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Abstract: The transport sector is one of the main barriers to achieving the European Union’s climate
protection objectives. Therefore, more and more restrictive legal regulations are being introduced,
setting out permissible limits for the emission of toxic substances emitted into the atmosphere,
promoted biofuels and electromobility. The manuscript presents a computer tool to model the total
energy consumption and carbon dioxide emissions of vehicles with an internal combustion engine
of a 2018 Toyota Camry LE. The calculation tool is designed in the OpenModelica environment.
Libraries were used for this purpose to build models of vehicles in motion: VehicleInterfaces, EMOTH
(E-Mobility Library of OTH Regensburg). The tool developed on the basis of actual driving test data
for the selected vehicle provides quantitative models for the instantaneous value of the fuel stream,
the model of the instantaneous value of the carbon dioxide emission stream as a function of speed
and the torque generated by the engine. In the manuscript, the tests were conducted for selected
driving cycles tests: UDDS (EPA Urban Dynamometer Driving Schedule), HWFET (Highway Fuel
Economy Driving Schedule), EPA US06 (Environmental Protection Agency; Supplemental Federal
Test Procedure (SFTP)), LA-92 (Los Angeles 1992 driving schedule), NEDC (New European Driving
Cycle), and WLTP (Worldwide Harmonized Light-Duty Vehicle Test Procedure). Using the developed
computer tool, the impact on CO2 emissions was analyzed in the context of driving tests with four
types of fuels: petrol 95, ethanol, methanol, DME (dimethyl ether), CNG (compressed natural gas),
and LPG (liquefied petroleum gas).

Keywords: vehicle; engine; driving tests; biofuel; OpenModelica

1. Introduction

The carbon-intensive road transport sector faces enormous technological, social, en-
trepreneurial, and managerial challenges [1–3]. Awareness of environmental threats and
social pressure are the prerequisites for introducing more and more restrictive regulations
on the amount of pollutant emissions [4–6].

Member States and the European Union (EU) have been following a path of emission
reductions since at least 1997, the Kyoto Protocol, the Doha Amendment of 2012, the
Paris Agreement of 2015, and the European Green Deal of 2019, which set out a path for
the development of Member State economies in view of an ambitious EU-wide climate
target of climate neutrality by 2050, and the vast majority of which is addressed to road
transport [7–10].
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In the Paris Climate Agreement, the EU undertook to reduce greenhouse gas emissions
by at least 40% by 2030 in all economic sectors compared to the 1990 levels. However, in
the 2020 strategy, complementary to the “European Green Deal”, “Sustainable and Smart
Mobility Strategy—putting European transport on track for the future”, the main goal in
the field of mobility is a 90% reduction in emissions from all transport by 2050 [11,12].

According to the latter document, the entire internal combustion vehicle market is
to be subject to stricter emission standards, and the regulations concerning CO2 emission
standards for cars and vans are to be revised. In addition, the road charging system is to
be tightened up and made more efficient. A significant change is the possible inclusion
of road transport in the European CO2 emissions trading scheme. The above changes are
to motivate road users to increase the number of ecological vehicles, i.e., to promote the
development of solutions that are energy-efficient and possibly the least harmful to the
environment. European Union authorities want 30 million electric cars on the roads of EU
member states by 2030. There are 313 million cars registered in the EU. This means that
in 2030, almost every tenth vehicle would be electric. Currently, 1.4 million such vehicles
are registered for electricity in the member states. According to a report by the European
Automobile Manufacturers’ Association (ACEA), in the third quarter of 2020, the number
of petrol cars registered in EU countries fell by 24.3%, diesels by 13.7%, and electric cars
increased by 132 % compared to the comparable period in 2019. Demand for diesels and
petrol vehicles is decreasing, although petrol cars still account for more than half of the EU
market [13–15].

When analyzing the environmental performance of vehicles, it is important to look
at how they interact with the environment from production, through the time of use, to
disposal. It should be noted that the value of eco depends very much on the driver, and
their driving habits and technique. Electric cars are locally zero-emission. Where they are
used, they emit no fumes and do not pollute the surrounding air. The extent to which an
electric car is truly zero-emission is determined by the source of energy used to power the
battery. If we are dealing with so-called green energy—coming from renewable sources
(e.g., a wind turbine or our own photovoltaic installation), the carbon footprint of an electric
vehicle is limited only to the production stage. If this energy comes mainly from coal-fired
power plants, you still have to take into account the CO2 emissions from power generation.

CO2 emissions from passenger transport vary considerably depending on the mode
of transport. Passenger cars are the main source of pollution, accounting for 60.7% of all
CO2 emissions from road transport in Europe. It should also be stressed that the dynamics
of historical CO2 emissions from the transport sector in individual EU member states are
different. For example, in Poland, between 2005 and 2017, a significant increase in emissions
was observed (by 76%), where in the EU, a decrease in emissions of 3% was visible during
the same period. In order to analyze the possibilities of reducing emissions in the trans-
port sector, scenarios are created that include carbon-dependent charges included in the
purchase price of fuels against the background of ongoing technological progress [16–19].

In order to reduce the emission of car exhausts, legal regulations are created, defining
upper limits for the content of particular toxic components in exhaust gases [20,21].

In the area of the European Union, periodical vehicle technical inspections have been
obligatory since 1992 [22,23]. Their purpose is to assess the technical condition of the
vehicle, on the basis of which it may be admitted to road traffic. Apart from the limit values
for the mentioned components of the vehicle exhaust gases, the standards also define the
methodology of emission tests in specially adjusted laboratories. During inspection, the
functioning of the elements aimed at reducing the harmful impact on the environment is
checked, among others. The standards regulate the emission of nitrogen oxides, carbon
oxides, hydrocarbons, and particulate matter in cars that drive on the road. Cars currently
sold should meet the EURO 6 standard from 2014 [24–26]. Exhaust emission standards
in force in Europe define different requirements for the engines of passenger cars and
vans, as well as trucks and buses. Protection of air cleanliness is a priority of the European
Commission, therefore, from time to time, the standards are changed and the limit values
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given in them are reduced, so as to mobilize the car companies to look for new, better
technological solutions that will be a lower burden on the environment [27–30]. At the
moment, the tightening of regulations concerning the reduction of the emission of toxic
compounds in engine exhaust gases, fuel consumption, and the emission of greenhouse
gases is the main factor steering the direction of development of motor vehicle designs.

