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Abstract: Off-grid technologies, such as solar home systems (SHS), offer the opportunity to alleviate
global energy poverty, providing a cost-effective alternative to an electricity grid connection. However,
there is a paucity of high-quality SHS electricity usage data and thus a limited understanding of
consumers’ past and future usage patterns. This study addresses this gap by providing a rare large-
scale analysis of real-time energy consumption data for SHS customers (n = 63,299) in Rwanda. Our
results show that 70% of SHS users’ electricity usage decreased a year after their SHS was installed.
This paper is novel in its application of a three-dimensional convolutional neural network (CNN)
architecture for electricity load forecasting using time series data. It also marks the first time a
CNN was used to predict SHS customers’ electricity consumption. The model forecasts individual
households’ usage 24 h and seven days ahead, as well as an average week across the next three
months. The last scenario derived the best performance with a mean squared error of 0.369. SHS
companies could use these predictions to offer a tailored service to customers, including providing
feedback information on their likely future usage and expenditure. The CNN could also aid load
balancing for SHS based microgrids.

Keywords: convolutional neural network; CNN; load forecasting; solar home system; SHS; energy access

1. Introduction

Globally, 770 million people had no access to electricity in 2019, of which 75% lived in
Sub-Saharan Africa [1]. Considering that energy is vital to the functioning of many services,
including health and education, urgent action is needed to increase current energy access
levels. Consequentially, the United Nations proposed Sustainable Development Goal 7,
aiming for affordable and clean energy for all by 2030 as part of the Paris Agreement [2].
Households tend to gain energy access by connecting to the national electricity grid or via
off-grid energy technologies. The off-grid energy market has grown in recent years, offering
energy access to rural low density populations that are unable to afford an electricity grid
connection or live outside the grid’s vicinity [3].

This study focusses on solar home system (SHS) customers, who have multiplied
in recent years, with over 30 million SHSs purchased globally since 2010, particularly in
Sub-Saharan Africa [4]. A SHS consists of a solar panel and battery and includes appliances,
such as radios [5]. Their growth over recent years is partly due to innovate business
models, such as pay-as-you-go (PAYG), which eased the affordability barrier faced by
many households. PAYG models allow individuals to only pay for days of electricity when
they can afford to, thus offering payment flexibility. Several countries, including Rwanda,
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are relying on SHSs as part of their electrification strategy [6]. Being considered a key
contender in providing energy access, it is important to better understand SHS users and
their experiences [7]. The literature on SHS consumption patterns and electricity load
forecasting has been particularly sparse, likely due to the paucity of high-quality data.
Only a few studies explored SHS electricity consumption data directly derived from SHSs.
Gustavsson [8] examined Zambian SHS customers’ usage through data loggers, finding
that SHS usage was mainly concentrated in the morning and evenings. However, their
analysis was based on only three users. Opoku et al. [9] studied the SHS consumption
patterns of one Ghanaian household, discovering key differences in weekday and weekend
consumption, as well as the importance of maximising electricity use directly from the solar
panel. Another key study by Bisaga and Parikh [10] examined 217 Rwandan customers’
SHS electricity usage for three months, finding the group of customers with the fewest
appliances to consistently use more energy than groups with more appliances. Bhatti and
Williams [11] investigated electricity load data from four SHS households in India and
discovered that half of the solar energy produced was surplus energy. Although, these
studies provide important insights into usage patterns, there is room for analysis on larger
customer samples and a longer time period. Electricity load forecasting of SHS-derived
data is still nascent, where Manur et al. [12] published one of the first papers on this topic.
Although, they only examined one SHS customer in India using a long short-term memory
model. This study will aim to address the gaps in both the SHS electricity consumption
analysis and forecasting literature through a case study of SHS users in Rwanda using
real-time electricity usage data from a SHS provider.

