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Abstract: The linear parameter-varying (LPV) model is widely used in aero engine control system de-
sign. The conventional local modeling method is inaccurate and inefficient in the full flying envelope.
Hence, a novel online data-driven LPV modeling method based on the online sequential extreme
learning machine (OS-ELM) with an additional multiplying layer (MLOS-ELM) was proposed. An
extra multiplying layer was inserted between the hidden layer and the output layer, where the
hidden layer outputs were multiplied by the input variables and state variables of the LPV model.
Additionally, the input layer was set to the LPV model’s scheduling parameter. With the multiplying
layer added, the state space equation matrices of the LPV model could be easily calculated using
online gathered data. Simulation results showed that the outputs of the MLOS-ELM matched that of
the component level model of a turbo-shaft engine precisely. The maximum approximation error
was less than 0.18%. The predictive outputs of the proposed online data-driven LPV model after
five samples also matched that of the component level model well, and the maximum predictive
error within a large flight envelope was less than 1.1% with measurement noise considered. Thus, the
efficiency and accuracy of the proposed method were validated.

Keywords: turbo-shaft engine; linear parameter-varying model; data-driven method; online sequen-
tial extreme learning machine (OS-ELM)

1. Introduction

The behavior of an aero engine can be described by a linear parameter-varying (LPV)
model, which can approximate a nonlinear system or a time-varying linear system with a
combination of linear time-invariant (LTI) models [1–3]. The parameters of LPV models
are expressed as a function of the scheduling variables or the operating point variables,
capturing the dynamic changes of the nonlinear system accurately [4,5]. The main advan-
tage of LPV models is that they allow the application of well-established linear design
techniques to complex nonlinear systems based on the linear matrix inequality [6,7] and
linear quadric methods [8]. For example, the online optimization of model predictive
control (MPC) or performance seeking control (PSC) can be reduced to a linear program
or a quadratic program, thereby achieving high real-time property when an LPV model
is used as a predictive model [9,10]. LPV models preserve the advantageous properties
of LTI models, such as low modeling cost, while being able to represent a large class of
nonlinear systems with high accuracy [11]. Therefore, the LPV model has been widely used
in convex system controller design [12,13] and model-based approaches [14,15], such as
robust control, fault diagnosis and optimal control.

The LPV and quasi-LPV identification method has attracted much attention in recent
years [16–18]. Quasi- means that the scheduling parameters of the LPV model include
system variables [19]. There are two main methods of LPV (or quasi-LPV) modeling which
have been researched in the literature: the global method and the local method [20,21].
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In the global method, the LPV model of the system can be derived from one experiment.
Additionally, both control inputs and scheduling parameters are excited simultaneously in
this experiment, which is not realizable in aero engine LPV modeling applications [20]. This
is because the dynamic of the engine is a continuous function of the wide flying envelope
and the various operation states, which can hardly be covered by finite-time experiments.
Furthermore, the state variable of an aero engine is often directly selected as the scheduling
parameter, which is dependent on control inputs and cannot be used to excite the system
in a global modeling experiment. In the local method, a certain number of working states
in the scheduling space are selected as the LPV model base point. A local LTI model is
established at each point, and the LPV model is based on the interpolation of the local LTI
systems [1–3,22,23]. The use of LTI models renders the local LPV modeling method simple
and easily realized in complicated nonlinear systems.

However, for aero engines, it is difficult to build LTI models in the full flying envelope
and variety of working states; also, the regularity of the parameters’ variation is poor [24,25].
The interpolation of the LTI parameters can be very complicated and time-consuming in the
full envelope, and even fail to stabilize the system [26]. A common solution involves only
modeling the aero engine at sea level with zero flying Mach numbers [27,28]. Models on
other conditions are acquired through similarity transformation. Unfortunately, similarity
transformation is carried out with many hypotheses which may not strictly hold in real
operating states [29,30], especially for turbo-shaft engines. Therefore, the accuracy of the
LPV model based on the similarity transformation may not satisfy the model-based control
requirement of the turbo-shaft engine.

In recent years, data-driven methods have been employed as a powerful tool for
LPV modeling since they can be carried out without mechanism models. In a data-driven
modeling method, only the input, state and output trajectory information are used to
identify the parameters [31]. The least square criterion and gradient descent algorithm
are adopted to optimize the parameters of the LPV model [31–33]. A statistical approach
was used in data-driven LPV system identification in [34]. However, the previously
mentioned data-driven modeling methods are inefficient because they must be carried
out offline [31,32,34] or carry online identification at the cost of reduced accuracy with the
stochastic gradient descent algorithm. For aero engines, a more engaging, newly developed
data-driven modeling method is the equilibrium manifold expansion (EME) model [35–37].
Differing from traditional LPV models of aero engines, the EME model considers the
mapping between the equilibrium points of the engine and the scheduling parameters [36].
Thus, the EME can achieve high accuracy with less data. However, it can sometimes be
difficult to find enough steady-state points to meet the needs of EME modeling, and then a
similarity transformation must be conducted [37]. The similarity transformation may cause
inaccuracies in the turbo-shaft engine. With the spread of intelligent technology, there have
been efforts to build an LPV model by using support vector machines (SVM) [38,39], a
promising approach to data-driven identification of LPV models [40]. Fényes et al. [41]
presented a data-driven LPV modeling method for the control design of autonomous
vehicle systems through machine learning, but it still required a reasonably large data set
for training. Compared to the previous data-driven LPV modeling methods, the intelligent
method can become more efficient by taking advantage of its online learning ability.

