quality monitoring to develop large volumes of statistical
data and common benchmarks [3]. However, the standardization appears to have stopped
further innovation and development, for example, to remove limitations regarding event
characterization, the three-phase character of most of the measurements, and extending
the methodology to voltage and current transients [4,5]. Event characterization aims to
obtain single event characteristics (SECs) that can be used to interpret the corresponding
voltage event and its impact on the grid and equipment connected to the grid [6–9]. The
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method proposed in [6] was based on wavelet transform and used for the detection of
voltage dips. Voltage dip characterization in terms of magnitude and phase-angle jump is
defined in [7]. By such a characterization, the authors of [7] define four types of voltage
dips (from A to D; in [8], the so-called ABC classification is extended to seven types (from
A to F)). Space vector was proposed in [9] for characterizing voltage dips and swells. The
well-known SECs based on rms voltages are “residual voltage” and “duration” [10]. These
characteristics are defined for any dip, swell, and interruption. The characteristics are
also defined for unbalanced and multi-stage events, but for those, they are less easy to
interpret [11,12]. In order to obtain more precise characteristics for multi-stage events,
a segmentation technique is needed to decompose the event recording into stationery
(pre-event, during-event, and post-event) and non-stationary (transition) segments [6,7,13].

In order to allow better interpretation of unbalanced voltage dips, the symmetric
component algorithm (SCA) [8] and six-phase algorithm (SPA) [14] were proposed. Both
introduce three additional SECs: “characteristic voltage” (CV), “positive-negative fac-
tor” (PNF) and dip type (DT) [8,14]. Another limitation of the RMS-based framework is
that some dip characteristics, e.g., point-on-wave, unbalance and phase-angle jump, and
characteristics of voltage transients require other parameters than RMS voltage [15,16].

The space-phasor model (SPM) [17] forms a more comprehensive model for PQ
analytics compared with the RMS-based model [4,9]. The SPM model-based SECs are
based on the ellipse parameters: semi-minor axis, semi-major axis, and the direction of the
ellipse, allowing complete characterization for both balanced and unbalanced events [4,9].
The method proposed in [9] was based on signal processing tools and inferences from
the experts to define the steps for feature extraction, segmentation, classification, and
characterization. No machine learning (ML) or deep learning (DL) algorithms were applied
in [9]. Moreover, ref. [9] does not discuss the possibility of applying space-vector for
the pre-processing of waveforms and does not show a comparison with benchmarking
algorithms for event classification as SCA and SPA.

Apart from the mentioned RMS-Model limitations, the large number of installed
PQ monitors in power grids leads to a large amount of data. This incentivizes using
artificial intelligence (AI)-based methods. The first type of artificial intelligence method
was based on human expertise to define features and perform tasks such as classification
and identification of power quality events. Expert systems were applied in [13] for the
classification of different types of voltage dips concerning the underlying causes based on
pre-defined rules. The identification and classification of voltage and current disturbances
in power systems by the expert system were proposed in [18] in 2007.

Driven by the huge improvements in computer processing, another group of algo-
rithms that teach themselves through data samples was applied to power quality. This
group based on training data is called machine learning (ML). ML was applied for sim-
ilar applications as the expert system [19–24]. Most of the applications are established
pre-labeled data by unsupervised learning, e.g., shallow neural networks [19–21,24] and
support vector machines [22,23]. Few works apply unsupervised learning: Ref. [25] applies
principal component analysis and [26] k-means clustering.

Since 2018, deep learning (DL), a subset of machine learning based on multiple hidden
layers of neural networks, has gained attention to power quality. Diverse DL techniques
were applied to power quality data such as convolutional neural networks (CNNs), long-
short-term memory (LSTM), generative adversarial networks (GANs), and deep autoen-
coder (DAE). CNNs are applied for the classification of PQ disturbances as in [27–31],
voltage dip classification [5], recognition of voltage dip causes [32], and prediction of har-
monics [33–35]. LSTM is applied to classification of events [36,37], recognition of voltage
dip causes [38], voltage dip classification [39], and harmonic prediction [33]. GANs are
applied to the classification of PQ events [40]. DAE is applied in the feature extraction
in the classification of PQ events [27], unsupervised feature learning for clustering of
daily-harmonics variations [41,42], and spectral data [43].
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Most of the works on ML and DL applied synthetic data for the training and testing of
their algorithms. Such synthetic data sets might not correspond to the same information
as measurements. However, they provided the knowledge for enabling the extraction
of additional information from a large amount of data. Such ML and DL methods can
be used as input for automatic decision-making by smart grids. However, the existing
set of single-event characteristics, based on the rms-model, is a limitation for developing
machine-learning tools and such automatic decision-making. New frameworks should be
developed to provide analytics of large power quality data sets.