2. Literature Review

Electricity load forecasting has become common practice and is considered crucial
in many sectors. The government utilises long-term forecasting to plan for future capital
investment and utilities may use short-term forecasting to enable demand-response plan-
ning [13,14]. With the advent of more decentralised renewable energy, such as wind or
solar energy, powering the grid, accurate forecasting is becoming more important, due to
their intermittent nature [15]. The literature on electricity load forecasting for individual
households has particularly flourished in recent years. In developed countries, this is partly
due to the increased usage of smart meters that record electricity usage of individuals in
real-time [16]. Predicting future electricity demand for residential purposes enables elec-
tricity generators, distributors and suppliers to effectively plan ahead. It can also promote
energy conservation amongst users, as they become aware of their own energy demand.
Forecasting at an individual level can be more challenging than aggregate predictions, due
to the accompanying data volatility. Consumption can be influenced by a wide variety of
factors, including “devices’ operational characteristics, users’ behaviours, economic factors,
time of the day, day of the week, holidays, weather conditions, geographic patterns and
random effects” [17]. Therefore, individuals’ consumption can vary considerably from one
another, which makes forecasting more difficult.

Differences between developed and developing nations’ electricity consumption can
be observed. For instance, electricity loads are much lower in African households, which
also tend to have fewer appliances compared to households in high-income nations [18].
Moreover, the electricity grid is often unreliable in developing countries, with households
experiencing frequent outages [19]. There is a high concentration of decentralised technolo-
gies, including SHSs, particularly amongst the off-grid population in developing countries.
Gaining access to consumption data from these technologies is difficult, as only a few
companies measure this data and may be unwilling to share it to protect their intellectual
property. These factors influence the ability to forecast electricity consumption of off-grid
users in developing countries. Electricity usage of SHSs can also be highly variable due to
the intermittency of the energy supply and battery capacity limitations that can result in
individuals running out of battery [8,12]. Another factor that contributes to this intermit-
tency is the dominance of PAYG payments that enable individuals to only pay for electricity
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usage when they can afford to. This results in periods of time, where no electricity is
consumed. These factors can make forecasting more challenging than for households in
developed countries. This study aims to highlight that forecasting multiple individual SHS
customers’ consumption in developing countries is possible and important to better cater
to their specific needs.

2.1. Common Load Forecasting Models

A number of load forecasting models are used in the energy domain to predict indi-
viduals’ consumption, which include regression-based, ARIMA, grey, fuzzy logic, artificial
neural networks and support vector machines (Table 1).

Table 1. Description of various load forecasting models and their application (adapted from [20]).
Adapted with permission from ref. [20]. Copyright 2018 Elsevier.

Models Feature Advantages Disadvantages

Regression-based
Find out influencing factors;
build the regression equation
between factors and objectives

Good at analysing multi-factor
models; provide error
checking of model estimation
parameters; easy to calculate

Does not consider the
un-testability of certain
influence factors; results
cannot reflect periodic wave

ARIMA

Established by regression of
the dependent variable only
for its lag value and the
present value of the random
error term

The mathematical model
requires only endogenous
variables without resorting to
exogenous variables

Require timing data to be
stable; cannot reflect
non-linear relationships; the
determination of model
parameters is complicated

Fuzzy Logic

Perform fuzzy judgment for
systems with unknown
models; reasoning solves the
regular fuzzy information
problem that is difficult to
deal with by
conventional methods

High accuracy in reflecting
uncertainty qualitative
knowledge; good at uncertain
situation prediction of
input variables

Lack of specific prediction
formulas; cannot reflect the
relationship between
predicted values and
historical data

Artificial Neural Networks

It abstracts the human brain
neural network from the
perspective of information
processing; usually a logical
expression of some kind of
algorithm in nature.