Hence, a novel online data-driven LPV (DD-LPV) modeling method for turbo-shaft
engines based on a special neural network was proposed in this paper. It derived the DD-
LPV model from an online sequential extreme learning machine (OS-ELM), with an extra
multiplying layer (MLOS-ELM). It was able to achieve state space models at any operating
point, static or dynamic, and modeling without the companion of the component-level
model (CLM) of aero engines. Utilizing the online DD-LPV model derived by MLOS-ELM,
a state space model was generated at every sample period based on the instant online
gathered data, which made this model represent the current property of the individual
engine accurately in any flight condition.
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Compared with existing studies, the main contribution of this paper can be summa-
rized as follows: (1) A special structure OS-ELM named MLOS-ELM was proposed in order
to build a state space model directly and conveniently in the form of an artificial neural
network. With the multiplying layer added, the neural network model and the LPV model
were linked closely in the same output form. (2) A novel DD-LPV online modeling method
was proposed which could linearize the dynamic system of the turbo-shaft engine at any
working state online with the instantly gathered data. (3) The DD-LPV online modeling
method provided a high-accuracy online predictive model for model-based approaches,
such as MPC, and fault diagnoses of the individual aero-engine.

The paper is organized as follows: Section 2 introduces the description of the turbo-
shaft engine’s LPV model. Section 3 presents the special structure of MLOS-ELM for
DD-LPV modeling. Section 4 introduces the online updating algorithm of the MLOS-ELM.
Section 5 discusses the simulation results and Section 6 concludes this paper.

2. LPV Model for Turbo-Shaft Engine
2.1. Brief Introduction of Turbo-Shaft Engine

The sketch of the bi-rotor turbo-shaft engine researched in this paper is shown in
Figure 1 [42]. During the operation, the compressed air is drawn from the inlet and
flows through the compressor to the combustor where fuel is introduced, mixed, and
ignited. Then, the hot gas flows through the gas turbine which extracts a portion of the
energy to drive the compressor. Finally, the gas exiting the gas turbine flows through the
power turbine which extracts the remaining energy to drive the main rotor [43,44]. All the
components work cooperatively to provide power to the helicopter.
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Figure 1. Structural sketch of turbo-shaft engine.

For smooth and reliable operation of the helicopter, the rotor speed of the power
turbine was always kept at 100% to maintain the main rotor speed constant [42]. This was
achieved by adjusting the fuel flow input to the engine. When a flight condition of the
helicopter changed, such as forward speed, the required power of the main rotor of the
helicopter varied accordingly. This meant that the power turbine needed to provide more
or less power to meet the requirement of the main rotor and reach a newly balanced state.

2.2. LPV Model Description

The general discrete state-space equation of LPV model can be described as:

x(k + 1) = A(α)x(k) + B(α)u(k)
y(k) = C(α)x(k) + D(α)u(k)

(1)

where α is the scheduling parameter, u(k) is the input vector of the LPV model, x(k) is the
state variable vector, y(k) is the output vector of the LPV model and A(α), B(α), C(α) and
D(α) are time-varying matrices scheduled by α.
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For turbo-shaft engine, its main dynamic is derived from the cooperative working of
the rotor systems [44], which can be described as:

dng
dt = (Wg ∗ ηg −Wc)/[ng ∗ Jg ∗ ( 30

π )
2
]

dnp
dt = (Wp ∗ ηp −Wr)/[np ∗ Jp ∗ ( 30

π )
2
]

(2)

where ng is the rotor speed of gas turbine, np is the rotor speed of power turbine, Wc,
Wg, Wp, Wr are the power values of the compressor, gas turbine, power turbine and main
rotor, respectively, ηg and ηp are the shaft efficiency values of the gas turbine and power
turbine, respectively and Jg and Jp are the rotor inertia values of the gas turbine and power
turbine, respectively.