Throughout the European Union, a new type of vehicle is allowed for sale after
obtaining an approval certificate. Such a document is issued by the appropriate national
authority and proves that the prototype meets all EU requirements concerning safety,
environmental protection, and conformity of production [31,32]. Emissions are tested both
in laboratory conditions (WLTP (World Harmonized Light Vehicle Test Procedure)) and on
the road (RDE (Real Driving Emissions)). Laboratory tests, which are conducted according
to a standardized and repeatable procedure, enable consumers to compare different car
models [33–36].

WLTP is a new global harmonized test procedure for light commercial vehicles devel-
oped to measure fuel consumption, CO2, and pollutant emissions for passenger cars and
light commercial vehicles. The maximum speed during testing is 131.3 km/h. The average
speed is 46.5 km/h and the total cycle time is 30 min. The distance covered during the
test is 23.25 km [37,38]. The WLTP test consists of four parts, depending on the maximum
speed: low (the test lasts 589 s, the car covers 3 km, accelerates to the maximum 56.5 km/h
and reaches an average speed of 18.9 km/h), medium (the test lasts 433 s, the car covers
4.7 km, accelerates to 76.6 km/h and reaches an average speed of 39.4 km/h), high (the
test lasts 455 s, the car covers 7.2 km, accelerates to 97.4 km/h and reaches an average
speed of 56.5 km/h), and very high (the test lasts 323 s, the car covers 8.3 km, accelerates
to 131.3 km/h and reaches an average speed of 94 km/h). Individual parts of the cycle
simulate urban driving, suburban driving on roads other than urban and motorways. The
cycle also does not simulate hill climbs. The procedure also takes into account all optional
vehicle accessories affecting aerodynamics, such as rolling resistance or vehicle mass, which
have an impact on vehicle-specific CO2 emissions [39,40]. WLTP includes guidelines for
new driving cycles ((WLTC) Worldwide harmonized Light-duty vehicles Test Cycles).

The RDE test is not a substitute for laboratory testing, but complements it, especially
for NOx emissions. Real-world emission testing involves measuring pollutants using
portable emissions measurement systems (PEMS) mounted on cars as they drive on the
road. The vehicle is driven on a real road according to randomly selected parameters such
as acceleration, deceleration, ambient temperature, and load [41,42]. The limits that cannot
be exceeded are defined as those obtained from the laboratory test (WLTP), multiplied by
the influencing factors. The compliance factors take into account the margin of error of
the instrumentation, which is not the same as the level of accuracy and repeatability in the
laboratory test.

Until 2017, the New European Driving Cycle (NEDC) test procedure was in force
within the European Union. The NEDC included two test phases: the UDC (urban driving
cycle) and the EUDC (extra urban driving cycle). For 13 min, the vehicle is tested in what is
assumed to be urban conditions, with the remaining 7 min in non-urban conditions. The
components of this cycle do not take into account actual driving patterns and distances
travelled on different types of roads. The average speed over the NEDC cycle is only
34 km/h and the maximum speed is only 120 km/h. The total distance the vehicle covers
in the test is 11 km [43,44].

In the United States of America, the FTP-75 (Federal Transient Procedure) test is used
to assess the environmental performance of passenger cars and light-duty vehicles, and the
Highway Federal Extra Test (HWFET) is used to assess fuel consumption [45,46].

The federal test procedure (FTP) consists of the UDDS (Urban Dynamometer Driving
Schedule). The Urban Dynamometer Driving Schedule is a mandatory test on a dynamome-
ter of a car’s tailpipe emissions. The cycle consists of two phases. In the first phase, the
vehicle covers a distance of 5.78 km at an average speed of 41.2 km/h in 505 s. In the second
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phase, which takes 864 s, the vehicle covers a distance of 6.29 km. The maximum speed
reached by the vehicle during the test is 91.2 km/h [47,48].

The FTP-75 cycle consists of four phases. During the whole cycle, the car covers
a distance of 17.77 km, in 1877 s, at an average speed of 34.12 km/h (maximum speed
of 91.25 km/h). Additionally, cars must be tested under two supplemental federal test
procedures ((SFTP) Supplemental Federal Test Procedures): aggressive driving (SFTP US06)
and the optional air conditioning test (SFTP SC03) [49–52].

The Highway Fuel Economy Test (HWFET) is used to determine the highway fuel
economy rating. During the cycle, which takes 765 s, the car covers a distance of 16.45 km,
with an average speed of 77.7 km/h [53,54].

In addition, there is the standardized LA92 cycle, which, compared to FTP, has a
higher maximum and average speed, shorter idle time, fewer stops, and a higher maximum
acceleration rate. LA-92 is designed for Class 3 heavy-duty vehicles [55,56].

One of the most popular fuels in the world is petrol. Raw petrol has a low resistance to
pre-ignition, so it is enriched with special compounds that decrease the “knocking” effect.
In a controlled way, fuel with different octane numbers can be obtained, which is tailored
to the needs of specific engines and does not cause damage to them [57,58].

LPG (liquefied petroleum gas) is an alternative power source for internal combustion
engines. This fuel is a mixture of liquefied propane and butane. Due to climatic differences,
the proportions of the components can vary [59,60].

Compressed natural gas (CNG) is a gas compressed to 20–25 MPa, consisting of
approximately 97% methane. CNG is distinguished by its high octane number (130) and
has the highest efficiency among liquid fuels [61,62].

For many years, intensive research has been carried out in the direction of alternative
fuels. Considering the engine being powered by different fuels, the same energy conversion
efficiency must be assumed. With this assumption, it is possible to calculate the mass of
a given fuel, the combustion of which yields energy equal to the energy obtained from
burning 1 kg of gasoline, and then to calculate the carbon dioxide emissions, also with
respect to the emissions produced by burning 1 kg of gasoline.

The question of biofuels’ influence on the reduction of CO2 emission is complicated
and requires taking into consideration, apart from the chemical composition, many factors
connected with the type of construction and the specificity of the engine operation. It has
been claimed in the literature that methane is the only commonly used engine fuel that
results in a significant reduction of carbon dioxide emissions compared to gasoline engine
fueling [63].

A separate issue is the use of plant-based fuels to power engines. These are mainly
alcohols used to power spark ignition engines and various types of vegetable oils or their
esters used to power compression ignition engines. Using them in pure form (alcohols)
or mixed with gasoline (E85 fuel) results in higher carbon dioxide emissions than using
gasoline. A similar effect occurs when compression ignition engines are fueled with
vegetable oils.

For example, methyl and ethyl alcohols are used as engine fuels. They are used in pure
form or as additives and as a raw material to produce MTBE (methyl tert-butyl ether) and
ETBE (ethyl tert-butyl ether). The biggest disadvantage of ethanol is its low calorific value.
In relation to a liter, this value is 1/2 lower than in the case of petrol (petrol in accordance
with PN-EN228 42.3–43.5 MJ/kg; ethanol 26.8 MJ/kg). The cetane number of ethanol is 8.
The properties of methanol are similar to ethanol, but it has an even lower calorific value
(20.1 MJ/kg) and is a strong poison [64–67].