Provide self-learning function
and high-speed search for
optimal solutions; fully
approximate any arbitrarily
complex non-linear
relationship; can learn and
adapt to unknown or
uncertain systems

No ability to explain
reasoning process and
reasoning basis; cannot work
when data is insufficient;
turning all reasoning into
numerical calculations results
in the loss of information

Support Vector Regression

Find the best compromise
between the complexity of the
model and the learning ability
based on limited sample
information

Can solve machine learning
and non-linear problems in
the case of small samples;
simplify the usual
classification and regression
issues; can improve
generalization performance;
less parameters to solve

Sensitive to missing data;
difficult to implement
large-scale training samples;
difficult to solve multiple
classification problem

The method chosen is highly dependent on the data characteristics, number of vari-
ables and the forecast period. Forecasting time periods can be split into very short-term,
short-term, medium-term and long-term, where the amount of time for each differs depend-
ing on the sector. Long-term predictions cover any period over a year and medium-term
constitutes the period between a month and a season [21]. Short-term forecasting refers to
an hour to several days, whilst very short-term is less than an hour [21]. This study specifi-
cally examines short- and medium-term forecasting. Wang et al. [20] highlighted which
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models were optimal, in terms of predictive performance, based on the data characteristics
(Table 2).

Table 2. Comparison of model’s predictive performance (adapted from [20]). Adapted with permis-
sion from ref. [20]. Copyright 2018 Elsevier.

Models
Data Trend Characteristics Forecast Period Number of Variables Most Applied

Case in
Energy FieldLinear Non-Linear Long-Term Short-Term Multivariate Univariate

Regression-
based
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CNN can be trained more quickly than an LSTM, for instance, as it can run concurrently 
[27]. This study will utilise a CNN for short- and medium-term electricity load forecasting 
for SHS customers. 

A few studies have used CNNs to predict electricity consumption of individual 
households. Acharya et al. [28] forecasted households in Korea using a one-dimensional 
CNN, which performed better than the LSTM when utilising augmented data. A French 
household’s usage for the subsequent 60 hours was predicted by Amarasinghe et al. [29] 
with a CNN, which fared better than their Support Vector Machine and was comparable 
in performance to LSTM with sequence to sequence. Lang et al. [30] forecasted the next 36 
hours of Irish households’ electricity usage using a CNN, highlighting the effectiveness of 
a simple architecture. The CNN’s prediction of a solar photovoltaic system’s consumption 
in the next 30 min in an Australian study was better than the LSTM and MLP model out-
comes for the same dataset [31]. Finally, Heo et al. [32] forecasted solar power output in 
South Korea for the next month using a multi-channel CNN to extract more features. 
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less reliance on external often difficult to access data. Several ANN types have been used 
for electricity load forecasting, where popular ones include multi-layer perceptron (MLP), 
long short-term memory (LSTM) and convolutional neural network (CNN). This study 
chose a CNN as it benefits from greater context for feature extraction due to its stacked 
layers, allowing the data structure to be kept intact [26]. Moreover, a CNN faces fewer 
computational challenges than MLP and LSTM, due to its local connectivity feature that 
allows for weight sharing and the limited use of fully connected layers [26]. Finally, the 
CNN can be trained more quickly than an LSTM, for instance, as it can run concurrently 
[27]. This study will utilise a CNN for short- and medium-term electricity load forecasting 
for SHS customers. 