Equation (2) is a basic equation for the turbo-shaft engine’s dynamic calculation in
its mechanism model (for more detail, refer to [42–44]). Thus, in research relevant to the
state space model of turbo-shaft engines, ng and np are most frequently selected as the
state variables [42–46]. In addition, ng can reflect both the output power and the dynamic
property of the engine [47,48]. Therefore, the LPV model of turbo-shaft engine can be
described in a quasi-LPV form:

x(k + 1) =
(

ng(k + 1)
np(k + 1)

)
= A(ng(k))

(
ng(k)
np(k)

)
+ B(ng(k))Wf(k)

y(k) =


ng(k)
np(k)
P3(k)
T44(k)

 = C(ng(k))
(

ng(k)
np(k)

)
+ D(ng(k))Wf(k)

(3)

where ng is selected as both the state variable and the scheduling parameter of the LPV
equation, which has α(k) = ng(k). Additionally, np is the controlled variable and another
state variable; thus, we have x(k) = [ng(k) np(k)]. The fuel flow Wf is the main control
input u(k) = Wf(k). P3 is the total pressure at the compressor exit and T44 is the total
temperature at the power turbine inlet. P3, T44 together with ng, are all limit parameters
for turbo-shaft engine security which should be taken into consideration in the control
system design process to avoid overspeed, overpressure and overtemperature. Therefore,
the output vector of the LPV model was set to y(k) = [y1(k) y2(k) y3(k) y4(k)]T = [ng(k) np(k)
P3(k) T44(k)]T.

Note that ng and np were already chosen as the states, so its corresponding entries in
C and D had a constant value of 0 and 1. For P3 and T44, corresponding entries in matrix C
and D varied with the scheduling parameter [15].

In the proposed method, the LPV model was built based on the online training neural
network. However, the order of magnitude of the parameters in Equation (3) differed from
each other considerably. Therefore, all the data used in the model should be normalized
into the order of magnitude of proximity to enhance the accuracy of the model and avoid
data overwhelming. The corresponding normalized LPV model is:

¯
x(k + 1) =

(
ng(k + 1)
np(k + 1)

)
=

¯
A(ng(k))

(
ng(k)
np(k)

)
+

¯
B(ng(k))Wf(k)

¯
y(k) =


ng(k)
np(k)
P3(k)
T44(k)

 =
¯
C(ng(k))

(
ng(k)
np(k)

)
+

¯
D(ng(k))Wf(k)

(4)

where the bar over the variable means that the variable is a normalized parameter, the
¯
A,

¯
B,

¯
C,

¯
D are normalized system and output matrices.
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The normalization was carried out as follows:

d =
2d− dmax − dmin

dmax − dmin
(5)

where dmax and dmin are the maximum and minimum values of any given variable d.

3. Special Structure of MLOS-ELM for DD-LPV Modeling

The online sequential extreme learning machine (OS-ELM) is a kind of single-hidden-
layer feedforward neural network (SLFN). It was adopted to train neural networks due to
its faster online learning and universal approximation capabilities. In OS-ELM, the training
sets of input vector and target vector come one by one or chunk by chunk. For one training
data set {(xin, t)}, the OS-ELM model with L additive hidden nodes and activation function
f (·) can be formulated as:

ŷ =
L

∑
i=1

βi f (Wixin + bi) (6)

where ŷ is OS-ELM model’s output, Wi is the weight from the input layer to the ith hidden
node, bi is the bias of the ith hidden node, βi is the weight from the ith hidden node to the
output layer.

For DD-LPV modeling, a special layer called multiplying layer was inserted between
the hidden layer and the output layer based on common OS-ELM, as shown in Figure 2.
The inputs of the multiplying layer were the outputs of the hidden layer, the normalized
states, and the normalized inputs of the LPV model. The output of the multiplying layer
node was the product of its inputs.
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Figure 2. MLOS-ELM structure for DD-LPV modeling of the turbo-shaft engine.

There were one-to-one local connections between the hidden layer and the multiplying
layer, whose weight was set to 1. The nodes of the hidden layer were divided into 3 groups
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according to the total dimension of x (2-dimension) and u (1-dimension), and each group
had 2 nodes, determined by heuristics. Therefore, the outputs of the MLOS-ELM become:

ŷm =
2
∑

j=1
β jm(k) f (W1jα(k) + bj)x1(k) +

4
∑

j=3
β jm(k) f (W1jα(k) + bj)x2(k)

+
6
∑

j=5
β jm(k) f (W1jα(k) + bj)u(k)

m = 1, 2, 3, 4

(7)

where ŷ =
[

x̂1(k + 1) x̂2(k + 1) P̂3(k) T̂44(k)
]T

, W1j is the weight from the input node

to the jth hidden node, bj is the bias of the jth hidden node, β jm is the weight from the
jth multiplying layer node to the mth output node. (β jm is related to time k because it is
updated online, while W1j and bj are invariant, as detailed in Section 4).

The normalized LPV model of a turbo-shaft engine described by Equation (4), can be
written in the form of matrix entries as:

¯
x(k + 1) =

[
x1(k + 1)
x2(k + 1)

]
=

[
a11(α) a12(α)
a21(α) a22(α)

][
x1(k)
x2(k)

]
+

[
b1(α)

b2(α)

]
u(k)

¯
y(k) =


x1(k)
x2(k)
P3(k)
T44(k)

 =


1 0
0 1

c31(α) c32(α)
c41(α) c42(α)

[ x1(k)
x2(k)

]
+


0
0

d3(α)

d4(α)

u(k)
(8)

According to Equation (7), the entries of
¯
A(α),

¯
B(α),

¯
C(α),

¯
D(α) in Equation (8) were obtained:

¯
A(α) =


2
∑

j=1
β j1(k) f (W1jα(k) + Wj)

4
∑

j=3
β j1(k) f (W1jα(k) + Wj)

2
∑

j=1
β j2(k) f (W1jα(k) + Wj)

4
∑

j=3
β j2(k) f (W1jα(k) + Wj)


¯
B(α) =

[
6
∑

j=5
β j1(k) f (W1jα(k) + Wj)

6
∑

j=5
β j2(k) f (W1jα(k) + Wj)

]T

¯
C(α) =



1 0
0 1

2
∑

j=1
β j3(k) f (W1jα(k) + Wj)

4
∑

j=3
β j3(k) f (W1jα(k) + Wj)

2
∑

j=1
β j4(k) f (W1jα(k) + Wj)

4
∑

j=3
β j4(k) f (W1jα(k) + Wj)


¯
D(α) =

[
0 0

6
∑

j=5
β j3(k) f

(
W1jα(k) + Wj

)
6
∑

j=5
β j4(k) f

(
W1jα(k) + Wj

) ]T

(9)

As can be seen from Equation (9), the non-constant elements of
¯
A,

¯
B,

¯
C,

¯
D in Equa-

tion (4) were derived from the parameters of the MLOS-ELM, varying with the scheduling
parameter α and output weight β. By inserting a multiplying layer between the hidden
layer and the output layer, the output function of the MLOS-ELM was presented in the
mathematical description form of the LPV model. That meant that the weights and the
input scheduling parameter of the MSOL-ELM were given the ability to derive the param-
eters of the LPV model. In other words, Equation (9) linked the neural network model
and the LPV model closely, which made the LPV model able to be derived directly and
conveniently by the network’s inner parameters at every sample time k.
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Remark 1. The numbers of the hidden nodes and the multiplying nodes were both set to 6 by
heuristics in this research, which was sufficient to achieve an accurate MLOS-ELM model. The
smallest number of nodes in each group was 2, to ensure the accuracy of the MLOS-ELM in this
research. If each group had only 1 node, MLOS-ELM’s accuracy would have been negatively
affected. However, if each group had more than 2 nodes, its accuracy would not be improved but
the computational burden would increase rapidly. Moreover, they could be set to different numbers
(no less than 3) separately. Owing to there being 3 independent state and input variables x1, x2,
u in turbo-shaft engine’s LPV model, the nodes in the multiplying layer must be divided into
3 groups, evenly or not. Then, the output of the network would always have the expression in form
of Equation (7) which in turn had an LPV form. The even structure presented in the paper was
simple and easily described.

Remark 2. MLOS-ELM’s input layer had only one input (the 1-dimensional scheduling parameter
α(k) = ng(k)) which was enough to express the variation of the matrices of the DD-LPV model.
Other factors that could have affected the matrices, such as Mach number Ma or altitude H, were
not used as the inputs because the online training method was adopted. Therein, the output weight
of the network was adapted to the current working condition, including the Mach number and the
altitude change, so the entries in Equation (9) could automatically adjust according to the flying
condition. Moreover, taking more parameters as the inputs of MLOS-ELM could have affected the
accuracy of the DD-LPV.

4. Online Updating Algorithm of MLOS-ELM

OS-ELM was utilized to build the network for its high real-time properties and com-
petence in recursive learning. The convergence of OS-ELM was proven in [49]. At each
sample time k, the newly gathered data set was used to update OS-ELM’s output weight β.

According to the MLOS-ELM described in Figure 2. the output vector of the hidden
layer at sample time k is:

H(k) = [h1(k) h2(k) . . . h6(k)]
= [ f (W11α(k) + b1) f (W12α(k) + b2) . . . f (W16α(k) + b6)]

(10)

where W ∈ R1×6 and b ∈ R1×6 are randomly generated at the first time step and kept
constant, f (Wα + b) = 1

1+e−(Wα+b) .
Then the output vector of the multiplying layer is:

O(k) = [h1(k)x1(k) h2(k)x1(k) h3(k)x2(k) h4(k)x2(k) h5(k)u(k) h6(k)u(k)] (11)

The outputs of MLOS-ELM model of Equation (7) can be rewritten in a compact form:

ŷ(k) = O(k)β(k)→ t(k) (12)

where β ∈ R6×4, t(k) =
[
x1(k + 1) x2(k + 1) P3(k) T44(k)

]T is the target vector.
If k = 1, the weight β can be calculated by least square method:

β(1) = (OT(1)O(1))
−1

OT(1)t(1) (13)

However, O(1) ∈ R1×6 has rank 1 (not full column rank), thus O(1)TO(1) is singular.
Then the ridge regression theory is used to rewrite Equation (13):

β(1) = (O(1)TO(1) + λI)
−1

O(1)Tt(1) (14)

where λ is the generalized regularization parameter.
If k > 1, the output weight β was updated recursively online every sampling period

to adapt to the new working state of the engine. However, in some instances, the outputs
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of MLOS-ELM already matched the target outputs well with previous output weight,
especially at a steady state. Under such conditions, there was no need to update the output
weight at every sampling time, which increased the computational burden. Therefore, a
criterion was set to judge whether the output weight needed to be updated according to
the output error of the network.