An alternative fuel for powering motor vehicles that is the subject of much research
is dimethyl ether (DME) [68,69]. This fuel can be produced from many sources such as
natural gas, coal, and biomass. DME is characterized by a very high cetane number. The
physicochemical properties of DME are similar to LPG.

Dedicated tools for performing computer simulation analysis of the amount of pollu-
tants emitted from motor vehicles have been in the works for many years.
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An example of such a tool is VECTO (Vehicle Energy Consumption Calculation
Tool) [70,71]. A simulation tool is used to calculate the amount of fuel consumed and
the carbon dioxide emitted by new trucks.

The tool to run a simulation showing what results a given vehicle with WLTP testing
would achieve in the NEDC test was CO2MPAS (CO2 Model for Passenger and commercial
vehicles Simulation) [72,73].

A literature review finds tools for analyzing bus fleet emissions in an urban area [74].
There is a lack of tools, developed in an open source environment, that can be adapted

to the operational parameters of a large set of vehicles that represent a given car market.
The aim of the study was to build a computer tool for modelling selected driving tests,

fuel and biofuel consumption, and CO2 emissivity analysis. The developed tool, using
tests on a chassis dynamometer and unit fuel consumption and the resistance of working
elements, is dedicated to vehicles with spark-ignition engines. In order to achieve the aim
of the study, the OpenModelica environment was used.

2. Materials and Methods
2.1. Basic Information

The list below contains a set of the most important quantities used in the calculations
with the appropriate symbols and units (Table 1).

Table 1. Abbreviations, symbols and units used in the paper.

Parameter Description Unit

Treg Instantaneous torque value calculated in the engine master PID controller N·m
Tengloss

(
ωeng

)
Instantaneous torque function of the mechanical losses of the test engine N·m

Ieng Engine moment of inertia for rotary motion kg·m2

ωeng Engine instantaneous crankshaft angular velocity rad/s
vveh Instantaneous vehicle velocity for road test m/s
vset Instantaneous set vehicle velocity in road test m/s

Tengmax
(
ωeng

) Instantaneous value of the maximum torque at the engine crankshaft as a
function of the engine angular velocity N·m

PID(vset − vveh) PID controller function value N·m
ωeng Instantaneous angular velocity of the engine crankshaft rad/s
ωtcin Instantaneous angular velocity at the torque amplifier input rad/s
ωtcout Instantaneous angular velocity at the torque amplifier output rad/s

K(v) K-factor function (torque amplifier input velocity divided by torque
amplifier input root) rpm/(N·m)1/2

M(v) Torque amplifier conversion factor function -
Ttcout Instantaneous torque value calculated by the torque amplifier N·m

Tgbloss

(
ωtcout, rgb

)
Instantaneous torque value of mechanical losses in transmission N·m

rgb Instantaneous gearbox ratio value -
Rdiv Value of differential ratio -

Tbrakemax Maximum braking torque value for the vehicle N·m
A Load coefficient N
B Load coefficient N/(km/h)
C Load coefficient N/(km/h)2

Tdtout Instantaneous value of the torque produced by the drive train N·m
Tbrake Instantaneous brake torque value N·m

MfuelEPA
(
Teng,ωeng

)
Fuel flow value function (based on published EPA data) kg/s

Teng Torque produced at engine crankshaft N·m
Calfuel Calorific value of fuel used in actual EPA tests J/kg
Cali fuel Calorific value of another fuel J/kg

Ci Mass fraction of carbon i in this fuel kg/kg
ṁi fueli Mass flow i of this fuel in the mixture kg/s

The development of the simulation model for driving tests was based on the testing of
the Toyota Camry LE vehicle and is published in [75].
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The most important technical parameters of the vehicle and the necessary coefficients
to be used in the driving tests are presented below in Table 2.

Table 2. Parameters of the vehicle used in the research for driving tests [60,76].

Parameter Description Unit

Vehicle (MY, make, model) 2018 Toyota Camry LE -
Equivalent test mass 1644 kg

Rated power (declared) 151@ 6600 min−1 kW
Rated Torque 249 Nm @ 4800 min−1 N·m

Emission Certification Federal Tier 3 Bin 30/California LEV-III
SULEV30 -

Fuel consumption
(city/highway/combined) 62.5/44.9/54.7 g/km

CO2 emissions
(city/highway/combined) 190.1/136.5/166.4 g/km

Rated engine speed (declared) 7000 min−1

Idling engine speed (declared) 800 min−1

Max vehicle speed(declared) 240 km/h
Number of gears 8 -

Ratio gear 1 5.250 -
Ratio gear 2 3.028 -
Ratio gear 3 1.950 -
Ratio gear 4 1.456 -
Ratio gear 5 1.220 -
Ratio gear 6 1.000 -
Ratio gear 7 0.808 -
Ratio gear 8 0.673 -

Differential ratio [-] 2.802 -
Target Coeff f0 113.82 N
Target Coeff f1 0.5442 N/(km/h)
Target Coeff f2 0.02811 N/(km/h) 2

The simulation process used test results for actual tests conducted by the EPA on a
selected vehicle:

• UDDS—The EPA Urban Dynamometer Driving Schedule [77,78];
• HWFET—The Highway Fuel Economy Driving Schedule [77,79];
• US 06—The high acceleration aggressive driving schedule, which is often identified as

the “Supplemental FTP” driving schedule [77,80];
• LA92—The LA-92 is for Class 3 Heavy-Duty vehicles, the first 1435 s are the Hot LA-92

driving schedule [77,81];
• NEDC—New European Driving Cycle (NEDC) [82,83];
• WLTC 3b random—WLTP for Class 3 vehicles with an engine power above