A few studies have used CNNs to predict electricity consumption of individual 
households. Acharya et al. [28] forecasted households in Korea using a one-dimensional 
CNN, which performed better than the LSTM when utilising augmented data. A French 
household’s usage for the subsequent 60 hours was predicted by Amarasinghe et al. [29] 
with a CNN, which fared better than their Support Vector Machine and was comparable 
in performance to LSTM with sequence to sequence. Lang et al. [30] forecasted the next 36 
hours of Irish households’ electricity usage using a CNN, highlighting the effectiveness of 
a simple architecture. The CNN’s prediction of a solar photovoltaic system’s consumption 
in the next 30 min in an Australian study was better than the LSTM and MLP model out-
comes for the same dataset [31]. Finally, Heo et al. [32] forecasted solar power output in 
South Korea for the next month using a multi-channel CNN to extract more features. 
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linear relationships between variables and reducing the need for feature engineering due 
to its reliance on the universal approximation theorem [24,25]. The diminished need for 
feature engineering is particularly useful in a developing country context, as it enables 
less reliance on external often difficult to access data. Several ANN types have been used 
for electricity load forecasting, where popular ones include multi-layer perceptron (MLP), 
long short-term memory (LSTM) and convolutional neural network (CNN). This study 
chose a CNN as it benefits from greater context for feature extraction due to its stacked 
layers, allowing the data structure to be kept intact [26]. Moreover, a CNN faces fewer 
computational challenges than MLP and LSTM, due to its local connectivity feature that 
allows for weight sharing and the limited use of fully connected layers [26]. Finally, the 
CNN can be trained more quickly than an LSTM, for instance, as it can run concurrently 
[27]. This study will utilise a CNN for short- and medium-term electricity load forecasting 
for SHS customers. 

A few studies have used CNNs to predict electricity consumption of individual 
households. Acharya et al. [28] forecasted households in Korea using a one-dimensional 
CNN, which performed better than the LSTM when utilising augmented data. A French 
household’s usage for the subsequent 60 hours was predicted by Amarasinghe et al. [29] 
with a CNN, which fared better than their Support Vector Machine and was comparable 
in performance to LSTM with sequence to sequence. Lang et al. [30] forecasted the next 36 
hours of Irish households’ electricity usage using a CNN, highlighting the effectiveness of 
a simple architecture. The CNN’s prediction of a solar photovoltaic system’s consumption 
in the next 30 min in an Australian study was better than the LSTM and MLP model out-
comes for the same dataset [31]. Finally, Heo et al. [32] forecasted solar power output in 
South Korea for the next month using a multi-channel CNN to extract more features. 
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computational challenges than MLP and LSTM, due to its local connectivity feature that 
allows for weight sharing and the limited use of fully connected layers [26]. Finally, the 
CNN can be trained more quickly than an LSTM, for instance, as it can run concurrently 
[27]. This study will utilise a CNN for short- and medium-term electricity load forecasting 
for SHS customers. 

A few studies have used CNNs to predict electricity consumption of individual 
households. Acharya et al. [28] forecasted households in Korea using a one-dimensional 
CNN, which performed better than the LSTM when utilising augmented data. A French 
household’s usage for the subsequent 60 hours was predicted by Amarasinghe et al. [29] 
with a CNN, which fared better than their Support Vector Machine and was comparable 
in performance to LSTM with sequence to sequence. Lang et al. [30] forecasted the next 36 
hours of Irish households’ electricity usage using a CNN, highlighting the effectiveness of 
a simple architecture. The CNN’s prediction of a solar photovoltaic system’s consumption 
in the next 30 min in an Australian study was better than the LSTM and MLP model out-
comes for the same dataset [31]. Finally, Heo et al. [32] forecasted solar power output in 
South Korea for the next month using a multi-channel CNN to extract more features. 
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with a CNN, which fared better than their Support Vector Machine and was comparable 
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This research utilised a discrete multivariate time series with non-linear data. The 
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ers. Based on Table 2, an ANN or Fuzzy Logic model would be ideal. An ANN was chosen 
partly due to the large dataset available, which suits ANN’s learning ability [22]. This 
dataset also does not fit the fuzzy logic model, which normally deals with vague infor-
mation [23]. ANNs have several advantages, which include being able to understand non-
linear relationships between variables and reducing the need for feature engineering due 
to its reliance on the universal approximation theorem [24,25]. The diminished need for 
feature engineering is particularly useful in a developing country context, as it enables 
less reliance on external often difficult to access data. Several ANN types have been used 
for electricity load forecasting, where popular ones include multi-layer perceptron (MLP), 
long short-term memory (LSTM) and convolutional neural network (CNN). This study 
chose a CNN as it benefits from greater context for feature extraction due to its stacked 
layers, allowing the data structure to be kept intact [26]. Moreover, a CNN faces fewer 
computational challenges than MLP and LSTM, due to its local connectivity feature that 
allows for weight sharing and the limited use of fully connected layers [26]. Finally, the 
CNN can be trained more quickly than an LSTM, for instance, as it can run concurrently 
[27]. This study will utilise a CNN for short- and medium-term electricity load forecasting 
for SHS customers. 