The output error was defined by relative percentage error:

erri(k) =
ŷi(k)− ti(k)

ti(k)
× 100% (15)

If one of MLOS-ELM’s output errors erri, i = 1,2,3,4 exceeded the update criterion,
the recursive least square method was used to update the weight according to the new
gathered data. Otherwise, the weight maintained the same value as the last sampling time.

Then we have the output weight β(k) (k > 1) as:
If |erri(k)| < δi, i = 1, 2, 3, 4

β(k) = β(k− 1) (16)

else {
β(k) = β(k− 1) + P(k)OT(k)(t(k)− ŷ(k))

P(k) = P(k− 1)− P(k−1)O(k)OT(k)P(k−1)
1+OT(k)P(k−1)O(k)

(17)

where δi > 0, i = 1, 2, 3, 4 is the maximum allowable output error of MLOS-ELM, P(1) is

defined as P(1) = (OT(1)O(1) + λI)
−1

.
Combining Sections 3 and 4, the proposed online DD-LPV modeling method of turbo-

shaft engine based on MLOS-ELM can be summarized in the following steps:

• Step 1. Randomly generate the hidden layer parameters W and b, set δ and λ;
• Step 2. Update the output weight β(k): If k = 1, Equation (14) is used. Otherwise,

Equation (16) or Equation (17) is used;

• Step 3. Calculate the LPV system matrices
¯
A(α),

¯
B(α),

¯
C(α),

¯
D(α) according to Equation (9);

• Step 4. Set k = k + 1, go back to Step 2.

Remark 3. To be consistent with the description of the discrete state space equation in Equation (4),
the outputs of MLOS-ELM and the target vector in Equation (12) included states at time k + 1.
Since the data at time k + 1 could not be collected online at time k in real applications, the DD-LPV
model at time k was obtained by the data of the states at time k and the outputs at time k − 1.

5. Simulation and Discussions

To verify the accuracy of the MLOS-ELM network and the online DD-LPV model
derived from it, simulations in the flight envelope were carried out based on the component
level model (CLM) of the UH-60 helicopter and T700 engine system platform for lack of
rig test data. The accuracy of this integrated UH-60 helicopter and T700 engine model
was checked and verified in [44,50] by a great number of tests. The test results prove that
the integrated model not only had good reliability, but was able to carry out digital flight
simulations of routine missions [44]. The data generated by the integrated model had high
fidelity. For more detailed information, refer to [43,44,51].

The output weight update criteria of MLOS-ELM were δi = 0.005, i = 1, 2, 3, 4 and
λ = 10−8. The anti-normalized outputs were adopted to evaluate the accuracy of the
MLOS-ELM and the DD-LPV model with physical value.

The true value of the outputs was attained by anti-normalization according to Equation (5):

d =
d(dmax − dmin) + dmax + dmin

2
(18)
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In Sections 5.1 and 5.2, all comparisons and relative errors were calculated by anti-
normalized data.

5.1. Approximation Ability Verification of the MLOS-ELM

First, the effectiveness of the proposed MLOS-ELM was tested through simulation.
The target values of t were gathered online from the component level model (CLM) of
the turbo-shaft engine. The purpose of this section was to validate whether the output of
MLOS-ELM ŷ could track the output of CLM accurately.

The simulation was first carried out at altitude 0 m, with the trajectory of the forward
speed of the helicopter increasing from 0 m/s to 30 m/s in the first 50 s, remaining invariant
for 60 s and then decreasing to 0 m/s in the last 70 s, as shown in Figure 3. The turbo-
shaft engine was controlled to keep the power turbine rotor speed at 100% during the
whole process.
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Figure 3. The forward speed of the helicopter in simulation.

The comparisons of the MLOS-ELM network’s output and the CLM’s output are
shown in Figure 4. In the figure, GT represents the gas turbine and PT represents the
power turbine.

It can be seen from Figure 4 that the rotor speed response of the MLOS-ELM was able
to match that of the CLM accurately during both the steady state and the dynamic process.
The relative error of MLOS-ELM outputs to those of CLM was less than 0.009% for GT
rotor speed and 0.003% for PT rotor speed. The error of compressor exit pressure and PT
inlet temperature was also very small, which was within 0.18% and 0.12%, respectively.
When the helicopter switched from acceleration to constant speed at 50 s and from constant
speed to deceleration at 110 s, the network could still track the outputs well (though a
sudden change of the forward speed trajectory occurred). The simulation results showed
that the special OS-ELM, with an additional multiplying layer, achieved a high degree
of approximation accuracy, which implied the effectiveness of the online DD-LPV model
derived by MLOS-ELM.
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Figure 4. Output comparison of MLOS-ELM and CLM (a) Responses of GT rotor speed. (b) Relative
error of GT rotor speed. (c) Responses of PT rotor speed. (d) Relative error of PT rotor speed.
(e) Responses of compressor exit pressure. (f) Relative error of compressor exit pressure. (g) Responses
of PT inlet temperature. (h) Relative error of PT inlet temperature.