34 W/kg [83–86].

2.2. Building a Quantitative Model

The simulation of the running tests, whose general scheme is shown in Figure 1,
was developed in the OpenModelica numerical environment using the following libraries:
“Modelica Standard”, “Modelica, Mechanics, Rotational”, and “Modelica, Mechanics, Trans-
lational”. The simulation consisted of modules that performed calculations corresponding
to real assemblies in the vehicle. The module “test drive generator” during the start of the
simulation reads from the mass memory prepared files containing the data of the driving
test. Then, the signals—instantaneous set vehicle speed vset and instantaneous value of
gear ratio rgb—are transferred to other modules. The “engine” module is responsible for
the functionality of the internal combustion engine with the PID controller system. The PID
controller (proportional-integral-derivative) calculates the value of the torque at the engine
crankshaft Teng on the basis of the set value of the vehicle speed and the vehicle speed
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resulting from the simulation run. Then, the drive is transferred to the “torque converter”
module, where the output torque value Ttcout is amplified and the output speedωtcout on
the torque amplifier shaft is decreased in relation to the input values. In the “drivetrain”
module, the values of torque tdtout and speed ωdtout on the output shaft are calculated
using the instantaneous values of gear ratio rgb. The “vehicle” module, using the supplied
drive from the “drivetrain” module, calculates the instantaneous value of the vehicle speed
vveh. In this module, a PID controller is used, which makes it possible, on the basis of the
signal of the set speed of the vehicle vset and the actual speed of the vehicle resulting from
the simulation work, to perform the braking process. The module “fuel consumption, CO2
emissions” is responsible for calculating the value of fuel consumption and CO2 emissivity
during the simulation.
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Figure 1. General diagram of the developed driving test simulation for the 2018 Toyota Camry
LE vehicle.

In the “engine” module, the instantaneous value of the torque produced by the engine
at crankshaft Teng is calculated from the relationship shown below:

Teng = Treg − Tengloss
(
ωeng

)
− Ieng ·

dωeng

dt
(1)

Figure 2a shows a diagram of torque losses Tengloss(ωeng) as a function of the angular
velocity of the engine crankshaft, which were used to calculate the torque generated by the
engine on the crankshaft [75].

A PID controller algorithm was used to calculate the instantaneous torque Teng of
the engine in the simulation. Based on the difference between the set instantaneous
vehicle speed in the test vset and the actual instantaneous vehicle speed vveh during the
simulation run, it calculates the necessary torque value Treg to obtain the minimum control
error. In order to make the simulation as consistent as possible with real conditions, the
maximum torque values of the controller were limited according to the characteristics of
the maximum torque as a function of the angular velocity of the crankshaft of the engine
under consideration Tengmax

(
ωeng

)
. The graph showing the variation of the instantaneous

values of the maximum torque at the engine crankshaft as a function of the crankshaft
angular velocity is shown in Figure 2b [75].



Energies 2022, 15, 995 8 of 28Energies 2022, 15, 995 8 of 28 
 

 

  
(a) (b) 

Figure 2. Waveform of instantaneous values [75]: (a) torque losses as a function of engine crankshaft 
angular velocity of the 2018 Toyota Camry LE vehicle; (b) maximum engine crankshaft torque as a 
function of engine angular velocity of the 2018 Toyota Camry LE vehicle. 

The relationship below shows how the torque produced by the PID controller is cal-
culated in the simulation: 

T୰ୣ୥ ൌ ቐ Tୣ ୬୥୫ୟ୶൫ωୣ୬୥൯, PID(vୱୣ୲ − v୴ୣ୦) ൐ Tୣ ୬୥୫ୟ୶൫ωୣ୬୥൯             PID(vୱୣ୲ − v୴ୣ୦), 0 ൑ PID(vୱୣ୲ − v୴ୣ୦) ൑ Tୣ ୬୥୫ୟ୶൫ωୣ୬୥൯ 0 N ⋅ m, PID(vୱୣ୲ − v୴ୣ୦) ൏ 0                                                       ቑ ሾN ⋅ mሿ (2) 

Figure 3 shows the block diagram of the developed simulation responsible for calcu-
lating the instantaneous value of the torque produced at the engine crankshaft. 

 
Figure 3. Diagram of the “engine” module in the developed test simulation. 

In the “torque converter” module, the torque produced by the engine is amplified. 
Based on the signals ω୲ୡ୭୳୲ and ω୲ୡ୧୬, the “speed ratio” ν is calculated. Then, the value 
of the torque at the input of the torque amplifier T୲ୡ୧୬ and the value of the torque pro-
duced at the output shaft of the torque amplifier T୲ୡ୭୳୲ are calculated. If the “speed ratio” ν reaches a value above 0.9, the torque amplifier is blocked and the input torque is equal 
to the output torque. In the simulation, elements implementing the calculations according 
to the relationships below are used, as follows: ν ൌ ω୲ୡ୭୳୲ω୲ୡ୧୬ .  μ ൌ Μ(ν), T୲ୡ୧୬ ൌ ൬30 ⋅ ω୲ୡ୧୬π ⋅ K(ν) ൰ଶ ሾN ⋅ mሿ (3) 

T୲ୡ୭୳୲ ൌ ൜μ ⋅ T୲ୡ୧୬, ν ൏ 0.9T୲ୡ୧୬, ν ൒ 0.9      ൠ ሾN ⋅ mሿ (4) 

20.0

30.0

40.0

50.0

0 200 400 600

To
rq

ue
 lo

ss
 [N

⋅m]

Angular velocity [rad/s]

0

50

100

150

200

250

0 200 400 600

To
rq

ue
 [N

⋅m]

Angular velocity [rad/s]

Figure 2. Waveform of instantaneous values [75]: (a) torque losses as a function of engine crankshaft
angular velocity of the 2018 Toyota Camry LE vehicle; (b) maximum engine crankshaft torque as a
function of engine angular velocity of the 2018 Toyota Camry LE vehicle.

The relationship below shows how the torque produced by the PID controller is
calculated in the simulation:

Treg =


Tengmax

(
ωeng

)
, PID(vset − vveh) > Tengmax

(
ωeng

)
PID(vset − vveh), 0 ≤ PID(vset − vveh) ≤ Tengmax

(
ωeng

)
0 N · m, PID(vset − vveh) < 0

 [N · m] (2)

Figure 3 shows the block diagram of the developed simulation responsible for calcu-
lating the instantaneous value of the torque produced at the engine crankshaft.
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Figure 3. Diagram of the “engine” module in the developed test simulation.

In the “torque converter” module, the torque produced by the engine is amplified.
Based on the signalsωtcout andωtcin, the “speed ratio” v is calculated. Then, the value of
the torque at the input of the torque amplifier Ttcin and the value of the torque produced at
the output shaft of the torque amplifier Ttcout are calculated. If the “speed ratio” v reaches
a value above 0.9, the torque amplifier is blocked and the input torque is equal to the
output torque. In the simulation, elements implementing the calculations according to the
relationships below are used, as follows:

v =
ωtcout

ωtcin
. µ = M(v), Ttcin =

(
30 ·ωtcin

π · K(v)

)2

[N · m] (3)
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Ttcout =

{
µ · Ttcin, v < 0.9
Ttcin, v ≥ 0.9

}
[N · m] (4)

In order to develop the torque amplifier simulation module, it was necessary to
introduce the basic data of the real assembly into the environment. The graphs below
(Figure 4a,b) show the waveforms used in the developed simulation of the values of the
K-factor and the conversion ratio µ as a function of the speed ratio ν.
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Figure 4. Waveform of values [74]: (a) K-factor as a function of speed ratio ν; (b) conversion ratio µ
as a function of speed ratio ν.