A few studies have used CNNs to predict electricity consumption of individual 
households. Acharya et al. [28] forecasted households in Korea using a one-dimensional 
CNN, which performed better than the LSTM when utilising augmented data. A French 
household’s usage for the subsequent 60 hours was predicted by Amarasinghe et al. [29] 
with a CNN, which fared better than their Support Vector Machine and was comparable 
in performance to LSTM with sequence to sequence. Lang et al. [30] forecasted the next 36 
hours of Irish households’ electricity usage using a CNN, highlighting the effectiveness of 
a simple architecture. The CNN’s prediction of a solar photovoltaic system’s consumption 
in the next 30 min in an Australian study was better than the LSTM and MLP model out-
comes for the same dataset [31]. Finally, Heo et al. [32] forecasted solar power output in 
South Korea for the next month using a multi-channel CNN to extract more features. 
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to its reliance on the universal approximation theorem [24,25]. The diminished need for 
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less reliance on external often difficult to access data. Several ANN types have been used 
for electricity load forecasting, where popular ones include multi-layer perceptron (MLP), 
long short-term memory (LSTM) and convolutional neural network (CNN). This study 
chose a CNN as it benefits from greater context for feature extraction due to its stacked 
layers, allowing the data structure to be kept intact [26]. Moreover, a CNN faces fewer 
computational challenges than MLP and LSTM, due to its local connectivity feature that 
allows for weight sharing and the limited use of fully connected layers [26]. Finally, the 
CNN can be trained more quickly than an LSTM, for instance, as it can run concurrently 
[27]. This study will utilise a CNN for short- and medium-term electricity load forecasting 
for SHS customers. 

A few studies have used CNNs to predict electricity consumption of individual 
households. Acharya et al. [28] forecasted households in Korea using a one-dimensional 
CNN, which performed better than the LSTM when utilising augmented data. A French 
household’s usage for the subsequent 60 hours was predicted by Amarasinghe et al. [29] 
with a CNN, which fared better than their Support Vector Machine and was comparable 
in performance to LSTM with sequence to sequence. Lang et al. [30] forecasted the next 36 
hours of Irish households’ electricity usage using a CNN, highlighting the effectiveness of 
a simple architecture. The CNN’s prediction of a solar photovoltaic system’s consumption 
in the next 30 min in an Australian study was better than the LSTM and MLP model out-
comes for the same dataset [31]. Finally, Heo et al. [32] forecasted solar power output in 
South Korea for the next month using a multi-channel CNN to extract more features. 
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CNN, which performed better than the LSTM when utilising augmented data. A French 
household’s usage for the subsequent 60 hours was predicted by Amarasinghe et al. [29] 
with a CNN, which fared better than their Support Vector Machine and was comparable 
in performance to LSTM with sequence to sequence. Lang et al. [30] forecasted the next 36 
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in the next 30 min in an Australian study was better than the LSTM and MLP model out-
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This research utilised a discrete multivariate time series with non-linear data. The 
aim was to forecast short- and medium-term electricity usage of individual SHS custom-
ers. Based on Table 2, an ANN or Fuzzy Logic model would be ideal. An ANN was chosen 
partly due to the large dataset available, which suits ANN’s learning ability [22]. This 
dataset also does not fit the fuzzy logic model, which normally deals with vague infor-
mation [23]. ANNs have several advantages, which include being able to understand non-
linear relationships between variables and reducing the need for feature engineering due 
to its reliance on the universal approximation theorem [24,25]. The diminished need for 
feature engineering is particularly useful in a developing country context, as it enables 
less reliance on external often difficult to access data. Several ANN types have been used 
for electricity load forecasting, where popular ones include multi-layer perceptron (MLP), 
long short-term memory (LSTM) and convolutional neural network (CNN). This study 
chose a CNN as it benefits from greater context for feature extraction due to its stacked 
layers, allowing the data structure to be kept intact [26]. Moreover, a CNN faces fewer 
computational challenges than MLP and LSTM, due to its local connectivity feature that 
allows for weight sharing and the limited use of fully connected layers [26]. Finally, the 
CNN can be trained more quickly than an LSTM, for instance, as it can run concurrently 
[27]. This study will utilise a CNN for short- and medium-term electricity load forecasting 
for SHS customers. 