This paper further extends the earlier works and proposes a complete framework
that receives the SPM complex values as an input and then proceeds with three successive
steps: (a) event data extraction and classification, (b) characterization, and (c) additional
information extraction. These three steps are essential for the framework, but they can be
filled in using different algorithms. In this paper, to illustrate the framework, the Gaussian
anomaly detection (GAD) method is used in the first step to extract event data as anomalous
data from the entire recording. The principal component analysis (PCA) method is applied
in the second step to calculate the SECs from the extracted event data. The resulted SECs
are transferred to the third step to extract additional information about the event, such as
the location of the electrical fault that led to a voltage dip. The main contributions of the
proposed framework are:

1. The proposed SPM-based framework enables instantaneous event detection since it
does not use any low-pass filter such as the RMS-based model. It also provides the
same basic characteristics (semi-minor, semi-major axes, ellipse rotating angle) for
dip, swell, and interruption events;

2. The framework uses fully automatic machine learning (ML) methods (e.g., GAD,
PCA) for voltage event analytics that do not need any human involvement during the
entire process;

3. The framework is applicable to all types of voltage events by just adjusting pre-defined
setpoints for different event types;

4. The framework is scalable to a large amount of data, which is important for modern
power systems in which a huge amount of data is recorded continuously.

The proposed framework is applied to both measured and synthetic voltage events,
and the results are compared with the results from existing methods. The remainder of this
paper is organized as follows: Section 2 illustrates the proposed framework and its different
modules (event detection, event characterization, and information extraction modules) and
the applied ML method (GAD and PCA) in each module. Section 3 presents the results,
and Section 4 the discussion. Section 5 concludes this paper.

2. Proposed Framework for Voltage Event Analytics

The proposed framework for voltage event analytics consists of three modules:

1. Event data extraction and classification: the event data extraction distinguishes be-
tween normal data and deviated data. The event data extraction step concerns the
choice of a selection function and the choice of a threshold; common choices for voltage
dip detection are 1-cycle RMS voltage and 90% of the nominal voltage [2]. The event
classification aims at putting similar events into the same class [2]. Voltage events are
typically divided into four main groups: transients, voltage dips, voltage swells, and
interruptions. Further, voltage dips are categorized according to their origins, such as
electrical faults, motor starting, or transformer energizing [9,44]. Fault-based dips are
classified into seven different classes regarding the type of the fault;

2. Event characterization: this step aims at calculating efficient SECs of the corresponding
event such as event duration, depth of dip, and phase-angle-jump;

3. Extracting additional information: this step aids in interpreting given SECs from the
previous step to extract information about the event’s origin, its impacts, etc.
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The flow diagram of the proposed framework is shown in Figure 1, indicating the main
steps of this framework: even extraction, event characterization, and information extraction.
The framework applies different machine learning methods for each step. The following
subsections describe the applied measured data and corresponding pre-processing tasks,
as well as developing machine-learning methods for voltage event analytics applied in the
first and second steps.
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2.1. Measured Data

The PQ continuously monitors samples of the three-phase voltage streams among
other electrical quantities (e.g., current and harmonics). The space phasor model of the
sampled three-phase voltage signals is given by:

x[n] =
2
3

[
Va[n] + αVb[n] + α2Vc[n

]
(1)

where Va, Vb, and Vc are three-phase voltage signals, n = 1, · · · , N denotes the number
of samples, α = ej2π/3, and x (N × 1) is a row vector of complex values. Partitioning data
vector x into real and imaginary parts, the resulted data matrix X is:

X =
[

xR xI
]

n×2 (2)

where xR contains the real part, and xI is the imaginary part of all SPM samples. During
normal voltage conditions, the space phasor model, in the complex plane, is approximately
in the shape of a circle where its radius (or modulus of the SPM) varies typically between
0.9 and 1.1 pu. During a voltage dip, the modulus drops below 0.9 pu (or another selected
threshold), and for an unbalanced dip, it even varies with time. For a voltage swell, the
modulus exceeds 1.1 pu (or another selected threshold). Once a modulus of the SPM drops
crosses one of these thresholds, the event detection is triggered, and PQ monitors records
during-event data as well as several pre-event and post-event cycles. Thereby, further
precise voltage event analytics depends on how accurately the during-event samples are
extracted from pre-event and post-event samples. A typical recorded voltage event by a
PQ monitor is shown in Figure 2. The waveform (upper left side), a modulus of an SPM
as a function of time (lower left side), and the SPM (right side) of a typical voltage dip
event. The pre-event and post-event segments are considered normal voltages since the
corresponding modulus is within the thresholds. The during-event segment results in an
ellipse inside the inner circle (dip threshold), where the modulus also drops below 0.9 pu.
The SPM modules recover over 0.9 pu. Such a recovery occurs twice every cycle. Therefore,
it would result in a method that detects a voltage dip every 10 ms. This way, to obtain the
whole dip recording, the last recovery over the threshold is considered as dip end.
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2.2. Extracting Voltage Event (Anomalous) Samples Using GAD Method

From a machine learning viewpoint, the anomaly detection technique is used to find
observations that do not correspond to an expected pattern [45]. The proposed framework
uses Gaussian-based anomaly detection to distinguish the voltage event samples from
normal samples belonging to the pre-event and post-event segments. Given the measured
data matrix X =

[
xR xI

]
in (2), the assigned Gaussian distribution, for each dimension

(i.e., column of the data matrix), is determined as follows:

p
(

xj; µj, δj
2
)
=

1√
2πδj

2
e
−

(x(j)−µj)
2

2δj
2

(3)

where j = R or I denotes the dimension of the data matrix. µj and δj
2 are the mean and

standard variance of the j-th dimension, given by the following equations:

µj =
1
N ∑N

i=1 xj(i) (4)

δj
2 =

1
N ∑N

i=1

(
xj(i)− µj

)2 (5)

By the estimated Gaussian distribution for each test data sample x(j)
i , the corresponding

z-score is obtained as follow:

z(i) =

∣∣xj(i)− µj
∣∣

δj
(6)

A sample declared to be anomalous if:

z(i) >
N − 1√

N

√
tγ/2,N−1

2

(N − 2) + tγ/2,N−1
2 (7)

where N is a total number of samples and the tγ/2,N−1 is a threshold used to refer to a
sample as anomalous. It is obtained from t-distribution at a confidence level of γ

2N [46].
The anomalous samples are saved in event data matrix denoted as Y = [yR, yI].



Energies 2022, 15, 1283 6 of 14

2.3. PCA Applications for Calculating the Single-Event Characteristics

Principal component analysis (PCA) finds a lower-dimensional representation of data.
If the dimension of data is reduced into only two dimensions, the data is projected by the
PCA into two data vectors u1 and u2. The vector u1 is the principal direction of variation of
the data, and u2 the secondary direction of the variation [47].

To develop a PCA technique, from the given event data matrix Y, the matrix
M = [mR, mI ]K×2 is constructed where:

mR = yR − hµR (8a)

mI = yI − hµI (8b)

where h is a unitary K× 1 column vector, and µR and µI are empirical means of yR and yI ,
respectively. Next, the covariance matrix C is calculated as follow:

C =
1
2

MT ⊗M (9)

where
⊗

stands for outer product, MT is a transpose of matrix M, and C is 2× 2 symmetric
matrix that results in two orthogonal eigenvectors (u1, u2) [28]. By projecting the original
data matrix Y into these eigenvectors, the projected data Ỹ = [ỹ1, ỹ2] is in an ellipse shape,
and ỹ1, ỹ2 vectors tend to the ellipse semi-minor and major axis. Therefore, the magnitude
of ellipse axes and the rotating angle is derived as follows:

The semi-major axis
(

Ay
)
, semi-minor axis (Ax), and rotating angle of the ellipse (ϕ)

(the direction of the semi-major axis) are obtained as follows:

Ax = |ỹ1| (10a)

Ay = |ỹ2| (10b)

ϕ = ∠ỹ1 (10c)

Further, the duration of the event is determined by dividing the number of anomalous
samples (k) by the sampling frequency ( fs) as d = K

fs
.

2.4. Extracting Additional Information Using Single-Event Characteristics

This module extracts information about the voltage event, such as its type, underlying
cause, etc., using the single-event characteristics.