Figure 5 shows a diagram of the torque amplifier function simulation module and the
calculation of the output torque value Ttcout passed on to further parts of the simulation.
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Figure 5. Diagram of the “torque converter” module in the developed test simulation.

The “drivetrain” module contains simulations of the functionality of the gearbox and
the differential in the tested vehicle. In this case, based on the torque delivered from the
torque amplifier Ttcout, the instantaneous values of the gearbox ratio rgb, and the constant
value of the differential ratio Rdiv, the calculation of the torque Tdtout transmitted to the
wheels of the vehicle is carried out. The relationships enabling these calculations are
presented below.

Tdtout =
(

Ttcout − Tgbloss

(
Ttcout.rgb

))
· rgb · Rdiv[N · m] (5)
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ωdtout =
ωtcout

rgb · rdiv

[
rad

s

]
(6)

In this module, the calculation of the output torque Tdtout takes into account the
losses occurring in the transmission system. These losses in the form of the waveform of
transmission torque variations as a function of shaft torque input and the value of the ratio
Tgbloss

(
Ttcout, rgb

)
are shown in Figure 6.
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Figure 6. Waveform of transmission torque loss variations as a function of the input shaft torque and
gear ratio value [75].

Figure 7 shows the module responsible for the functionality of the gearbox and
the differential.
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Figure 7. Diagram of the “drivetrain” module in the developed test simulation.

In the “vehicle” module, the PID controller algorithm was used to calculate the
instantaneous values of the braking force in the vehicle. Based on the calculated difference
between the instantaneous vehicle speed vveh and the test set speed vset (the order has been
changed because the PID controller calculates the braking force only if the vehicle speed is
higher than the preset speed), the value of the vehicle braking torque Tbrake is calculated
according to the relation below:

Tbrake =


Tbrakemax, PID(vveh − vset) > Tbrakemax
PID(vveh − vset), 0 ≤ PID(vveh − vset) ≤ Tbrakemax
0 N · m, PID(vveh − vset) < 0

 [N · m] (7)
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In this module, the instantaneous value of the vehicle speed vveh using the values of
the vehicle mass, the torque transmitted to the wheels from the propulsion system Tdtout,
the torque generated by the braking system Tbrake, and the loads resulting from the driving
test assumptions (A, B, and C) are based on the relationship below:

M
dvveh

dt
=

Tdtout − Tbrake
Rwheel

− A − B · vveh − C · vveh
2 [N] (8)

The diagram of the simulation module performing the instantaneous vehicle speed in
the test is shown in Figure 8.
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Based on the published data on brake specific fuel consumption (BSFC) in the “fuel con-
sumption CO2 emissions” module for the tested vehicle, the waveform of the instantaneous
values of the fuel stream consumed by the engine as a function of the angular velocity of the
engine crankshaft and the torque produced at the engine crankshaft MfuelEPA

(
Teng, ωeng

)
was prepared, which is presented in Figure 9. In the described module, during the sim-
ulation, on the basis of the instantaneous values of the crankshaft angular velocity ωeng
and the torque produced at the engine crankshaft Teng, the instantaneous value of the fuel
stream consumed ṁfuel is calculated, and the total value of the fuel consumed mfuel is
calculated according to the following relations:

ṁfuel = MfuelEPA
(
Teng.ωeng

)[kg
s

]
(9)

mfuel =
∫ t

0
ṁfueldt [kg] (10)

In the case of using fuel other than petrol 95 in this module, the value of instantaneous
stream of a given fuel ṁi fuel is calculated using the values of the calorific value of the
reference fuel Calfuel and the calorific value of other fuel Cali fuel entered in the simulation
on the basis of the relation:

ṁi fuel = ṁfuel ·
Calfuel
Cali fuel

[kg/s)] (11)
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Figure 9. Waveform of the instantaneous values of the fuel stream consumed by the engine as a
function of the engine crankshaft angular velocity and torque generated at the engine crankshaft [75].

Table 3 below shows the basic parameters of the fuels used in the simulation.

Table 3. Basic parameters of fuels used in the simulation (Fuel used in EPA tests) [87–91].

Parameter Petrol 95 Ethanol Methanol DME CNG LPG

Calorific [MJ/kg] 43.5 26.7 19.93 28.4 50.0 46.3
Carbon [%] 86.4 52.1 37.5 52.1 74.9 81.7

Hydrogen [%] 13.6 13.1 12.6 13.1 25.1 18.3
Oxygen [%] 0.0 34.7 49.9 34.7 0.0 0.0

The instantaneous value of the carbon dioxide emissivity ṁi CO2 is then calculated
from the instantaneous value of the fuel stream ṁi fuel and the mass fraction of carbon in the
fuel Ci, and the total carbon dioxide emission mi CO2 is calculated using the relationship:

ṁi CO2 = 3.664·ṁi fuel·Ci [kg/s] (12)

mi CO2 =
∫ t

0
ṁi CO2dt [kg] (13)

2.3. Verification of the Developed Simulation

The developed simulation of selected driving tests for the 2018 Toyota Camry LE
vehicle was verified for correct operation and by comparing published data of actual
driving tests performed by the EPA and the results obtained from the simulation. Table 4
shows the final fuel consumption values for the real tests performed (EPA) and those
obtained from the developed simulation. In addition, in the table there are results for the
simulation with the data prepared by combining all the considered tests into one input file.
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Table 4. Summary of final fuel consumption values for the real tests carried out (EPA) and obtained
from the developed simulation of the 2018 Toyota Camry LE vehicle for selected road tests.