Energies 2022, 15, 1255 11 of 19

5.2. Prediction Ability Validation of the Online DD-LPV Model in Flight Envelope

The online DD-LPV model was designed to be used in MPC or PSC, whose model
was to predict the future outputs of the next few sample times. Therefore, in this section,
the prediction ability of the proposed DD-LPV model was validated.

For the LPV model derived from the MLOS-ELM at time k, its state space equation

matrices were
¯
A(k),

¯
B(k),

¯
C(k),

¯
D(k). Its prediction outputs at time k + p were obtained

with the input series of the CLM over time k to k + p, and compared with the CLM output
at time k + p to verify the prediction ability of the LPV model derived at time k. As k moved
along the test horizon, the prediction ability of the models derived at each sampling time
were tested.

The prediction outputs of the LPV model were acquired by the response calculation of
the discrete time system:

¯
x(k + 1) =

¯
A(k)xCLM(k) +

¯
B(k)uCLM(k)

¯
x(k + 2) =

¯
A(k)x(k + 1) +

¯
B(k)uCLM(k + 1)

=
¯
A

2

(k)xCLM(k) +
¯
A(k)

¯
B(k)uCLM(k) +

¯
B(k)uCLM(k + 1)

(19)

Proceeding forward from Equation (19), we can obtain
¯
x(k + p) and then

¯
y(k + p):

¯
x(k + p) =

¯
A

p
(k)xCLM(k) +

k+p−1
∑

m=k

¯
A

k+p−1−m
(k)

¯
B(k)uCLM(m)

¯
y(k + p) =

¯
C(k)

¯
A

p
(k)xCLM(k) +

k+p−1
∑

m=k

¯
C(k)

¯
A

k+p−1−m
(k)

¯
B(k)uCLM(m) +

¯
D(k)uCLM(k + p)

(20)

As a recently proposed data-driven modeling method for aero engines, an equilibrium
manifolds expansion (EME) model [35–37] was also built on the UH-60/T700 system for
prediction ability comparison. The EME model for the turbo-shaft engine was built at an
altitude of 1000 m with different power requirements of the helicopter and was extended
to the entire flight envelope through similarity transformation [37].

The simulations were carried out at altitudes of 1000 m and 3000 m with the same
forward speed variation in Figure 3. The prediction results of k + 5 at 1000 m are shown
in Figure 5 and the variations of the DD-LPV model parameters during this process are
shown in Figure 6. Figure 7 shows the prediction results of k + 5 at 3000 m and the variation
of the corresponding DD-LPV model parameters are shown in Figure 8. Random noises
(magnitude 0.2%) were added to the data gathered from the CLM at 3000 m to imitate the
measurement noise, which meant that the MLOS-ELM model at 3000 m was trained by the
data with noise—and so was the DD-LPV model derived from it.

Figure 5 shows that future output prediction at time k + 5 of the online DD-LPV model
was able to match that of the CLM more accurately than the EME model when the altitude
was set to 1000 m. The relative predictive errors at time k + 5 of DD-LPV model rotor speed
to that of CLM were less than 0.05% for GT rotor speed and less than 0.01% for PT rotor
speed. The maximum errors of compressor exit pressure and PT inlet temperature were
less than 0.13% and 0.12% respectively, which meant that the DD-LPV model achieved
high accuracy in the prediction of all output parameters. At 50 s and 110 s, when the
forward speed switched, the fluctuation ranges of the prediction error were also very small.
Meanwhile, as shown in Figure 5, the EME model’s relative predictive errors of these four
outputs were less than 0.36%, 0.07%, 2.0% and 1.7%, respectively. Although the accuracy
of the EME model, whose similarity transformation was computed at the similar inlet
pressure and temperature, was still acceptable at 1000 m, its prediction error was still much
greater than that of the online identified DD-LPV model.
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Figure 5. Prediction comparison of DD-LPV model and EME model to CLM at time k + 5 (at
1000 m, without measurement noise). (a) Prediction of GT rotor speed. (b) Relative error of GT rotor
speed prediction. (c) Prediction of PT rotor speed. (d) Relative error of PT rotor speed prediction.
(e) Prediction of compressor exit pressure. (f) Relative error of compressor exit pressure prediction.
(g) Prediction of PT inlet temperature. (h) Relative error of PT inlet temperature prediction.
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Figure 6 shows that some of the parameters, such as a12(α), a21(α) and b21(α), changed
very slightly, even their corresponding scheduling parameter α(k) = ng(k) changed within
a relatively wide range. Thus, the output weight β(k) of the MLOS-ELM changed ac-
cordingly because the parameters of the DD-LPV model were changed not only with the
scheduling parameter, but also with the online updated output weight. All the parameters
of the LPV model varied smoothly during the forward speed increase and decrease process
which guaranteed the DD-LPV model the ability of smooth prediction over the test horizon.
(c11(α)~c22(α), d11(α)~d21(α) are not shown in the figure since they were fixed values of 1
or 0).