2.4.1. Transient and Non-Transient Events

The “event duration” can be defined as the time between the first drop of the SPM
modulus below the threshold and the last recovery above the threshold. By using this
“event duration” characteristic, the voltage disturbances can be divided into “transient”
and “non-transient” events. A transient event has a duration of less than one cycle. The
discussion below is mainly for non-transient events; for transient events, a separate set
of characteristics is needed. The SPM, as used in this paper, allows for a clear distinction
between transient and non-transient events, something that was not possible with the
rms-based approach.

2.4.2. Voltage Event Type

Based on the semi-minor and semi-major axes, a distinction can be made between a
dip, swell, and interruption as follows:

X Voltage dip: δinterruption < Ay < δdip;
X Voltage swell: Ax > δswell ;
X Voltage interruption: Ay < δinterruption.
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The combination where Ay > δdip and Ax < δswell would be normal voltage and not
lead to triggering as a voltage event. It is worth noting that these definitions largely but
not completely correspond to the definitions according to IEC 61000-4-30 [2]. The IEC
definitions are based on the deviation of the RMS voltage from its nominal value. Typical
thresholds are 90% of the nominal voltage for voltage dips, 110% for voltage swells, and
10% for voltage interruption. The definitions based on ellipse parameters are different but
not more arbitrary than the standard ones.

2.4.3. Unbalance Type

The unbalance type (UT) provides information about which phasor(s) are involved
in voltage events. The UT characteristic is determined according to the direction of the
semi-major axis. The rules in Table 1 show the relationship between the ellipse-rotating
angle (i.e., the direction of the semi-major axis) and the UT characteristic. For instance,
the first rule says once the rotating angle ϕ is in the range (0, 30], then the UT is Ib, which
means the event is taking place between phase “b” and neutral. For this case, the notation
means that the angle ϕ is between 0 and 30 degrees, including 30 degrees; i.e., 0 < ϕ ≤ 30.

Table 1. Relation between rotating angle (ϕ) and Unbalance Type (UT) characteristic.

Range of ϕ UT Main Unbalance Significant Drop or Swell in:

(0, 30] Ib between phase “b” and neutral Phase “b”
(30, 60] I Ic between phase “a” and “b” Phases “a” and “b”
(60, 90] Ia between phase “a” and neutral Phase “a”
(90, 120] I Ib between phase “a” and “c” Phases “a” and “c”
(120, 150] Ic between phase “c” and neutral Phases “c”
(150, 180] I Ia between phase “b” and “c” Phases “b” and “c”

2.4.4. Electrical Fault Type Detection and Localization

By the single-event characteristics, a dip or swell is assigned to one class of an extended
ABC classification [8,14]. The recognition of the ABC class allows estimating the original
type and location of a fault. The dip class is obtained as represented in Column 4 of Table 2
by UT, zero-sequence (z0) and semi-major axis (Ax). The dip class is dependent on the type
of fault and the winding connection between the fault and monitoring locations. It allows
obtaining information on the type and location of the related fault, even when there is no
information from the protection system. The relation between fault types and dip classes,
which are also referred to as dip types [8,14], can be obtained as shown in Table 2. In Table 2,
“<1” means that the length of the semi-major axis is somewhere between unity and the
length of the semi-minor axis. The table only considers DY and YY-connected transformers,
where the latter gives the same transformation as two DY transformers. Additional rules
can be added for other transformer types [8]. The dip class alone cannot determine if the dip
is at higher or lower voltage levels. However, faults at lower voltage levels result in shallow
dips, whereas severe dips are either due to faults at the same or a higher voltage level.

Table 2. Voltage Dip/Swell Classification Using Single-Event Characteristics.

UT z0 Ax Class Fault Type and Location

I 0 ≈1 D Two-phase above/below Dy transformer
Phase-to-ground above/below Yy transformer

I 0 < 1 F Two-phase-to-ground above/below Dy transformer

II 0 ≈1 C
Phase-to-ground above/below Dy transformer
Two-phase above/below Yy transformer
Two-phase at monitoring level

II 0 < 1 G Two-phase-to-ground above/below Yy transformer
I 6= 0 ≈1 B Phase-to-ground at monitoring level
II 6= 0 < 1 E Two-phase-to-ground at monitoring level

I 6= 0 Ax ≈ Ay ≈ 1 H Phase-to-ground at monitoring level in a
high-impedance-earthed system

I/II 6= 0 < 1 I Two-phase-to-ground at monitoring level in a
high-impedance-earthed system

I/II 0 Ax ≈ Ay < 1 A Three-phase fault at any level
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3. Results

This section aims at verifying the performance of the proposed framework for analyz-
ing the recorded voltage event data. Voltage dip measurements are used to illustrate the
framework’s effectiveness.