Name Real Test (EPA)
Fuel Mass [kg]

Simulation
Fuel Mass [kg]

Absolute Relative
Error [-]

UDDS 0.558 0.587 5.156%
HWFET 0.522 0.506 3.018%

US06 0.639 0.621 2.793%
LA92 0.815 0.807 1.018%
WLTC 1.039 1.034 0.440%
NEDC 0.490 0.508 3.575%

All tests 4.063 4.063 0.005%

3. Results
3.1. Results of the Simulation Work for the Introduced Driving Tests

The energy parameters obtained from the developed computer tool built in Open-
Modelica for the 2018 Toyota Camry LE vehicle as a function of the selected road tests are
shown in Figure 10 and Table 5.
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from simulation of selected road tests; (k) power lost by vehicle rolling resistance forces obtained 
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3.2. Simulation Results of Fuel Stream and Final Fuel Consumption for Selected Driving Tests 
and Fuels 

The vehicle engine fuel stream and final fuel consumption values obtained from the 
developed computer tool built in OpenModelica for the 2018 Toyota Camry LE vehicle as 
a function of selected road tests are presented in Figure 11 and Tables 6–8. 
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Figure 10. 2018 Toyota Camry LE—waveforms of instantaneous values: (a) vehicle speed obtained
from the simulation of selected road tests; (b) distance travelled by the vehicle obtained from
simulation of selected road tests; (c) angular velocity of the crankshaft of the vehicle engine obtained
from simulation of selected road tests; (d) torque produced at the crankshaft by the vehicle engine
obtained from simulation of selected road tests; (e) power generated by the engine obtained from
simulation of selected road tests; (f) mechanical energy generated by the vehicle engine obtained from
simulation of selected road tests; (g) power lost in the vehicle drivetrain obtained from simulation of
selected road tests; (h) energy lost in the vehicle transmission obtained from simulation of selected
road tests; (i) power lost in the braking system of the 2018 Toyota Camry LE vehicle obtained
from simulation of selected road tests; (j) energy lost in the vehicle braking system obtained from
simulation of selected road tests; (k) power lost by vehicle rolling resistance forces obtained from
simulation of selected road tests; (l) energy lost by vehicle rolling resistance forces obtained from
simulation of selected road tests; (m) power delivered in the vehicle fuel stream obtained from
simulation of selected road tests; (n) energy delivered in the fuel stream of the 2018 Toyota Camry LE
vehicle obtained from simulation of selected road tests.

Table 5. Summary of the energy parameters obtained from the simulations of the 2018 Toyota Camry
LE vehicle for selected road tests.

Name Time [s] Engine
Energy [MJ]

Loss Energy
[MJ]

Brake
Energy [MJ]

Road Loss
Energy [MJ]

Fuel Enegy
[MJ] Efficiency [-]

UDDS 1353 8.29 4.66 2.20 1.43 25.53 0.142
HWFET 765 7.92 3.32 0.67 3.93 22.02 0.209

US06 595 10.37 3.65 2.33 4.38 27.00 0.249
LA92 1419 12.41 5.68 3.82 2.91 35.08 0.192
WLTC 1809 15.91 7.25 3.11 5.54 44.99 0.192
NEDC 1175 7.21 3.93 1.33 1.95 22.08 0.149

All tests 1175 7.21 3.93 1.33 1.95 22.08 0.149

3.2. Simulation Results of Fuel Stream and Final Fuel Consumption for Selected Driving Tests
and Fuels

The vehicle engine fuel stream and final fuel consumption values obtained from the
developed computer tool built in OpenModelica for the 2018 Toyota Camry LE vehicle as a
function of selected road tests are presented in Figure 11 and Tables 6–8.
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Figure 11. 2018 Toyota Camry LE—waveforms of instantaneous values: (a) vehicle engine fuel stream
obtained from UDDS road test simulation for selected fuels; (b) fuel consumption obtained from
UDDS road test simulation for selected fuels; (c) vehicle engine fuel stream obtained from HWFET
road test simulation for selected fuels; (d) vehicle fuel consumption obtained from HWFET road test
simulation for selected fuels; (e) vehicle engine fuel stream obtained from US06 road test simulation
for selected fuels; (f) vehicle fuel consumption obtained from US06 road test simulation for selected
fuels; (g) the vehicle engine fuel flow obtained from LA92 road test simulation for selected fuels;
(h) vehicle fuel consumption obtained from LA92 road test simulation for selected fuels; (i) the
vehicle engine fuel flow obtained from WLTC road test simulation for selected fuels; (j) vehicle fuel
consumption obtained from simulation of WLTC road test for selected fuels; (k) vehicle engine fuel
flow obtained from simulation of NEDC road test for selected fuels; (l) vehicle fuel consumption
obtained from simulation of NEDC road test for selected fuels.

Table 6. Summary of the final consumption of the tested fuels obtained from simulations of the 2018
Toyota Camry LE vehicle for selected road tests.

Name Petrol [kg] Ethanol
[kg]

Methanol
[kg] DME [kg] CNG [kg] LPG

[kg]

UDDS 0.587 0.956 1.281 0.899 0.511 0.551
HWFET 0.506 0.825 1.105 0.775 0.440 0.476

US06 0.621 1.011 1.355 0.951 0.540 0.583
LA92 0.807 1.314 1.760 1.235 0.702 0.758
WLTC 1.034 1.685 2.257 1.584 0.900 0.972
NEDC 0.508 0.827 1.108 0.778 0.442 0.477
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Table 7. Summary of the final consumption of tested fuels per kilometer travelled obtained from
simulations of the 2018 Toyota Camry LE vehicle for selected road tests.

Name Petrol
[g/km]

Ethanol
[g/km]

Methanol
[g/km]

DME
[g/km]

CNG
[g/km]

LPG
[g/km]

UDDS 48.85 79.59 106.63 74.83 42.50 45.90
HWFET 30.64 49.91 66.87 46.93 26.65 28.78

US06 48.08 78.33 104.94 73.64 41.83 45.17
LA92 50.85 82.85 110.99 77.89 44.24 47.78
WLTC 44.39 72.32 96.89 67.99 38.62 41.71
NEDC 45.95 74.86 100.28 70.38 39.97 43.17

Table 8. Summary of the final consumption of tested fuels per 1 MJ obtained from the simulations of
the 2018 Toyota Camry LE vehicle for selected road tests.

Name Petrol
[g/MJ]

Ethanol
[g/MJ]

Methanol
[g/MJ]

DME
[g/MJ]

CNG
[g/MJ]

LPG
[g/MJ]

UDDS 161.5 263.2 352.5 247.4 140.5 151.8
HWFET 110.1 179.3 240.2 168.6 95.8 103.4

US06 92.4 150.6 201.8 141.6 80.4 86.9
LA92 119.8 195.2 261.5 183.5 104.2 112.6
WLTC 119.5 194.6 260.7 183.0 103.9 112.2
NEDC 154.7 252.0 337.6 236.9 134.6 145.3

Considering the final consumption of the tested fuels, the highest values were observed
for the WLTC driving test. For the fuels used for this test, CNG fuel had the lowest
consumption, while methanol had the highest consumption (Table 6). When analyzing the
final consumption of the tested fuels per kilometer traveled, the LA92 test had the highest
values (Table 7). It is noted in Table 8 that the final consumptions of the tested fuels per
1 MJ were the highest for UDDS.