It can be seen from Figure 7 that all the future outputs prediction of the online DD-LPV
model was able to track that of the CLM at time k + 5 very well with measurement noise
considered. Most of the relative errors fluctuated around the magnitude of 0.2% which
was consistent with the magnitude of the measurement noise. The rotor speed prediction
error of the LPV model at time instant k + 5 was less than 0.35%. Most compressor exit
pressure prediction errors of the online DD-LPV model at time instant k + 5 were less than
0.6%, and the maximum error was less than 0.81%. All the GT inlet temperature prediction
errors were less than 0.6%. By contrast, the maximum prediction errors of P3 and T44 of the
EME model increased greatly, up to 2.62% and 3.17%, respectively, when the flying altitude
changed to 3000 m.
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Figure 7. Prediction comparison of DD-LPV model and EME model to CLM at time k + 5, (at
3000 m, with measurement noise) (a) Prediction of GT rotor speed. (b) Relative error of GT rotor
speed prediction. (c) Prediction of PT rotor speed. (d) Relative error of PT rotor speed prediction.
(e) Prediction of compressor exit pressure. (f) Relative error of compressor exit pressure prediction.
(g) Prediction of PT inlet temperature. (h) Relative error of PT inlet temperature prediction.
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Figure 8 shows that the parameters of the DD-LPV model varied in a wider range
than that at altitude 1000 m with the same forward speed variation and a much similar
scheduling parameter variation range. If the measurement noise was not considered, similar
parameter variations resulted, as Figure 6 illustrates. This meant that the changes were
aroused by the measurement noise added to the online training data of the MLOS-ELM,
which in turn affected the parameters of the DD-LPV model. Even so, all the parameters of
the DD-LPV model still changed smoothly during the dynamic process.

To further verify the effectiveness of the proposed online DD-LPV model, online
prediction comparations of the DD-LPV model and the EME model (at different altitudes
with and without measurement noise) were conducted. The results are listed in Table 1.

It can be seen from Table 1 that the online DD-LPV model was able to predict future
outputs more accurately than the EME model at different altitudes within the flight envelope.

Without measurement noise considered, the average prediction errors of Ng of the
DD-LPV model were between 0.0071% and 0.0115%—much smaller than those of the EME
model, which were between 0.1258% and 0.2134%. For Np, the range of the average errors
of DD-LPV model was between 0.0011% and 0.0025%, and was also smaller than that
of EME model which was between 0.0150% and 0.0222%. For P3 and T44, much better
prediction results could be achieved by the online DD-LPV model. For P3, the average
errors of DD-LPV model were between 0.0172% and 0.0896% while those of EME model
were between 0.6233% and 1.1080%. For T44, the average errors of DD-LPV model were
between 0.0165% and 0.0471% while those of EME model were between 0.5714% and
1.4431%. Additionally, the maximum errors of Ng, Np, P3 and T44 of DD-LPV model were
also obviously better than the EME model. Moreover, the performance of output prediction
of the DD-LPV model was more stable, with the most standard deviation lower by more
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than an order of magnitude, compared with the EME model. Furthermore, the DD-LPV
model had no obvious prediction error fluctuations when the altitude and the forward
flying speed changed. It identified those changes instantly, according to the online gathered
data. On the contrary, from 1000 m to 4000 m, the EME model’s average prediction errors
of P3 and T44 showed a clearly increasing trend from 0.7899% and 0.5714% to 1.1080% and
1.4431%, respectively, mainly contributing to the turbo-shaft engine’s poor applicability of
similarity transformation.

Table 1. Online prediction comparations of DD-LPV model and EME model at time k + 5 in flight envelope.

Altitude Measurement
Noise

Error Type
Prediction Error of DD-LPV Model (%) Prediction Error of EME Model (%)

ng np P3 T44 ng np P3 T44

0 m no Average error 0.0115 0.0016 0.0415 0.0471 0.1703 0.0222 0.6233 0.7414
Maximum error 0.0509 0.0092 0.1442 0.2306 0.4203 0.0801 2.5217 1.8090

Standard deviation 0.0105 0.0016 0.0360 0.0355 0.1139 0.0195 0.6301 0.3995
yes Average error 0.1202 0.1125 0.2320 0.1895 0.1974 0.1034 0.6494 0.7525

Maximum error 0.4447 0.3760 0.9075 0.8425 0.6847 0.2763 2.7619 2.1970
Standard deviation 0.0847 0.0751 0.1787 0.1512 0.1392 0.0622 0.6236 0.4280

1000 m no Average error 0.0071 0.0011 0.0316 0.0287 0.1298 0.0157 0.7899 0.5714
Maximum error 0.0422 0.0066 0.1210 0.1110 0.3540 0.0664 1.9774 1.6577

Standard deviation 0.0069 0.0011 0.0282 0.0247 0.0970 0.0145 0.5461 0.4464
yes Average error 0.1152 0.1115 0.2240 0.1655 0.1692 0.1016 0.8017 0.5943