3.1. Measured Voltage Event Data

We applied about 200 different voltage dips measured at a distributed level to evaluate
the performance of the proposed framework in terms of voltage event detection and
characterization. However, due to lack of space, we show the results of only 10 examples.
The three-phase voltage waveforms and the corresponding SPM of these 10 examples
are shown in Figure 3. The SPM of the whole data is shown in blue, and the SPM of
during-event data, extracted by GAD, is shown in red. The numerical results of event
characterization, using the PCA method, are shown in Table 3. The zero-sequence parameter
is zero for all the examples.
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Table 3. Numerical Results of Proposed Framework for 10 Measured Voltage Dips.

Ev. Ax (pu) Ay (pu) ϕ◦ UT l (ms) Class Origin Fault

Ev. 1 1.01 0.44 50.2 I Ic 215 C Two-phase-to-ground
Ev. 2 0.77 0.11 81.5 Ia 176 F Two-phase-to-ground
Ev. 3 0.66 0.56 58.3 I I I 235 A Three-phase fault
Ev. 4 0.95 0.73 72.6 Ia 254 B Single-phase-to-ground
Ev. 5 1.0 0.64 79.4 Ia 98 B Single-phase-to-ground
Ev. 6 1.01 0.93 - I I I 293 A Transformer energizing
Ev. 7 0.96 0.89 - I I I 391 A Three-phase fault
Ev. 8 0.99 0.79 80.5 Ia 20 B Single-phase-to-ground
Ev. 9 0.59 0.38 159 I Ia 270 C Two-phase or single-phase-to-ground
Ev. 10 1.03 0.38 15.1 Ib 235 B Single-phase-to-ground
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For instance, for the second event (Ev. 2), semi-major (Ax) and semi-minor (Ay) axes
are equal to 0.77 pu and 0.11 pu, respectively. The rotating angle of the ellipse is 81.5◦.
This results in dip class F with significant voltage drop in phase “a” and consequently
unbalanced type Ia. The event lasts for about 215 ms. The event is due to a two-phase-to-
ground fault above a Dy transformer, at a higher voltage level (above 10 kV). The third
event (Ev. 3) is a multi-stage dip that consists of two event segments. The first segment is an
unbalanced short-duration dip that lasts for about three cycles (60 ms). The next segment is
a balanced dip. The GAD method extracted both segments as one event. By using PCA, the
equivalent semi-major and semi-minor axes for the whole event are calculated as 0.66 pu
and 0.56 pu, respectively.

The second segment lasts for about 11 cycles (220 ms), during which there is no big
difference between semi-minor and major axes (0.1 pu). Alternatively, the PCA can be
applied to each event segment separately, as in [4]. Ev. 6 is a heavy distorted shallow dip
for which the SPM is a heavily distorted circle. The semi-minor and semi-major axes of
the corresponding ellipse are 1.01 pu and 0.93 pu, respectively. The event lasts for 293 ms.
The heavy distortion and the fact that this is only present during part of the cycle points to
transformer energizing as the origin for this event.

3.2. Comparison with Symmetric-Component and Six-Phase Algorithms

In this sub-section, the proposed framework (in terms of Ay, Ay, φ, and DT) is com-
pared with two benchmarking methods (SCA and SPA) in terms of voltage dip characteri-
zation. Different synthetic dips, presented in [14] and shown in Table 4, are applied to all
three methods. The synthetic dips are applied to these three methods, and the obtained
characterization results are shown in Table 5. Events 1 through 4 are due to single-phase
faults; they show the same voltage drop in phase “a”, 50%, but with different PAJs. The
results for the SCA are shown in Columns 2–4 of Table 5; the SPA results are shown in
Columns 6–8. The results of the proposed framework are shown in Columns 8–11. All
three methods result in the same dip type for three first events. The large PAJ (−40◦) in
Event 4 impacts the SPA algorithm and results in wrong unbalance type characteristics.
Considering Event 1, the calculated CV characteristic by SCA and SPA methods and the
calculated semi-minor axis by the proposed framework are all equal to 0.67 pu. Similarly,
the values of the semi-major axis and PNF characteristics are the same and equal to 1 pu.
Due to PAJ in Events 2–4, the semi-major axis increases, and the semi-minor axis decrease.
The calculated PNF by the SCA remains 1 pu for all events, but the calculated PNF by
the SPA for Event 4 increases to 1.04 pu. The CV and Ay characteristics decrease with
increasing PAJ.