3.3. Results of Simulation of Carbon Dioxide Stream and Emission for Selected Driving Tests
and Fuels

The CO2 emission values obtained from the developed computer tool built in Open-
Modelica for the 2018 Toyota Camry LE vehicle as a function of selected road tests are
presented in Figure 12 and Tables 9–11.
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Figure 12. 2018 Toyota Camry LE—waveforms of instantaneous values: (a) vehicle engine carbon 
dioxide emission stream obtained from UDDS road test simulation for selected fuels; (b) vehicle 
engine carbon dioxide emission stream obtained from UDDS road test simulation for selected fuels; 
(c) vehicle engine carbon dioxide emission stream obtained from HWFET road test simulation for 
selected fuels; (d) vehicle engine carbon dioxide emissions obtained from HWFET road test simula-
tion for selected fuels; (e) vehicle engine carbon dioxide emissions obtained from US06 road test 
simulation for selected fuels; (f) vehicle engine carbon dioxide emissions obtained from US06 road 
test simulation for selected fuels; (g) vehicle engine carbon dioxide emissions obtained from LA92 
road test simulation for selected fuels; (h) vehicle engine carbon dioxide emissions obtained from 
LA92 road test simulation for selected fuels; (i) vehicle engine carbon dioxide emissions obtained 
from WLTC road test simulation for selected fuels; (j) vehicle engine carbon dioxide emissions ob-
tained from WLTC road test simulation for selected fuels; (k) vehicle engine carbon dioxide emis-
sions obtained from NEDC road test simulation for selected fuels; (l) vehicle engine carbon dioxide 
emissions obtained from NEDC road test simulation for selected fuels. 
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Figure 12. 2018 Toyota Camry LE—waveforms of instantaneous values: (a) vehicle engine carbon
dioxide emission stream obtained from UDDS road test simulation for selected fuels; (b) vehicle
engine carbon dioxide emission stream obtained from UDDS road test simulation for selected fuels;
(c) vehicle engine carbon dioxide emission stream obtained from HWFET road test simulation
for selected fuels; (d) vehicle engine carbon dioxide emissions obtained from HWFET road test
simulation for selected fuels; (e) vehicle engine carbon dioxide emissions obtained from US06 road
test simulation for selected fuels; (f) vehicle engine carbon dioxide emissions obtained from US06 road
test simulation for selected fuels; (g) vehicle engine carbon dioxide emissions obtained from LA92
road test simulation for selected fuels; (h) vehicle engine carbon dioxide emissions obtained from
LA92 road test simulation for selected fuels; (i) vehicle engine carbon dioxide emissions obtained
from WLTC road test simulation for selected fuels; (j) vehicle engine carbon dioxide emissions
obtained from WLTC road test simulation for selected fuels; (k) vehicle engine carbon dioxide
emissions obtained from NEDC road test simulation for selected fuels; (l) vehicle engine carbon
dioxide emissions obtained from NEDC road test simulation for selected fuels.

Table 9. Summary of the final CO2 emissions obtained from the 2018 Toyota Camry LE vehicle
simulation for selected road tests.

Name Petrol [kg] Ethanol [kg] Methanol [kg] DME [kg] CNG [kg] LPG [kg]

UDDS 1.858 1.825 1.760 1.716 1.401 1.650
HWFET 1.602 1.574 1.518 1.480 1.208 1.423

US06 1.965 1.930 1.861 1.815 1.482 1.746
LA92 2.553 2.508 2.419 2.358 1.926 2.268
WLTC 3.274 3.217 3.102 3.024 2.469 2.909
NEDC 1.607 1.579 1.522 1.484 1.212 1.428

Table 10. Summary of the final CO2 emissions per kilometer travelled obtained from the simulations
of the 2018 Toyota Camry LE vehicle for selected road tests.

Name Petrol
[g/km]

Ethanol
[g/km]

Methanol
[g/km]

DME
[g/km]

CNG
[g/km]

LPG
[g/km]

UDDS 154.7 151.9 146.5 142.8 116.6 137.4
HWFET 97.0 95.3 91.9 89.6 73.1 86.2

US06 152.2 149.5 144.2 140.6 114.8 135.2
LA92 161.0 158.1 152.5 148.7 121.4 143.0
WLTC 140.5 138.1 133.1 129.8 106.0 124.8
NEDC 145.5 142.9 137.8 134.3 109.7 129.2
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Table 11. Summary of the final CO2 emissions per 1 MJ obtained from the simulations of the 2018
Toyota Camry LE vehicle for selected road tests.

Name Petrol
[g/MJ]

Ethanol
[g/MJ]

Methanol
[g/MJ]

DME
[g/MJ]

CNG
[g/MJ]

LPG
[g/MJ]

UDDS 511.3 502.4 484.4 472.3 385.6 454.3
HWFET 348.4 342.3 330.1 321.8 262.8 309.6

US06 292.6 287.5 277.2 270.3 220.7 260.0
LA92 379.3 372.6 359.3 350.3 286.1 337.0
WLTC 378.2 371.5 358.2 349.3 285.2 336.0
NEDC 489.7 481.1 463.9 452.3 369.3 435.1

Analyzing the final CO2 emissions summary, the highest values were obtained for the
WLTC driving test. For the final CO2 emissions per kilometer traveled, the highest values
were obtained for the LA92 driving test. The final CO2 emissions per MJ were lowest for
the US06 driving test.

4. Discussion

The developed computer tool can enable the construction of road traffic simulators.
The development of the proposed solution was based on the OpenModelica open source
software and the methodology used to build quantitative models of fuel consumption and
CO2 emissions of the selected vehicle as a function of engine load and vehicle speed.

The proposed simulation tool can be tailored to the operating parameters of a large set
of vehicles representing a given automotive market and consequently lead to more accurate
traffic emissions values than the adopted environmental estimates.

The calculation of instantaneous fuel mass demand uses the EPA’s published BTE
characteristics for petrol 95. In the simulation model, it is assumed that for a certain point
on the BTE characteristic (torque produced by the engine and engine operating speed), the
algorithm calculates the required value of the instantaneous fuel flux based on its calorific
value in such a way to provide the required energy demand. The efficiency of converting
the energy contained in the fuel into mechanical work at a design point is the same for all
fuels. No precise information was found in the literature on how changing the fuel mass
affects the instantaneous efficiency of the engine at a given operating point.