Maximum error 0.3945 0.3721 1.0303 0.6901 0.6595 0.2549 2.3002 1.9504
Standard deviation 0.0806 0.0733 0.1786 0.1254 0.1270 0.0593 0.5608 0.4489

2000 m no Average error 0.0085 0.0012 0.0172 0.0165 0.1367 0.0150 0.9661 1.0330
Maximum error 0.0398 0.0065 0.0624 0.1024 0.3419 0.0542 2.1097 2.2256

Standard deviation 0.0079 0.0011 0.0140 0.0185 0.0848 0.0155 0.5126 0.6554
yes Average error 0.1122 0.1114 0.1976 0.1512 0.1682 0.1018 0.9677 1.0394

Maximum error 0.3900 0.3825 0.9232 0.7013 0.6564 0.2521 2.4632 2.5868
Standard deviation 0.0765 0.0723 0.1573 0.1123 0.1225 0.0601 0.5234 0.6617

3000 m no Average error 0.0060 0.0015 0.0230 0.0215 0.1258 0.0154 1.0008 1.4259
Maximum error 0.0385 0.0086 0.0850 0.1108 0.3158 0.0554 2.2672 2.8193

Standard deviation 0.0058 0.0014 0.0219 0.0156 0.1028 0.0142 0.4752 0.9727
yes Average error 0.1092 0.1072 0.1727 0.1430 0.1679 0.1027 1.0016 1.4306

Maximum error 0.3454 0.3489 0.8034 0.5814 0.5835 0.2473 2.6232 3.1719
Standard deviation 0.0720 0.0717 0.1304 0.1036 0.1236 0.0588 0.4954 0.9749

4000 m no Average error 0.0086 0.0025 0.0896 0.0307 0.2134 0.0205 1.1080 1.4431
Maximum error 0.0376 0.0141 0.5005 0.1255 0.5116 0.0837 2.6658 2.4238

Standard deviation 0.0087 0.0022 0.1255 0.0311 0.1563 0.0209 1.0029 0.6846
yes Average error 0.1040 0.1077 0.2251 0.1278 0.2387 0.1018 1.1380 1.4401

Maximum error 0.3071 0.3531 0.9292 0.5040 0.8281 0.2616 3.0371 2.7334
Standard deviation 0.0643 0.0710 0.1762 0.0908 0.1754 0.0611 0.9832 0.7082

With measurement noise considered, the average prediction errors of the online DD-
LPV model’s four outputs Ng, Np, P3 and T44 were within 0.1202%, 0.1125%, 0.2320%, and
0.1895%, respectively, and the maximum errors were less than 0.4447%, 0.3825%, 1.0303%
and 0.8425%, obviously better than the EME model. However, it was notable that the
average prediction errors of the EME model were not greatly changed with or without the
measurement noise, while, for the DD-LPV model, the prediction errors increased greatly
with noise considered. This was mainly because the original error of the DD-LPV model
without noise considered was much smaller than the magnitude of the noise. As an online
training method, noise will affect the update of the output weight, which in turn will affect
the accuracy of MLOS-ELM and the DD-LPV model derived from it.

6. Conclusions

This paper proposed an online data-driven LPV modeling method for turbo-shaft
engines using the online sequential extreme learning machine with an additional multiply-
ing layer (MLOS-ELM). Through simulations conducted in a wide fight envelope, several
conclusions were drawn.

First, the outputs of the proposed MLOS-ELM were able to track the outputs of the
CLM online precisely, which demonstrated that the MLOS-ELM was able to model the
turbo-shaft engine dynamic accurately. The insertion of the multiplying layer made the
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output of the network become a state space LPV form without affecting the approximation
accuracy. Hence, the MLOS-ELM could represent a new thought for data-driven modeling
methods that deserves further research. It has the potential to adapt to the properties of
other individual engine or nonlinear systems.

When the traditional state space modeling methods of for aero engines were carried
out based on applying small perturbations on the CLM, the DD-LPV modeling method
based on MLOS-ELM provided a CLM-free online linear model identification method. It
was able to avoid the modeling errors of the CLM and enhance the accuracy of the LPV
model, especially at the dynamic state.

The DD-LPV modeling method was very efficient and convenient. It was able to derive
an accurate LTI state space model instantly at each sampling time with the individual
engine online gathered data, which made the LPV model free from the influence of engine
degradation and usable as an adaptive LPV model. Additionally, it could lower the
mechanism modeling burden of physical systems for linearization purposes.

Differing from the EME model, which needed the similarity transformation to be
applied to the whole flying envelope, the proposed DD-LPV model was derived online,
and was able to match variations in flying conditions well. Future output prediction
simulation results showed that the online DD-LPV model could be used to predict the
output of the aero engine over the next several steps much more precisely than the EME
model, with or without the measurement noise considered.

Therefore, the proposed modeling method based on MLOS-ELM represents a new
and promising data-driven online modeling method that is worthy of further research in
control system designs where LPV models are widely used, such as MPC, fault diagnosis,
performance seeking control, and so on.
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