Table 4. Synthetic Dips Due to Single- or Two-Phase Faults [15].

Fault Type Event Va Vb Vc PAJ

Single-Phase Fault

Event 1 0.5 −0.5 − i0.87 −0.5 + i0.87 0
Event 2 0.47 − i0.17 −0.5 − i0.87 −0.5 + i0.87 −20
Event 3 0.43 − i0.25 −0.5 − i0.87 −0.5 + i0.87 −30
Event 4 0.38 − i0.32 −0.5 − i0.87 −0.5 + i0.87 −40

Phase-to-Phase Fault

Event 5 1 −0.5 − i0.43 −0.5 + i0.43 0
Event 6 1 −0.65 − i0.41 −0.35 + i0.41 0
Event 7 1 −0.72 − i0.38 −0.28 + i0.38 0
Event 8 1 −0.78 − i0.33 −0.22 + i0.33 0

Phase-to-Phase Fault
with Impact of Load

Event 9 0.85 −0.43 − i0.37 −0.43 + i0.37 0
Event 10 0.85 −0.55 − i0.35 −0.3 + i0.35 −20
Event 11 0.85 −0.61 − i0.32 −0.24 + i0.32 −30
Event 12 0.85 −0.66 − i0.28 −0.19 + i0.28 −40
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Table 5. Three Methods during Synthetic Dips.

SCA SPA Proposed Framework

Ev. CV PNF DT CV PNF DT Ay Ax ϕ◦ DT

One-Phase Fault

1 0.67 1 Ia 0.67 1 Ia 0.67 1 90 Ia
2 0.66 1 Ia 0.66 1 Ia 0.66 1.06 86 Ia
3 0.64 1 Ia 0.64 1 Ia 0.62 1.01 84 Ia
4 0.63 1 Ia 0.6 1.04 I Ic 0.6 1.02 83 Ia

Phase-to-Phase Fault

5 0.50 1 I Ia 0.50 1 I Ia 0.50 1 180 I Ia
6 0.50 1 I Ia 0.50 1 I Ia 0.50 1 170 I Ia
7 0.49 1 I Ia 0.47 1.01 Ic 0.49 1.01 165 I Ia
8 0.49 1 I Ia 0.40 1.04 Ic 0.49 1.02 160 I Ia

Phase-to-Phase Fault
with Impact of Load

9 0.43 0.85 I Ia 0.43 0.85 I Ia 0.43 0.85 179 I Ia
10 0.43 0.85 I Ia 0.45 0.85 I Ia 0.4 0.87 169 I Ia
11 0.40 0.86 Ic 0.40 0.86 Ic 0.35 0.88 165 I Ia
12 0.34 0.89 Ic 0.34 0.89 Ic 0.31 0.90 161 I Ia

Events 5–8 are due to phase-to-phase faults, including PAJ of 0, −17.8, −25.8, and
−33.4◦, respectively. In this case, the PAJ has more impact on SPA, which results in the
wrong unbalance type for Events 7 and 8.

Events 9–12 are synthesized voltage dips obtained by adding load effects on Events
5–8. The PNF and Ax characteristics are no longer equal to 1 pu. The load effect makes
that the SCA results in the incorrect unbalance type for Events 11 and 12. The same impact
is seen for the SPA. The load effect impacts the semi-minor and major axes much more
than the rotating angle of the SPM ellipse and shows that the rotating angle of the ellipse is
a robust parameter for voltage dip classification. The results show that there is a strong
correlation between CV and semi-minor axis as well as between PNF and semi-major axis.