Figure 13 presents the results of the final consumption of tested fuels per one kilometer
of travelled road for selected road tests. For petrol 95, the minimum value was obtained
at the level of 30.64 g/km for the HWFET driving test, while the maximum value was
obtained for LA92 (110.99 g/km) for methanol.
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Figure 13. Summary of the final consumption of tested fuels per kilometer of travelled road obtained
from the simulation of the 2018 Toyota Camry LE vehicle for selected road tests.
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Figure 14 presents results of the simulator operation for the fuels under consideration
and the driving tests in the form of the parameter of the final consumption of the tested
fuels per 1 MJ of travelled road in the executed test. For CNG, the minimum value was
achieved at the level of 80.4 g/MJ for the US 06 driving test, while the maximum value was
obtained for methanol in the UDDS test (352.5 g/MJ).
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Figure 14. Summary of the final consumption of tested fuels per 1 MJ of travelled road obtained from
simulations of the 2018 Toyota Camry LE vehicle for selected road tests.

Below, in Figure 15, the data obtained from the simulations of driving tests with
biofuels in the form of the parameter of the final CO2 emission per kilometer travelled are
summarized. For CNG, the minimum value was achieved at level of 97.7 g/km for the
HWFET driving test, while the maximum value was obtained for LA92 (162.1 g/km).
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Figure 15. Summary of final CO2 emissions per kilometer travelled obtained from the simulation of
the 2018 Toyota Camry LE vehicle for selected road tests.

Figure 16 summarizes the simulator results for the considered fuels and driving tests
in the form of the parameter of final CO2 emission per 1 MJ. For petrol, the minimum value
was achieved at the level of 338.7 g/MJ for the US 06 driving test, while the maximum
value was obtained for UDDS (591.8 g/MJ).
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Figure 16. Summary of the final CO2 emissions per MJ obtained from simulations of the 2018 Toyota
Camry LE vehicle for selected road tests.

In the developed simulation model of CO2 emissions in road tests, the BFC (specific
fuel consumption) published by EPA data was based on engine testing for this engine
model powered by petrol 95. In the further procedure, the BFC characteristics (EPA) were
converted into fuel flux (kg/s), the values of which are presented in Figure 9, and were used
in the simulation for the driving tests for fuel petrol 95. Then, for fuels other than gasoline
95 during the simulation operation, it was assumed that at a given instantaneous operation
point of the engine (instantaneous torque on the crankshaft produced by the engine and the
instantaneous value of the angular velocity of the crankshaft), an instantaneous energy flux
of the value should be provided equal to fueling the engine with 95 petrol. The values of the
consumption streams for fuels other than 95 gasoline have been computed on the basis of
dependence (11). Big differences in the mass consumption of different fuels result from the
large differences in the calorific value considered fuels (minimum methanol 19.93 MJ/kg,
maximum CNG 50.0 MJ/kg).

In the subsequent steps of the simulation basing on the mass fluxes obtained for the
considered fuels, the CO2 emissions were calculated. The final values of the CO2 emission
obtained from the simulation are shown in Figure 15. In turn, CO2 emissions per kilometer
of distance traveled by the vehicle showed much smaller differences. They confirmed the
correctness of the calculations used in the developed simulation model.

5. Conclusions

The manuscript analyzes the possibility of using computer tools to simulate driving
tests, the consumption of selected fuels and biofuels, and CO2 emissivity. The analysis
carried out was based on test results for the 2018 Toyota Camry LE vehicle obtained using
a chassis dynamometer.

• The study analyzed six driving tests, differing in the speeds and accelerations achieved
by the vehicle, the duration of the test, and the inclusion of vehicle accessories (e.g.,
air conditioning).

• Comparing the fuel consumption and CO2 emission results from the driving test
simulations and the available manufacturer’s values, it can be concluded that similar
results were obtained for the NEDC driving test. This confirms that the vehicle
in question has been approved under the NEDC test. Other tests were developed
later and feature more dynamic load changes and the parameter of average vehicle
engine load.

• Analyzing the final fuel consumption values for the real tests performed (EPA) and
those obtained from the developed simulation of the 2018 Toyota Camry LE vehicle
for selected road tests, the highest relative error occurred for the HWFET (3.018%).
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• The highest energy efficiencies obtained from the 2018 Toyota Camry LE vehicle
simulation for selected road tests were achieved for the US06 (0.249).

• Analyzing the parameter of the final consumption of tested fuels obtained from
the simulations of the 2018 Toyota Camry LE vehicle for selected road tests, the
highest values were achieved for the methanol fuel, for which the minimum value was
achieved at the level of 1.105 kg for the HWFET driving test, while the maximum value
was obtained in the WLTC test (2.257 kg). The lowest values of final consumption
of tested fuels in the case of all of the analyzed driving tests were observed for the
CNG fuel.

• Analyzing the parameter of the final consumption of tested fuels per kilometer trav-
elled obtained from the simulations of the 2018 Toyota Camry LE vehicle for all of the
analyzed driving tests, the lowest values were noticed for petrol 95 and CNG fuels.
For the HWFET test, a value of 30.64 g/km was achieved for petrol 95 and 26.65 g/km
for CNG. For WLTC, the final consumption of petrol 95 was 44.39 g/km and for CNG
was 38.62 g/km.

• Analyzing the final consumption of tested fuels per 1 MJ obtained from the simu-
lations of the 2018 Toyota Camry LE vehicle for the selected road tests, the highest
consumption was noticed for methanol (in the UDDS test it was 52.5 g/MJ, and in the
LA92 test it was 261.5 g/MJ).

• Analyzing the final CO2 emissions obtained from the simulations of the 2018 Toyota
Camry LE vehicle for the selected road tests, the highest values for all tested fuels
were noticed for the WLTC test (petrol 3.274 kg, ethanol 3.217 kg, methanol 3.102 kg,
DME 3.024 kg, LNG 2.909 kg, and CNG 2.469 kg).

• Considering the values of the final CO2 emissions per kilometer travelled obtained
from the simulations of the 2018 Toyota Camry LE vehicle for the selected road tests,
the highest value was recorded for petrol in the LA92 test with 161.0 g/km and the
lowest for CNG in the HWFET test with 73.1 g/km.

• For the parameter of carbon dioxide emission per unit of energy produced (1 MJ),
maximum values were obtained for UDDS petrol (511.3 g/MJ), ethanol (502.4 g/MJ),
methanol (484.4 g/MJ), DME (472.3 g/kMJ), and CNG (385.6 g/MJ).

• The developed computer tool using OpenModelica computer software can support
the development of a method to identify selected aspects of operating conditions and
can be used to assess the energy efficiency of automotive vehicles with spark-ignition
engines fueled with fuels and biofuels.

• Due to its open source code, Open Modelica has a lot of potential for modifications in
the library package to extend its functionality. Commercial packages are closed and
have no such modification capabilities.
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