4. Discussion

In general, the results presented in this paper show that the GAD method is a suitable
method for extracting event data from recorded voltage waveforms in a three-phase system
and that the PCA facilitates calculating efficient single value characteristics for the voltage
event. Some of the advantages of the proposed SPM-based framework are:

a. The possibility of instantaneous event detection, since it does not use any low-pass
filter such as the one-cycle rms voltage. This results in a higher time resolution for
the event duration, which is especially important for short-duration events. It also
becomes much more straightforward to obtain the point-on-wave for event start and
event end;

b. The possibility to provide the same basic characteristics (semi-minor, semi-major
axes, direction of semi-major axis) and triggering algorithm for dips, swells, and
interruptions. The use of these three characteristics gives a better characterization of
voltage events in a three-phase system than the rms-based method. The proposed
characterization is also more robust than the benchmarking algorithms proposed
earlier for the characterization of three-phase events (SCA, SPA);

c. The same triggering algorithm can be used for voltage transients. It becomes possible
to use a unique distinction between transients and non-transient events;

d. The possibility of visualizing exact transitions segments as points between cir-
cles/ellipses corresponding to the pre-, post-, and during-event segments. The
SPM-based method can also be used as a base for event segmentation; further work
towards this is recommended;

e. The SPM is also a better reference for the performance of three-phase equipment, such
as three-phase electrical motors, as the SPM is aligned with the rotating nature of such
equipment. This can be either a physical rotation (in the case of three-phase electrical
motors) or an emulated one in the control algorithm (in the case of three-phase
power-electronic converters;
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f. In this paper, the method was applied to short-duration events, but a similar charac-
terization can be applied to normal supply voltage variations. The existing method
(as in IEC 61000-4-30) is to give (10/12-cycle, 120/150-cycle, and 10 minute) values
of the three rms voltages and the voltage unbalance. Under the SPM-based method,
this would be replaced by the semi-major axis, semi-minor axis, and direction of the
semi-major axis;

g. The method uses machine-learning tools during the first two steps. Further machine-
learning techniques can be applied during the second step, for example, for event
segmentation. Machine-learning tools can also be used for the analysis of large
amounts of events during step three;

h. The framework can unify a large amount of distinct event duration in a unified
representation. The duration of events as voltage dips can be different for each
waveform. Thus, the number of samples for each event can also be different; the
number of stages can also imply a different number of samples. The framework
keeps the original information in the SPM, which is not duration-dependent as
RMS methods;

i. The SPM is the main contribution and the novelty presented in this framework. The
steps for anomaly detection, event characterization, and information extraction can
next be filled up with different ML methods. The choice of what is the best ML
method is beyond the scope of this paper.

An obvious disadvantage of the proposed method is that it is not applicable to single-
phase systems, installations, or equipment. The proposed method also does not allow for a
characterization of the zero-sequence component. The latter is, however, equivalent to a
single-phase system, and relatively simple methods are available or can be developed.

5. Conclusions

This paper proposes a machine learning-based framework that aims at handling large
voltage event analytics in terms of event detection, event characterization, and information
extraction, accepting a space phasor model (SPM) as input data. In the first step, the
framework applies the Gaussian-based anomaly detection (GAD) to extract the during-
event segments from the recorded data. Then, the principal component analysis (PCA)
is used to derive semi-minor and semi-major axis values and consequently single event
characteristics (SECs). The SEC draws additional information about the corresponding
event, which is useful for event mitigation and decision-making in the (smart) grid. The
effectiveness of the framework was verified through the analysis of voltage dip datasets.
The proposed framework was shown to be more robust under phase-angle jump and load
effect than existing methods.

Some recommendations for further works are:

a. Although the analysis of this work is focused on voltage dips, it is recommended to
apply the framework to other voltage variations. For instance, the framework can be
applied to measurements of transients to obtain SECs without the need for filtering;

b. The framework can be extended to the pre-processing of waveforms to evaluate
harmonic distortion;

c. The framework can be used as the pre-processing in supervised ML/DL. The labels
can be related to the origin and impact of the disturbances. Additional information
as waveforms of current can provide more features to such a task;

d. The SPM can also be employed in unsupervised DL. Since the framework can keep
the original information of waveforms in a unified representation, it makes it easier
to cluster a large number of events with different durations. The application of
clustering algorithms could provide the most common patterns of events for a large
amount of events waveforms;

e. Further works can employ different and evaluate the optimum choice for ML
and DL methods in the steps of anomaly detection, event characterization, and
information extraction.
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Abbreviations

CV Charactheristic Voltage
DL Deep Learning
DT Dip Type
GAD Gaussian-based Anomaly Detection
ML Machine Learning
PAJ Phase-Angle Jump
PCA Principal Component Analysis
PLC Programmable Logic Controller
PNF Positive Negative Factor
PQ Power Quality
SCA Symmetric Component Algorithm
SEC Single Event Charachteristic
SPA Six-phase Algorithm
SPM Space Phasor Model
UT Unbalance Type
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