A few studies have used CNNs to predict electricity consumption of individual 
households. Acharya et al. [28] forecasted households in Korea using a one-dimensional 
CNN, which performed better than the LSTM when utilising augmented data. A French 
household’s usage for the subsequent 60 hours was predicted by Amarasinghe et al. [29] 
with a CNN, which fared better than their Support Vector Machine and was comparable 
in performance to LSTM with sequence to sequence. Lang et al. [30] forecasted the next 36 
hours of Irish households’ electricity usage using a CNN, highlighting the effectiveness of 
a simple architecture. The CNN’s prediction of a solar photovoltaic system’s consumption 
in the next 30 min in an Australian study was better than the LSTM and MLP model out-
comes for the same dataset [31]. Finally, Heo et al. [32] forecasted solar power output in 
South Korea for the next month using a multi-channel CNN to extract more features. 
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long short-term memory (LSTM) and convolutional neural network (CNN). This study 
chose a CNN as it benefits from greater context for feature extraction due to its stacked 
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computational challenges than MLP and LSTM, due to its local connectivity feature that 
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CNN can be trained more quickly than an LSTM, for instance, as it can run concurrently 
[27]. This study will utilise a CNN for short- and medium-term electricity load forecasting 
for SHS customers. 

A few studies have used CNNs to predict electricity consumption of individual 
households. Acharya et al. [28] forecasted households in Korea using a one-dimensional 
CNN, which performed better than the LSTM when utilising augmented data. A French 
household’s usage for the subsequent 60 hours was predicted by Amarasinghe et al. [29] 
with a CNN, which fared better than their Support Vector Machine and was comparable 
in performance to LSTM with sequence to sequence. Lang et al. [30] forecasted the next 36 
hours of Irish households’ electricity usage using a CNN, highlighting the effectiveness of 
a simple architecture. The CNN’s prediction of a solar photovoltaic system’s consumption 
in the next 30 min in an Australian study was better than the LSTM and MLP model out-
comes for the same dataset [31]. Finally, Heo et al. [32] forecasted solar power output in 
South Korea for the next month using a multi-channel CNN to extract more features. 
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This research utilised a discrete multivariate time series with non-linear data. The
aim was to forecast short- and medium-term electricity usage of individual SHS customers.
Based on Table 2, an ANN or Fuzzy Logic model would be ideal. An ANN was chosen
partly due to the large dataset available, which suits ANN’s learning ability [22]. This
dataset also does not fit the fuzzy logic model, which normally deals with vague infor-
mation [23]. ANNs have several advantages, which include being able to understand
non-linear relationships between variables and reducing the need for feature engineering
due to its reliance on the universal approximation theorem [24,25]. The diminished need
for feature engineering is particularly useful in a developing country context, as it enables
less reliance on external often difficult to access data. Several ANN types have been used
for electricity load forecasting, where popular ones include multi-layer perceptron (MLP),
long short-term memory (LSTM) and convolutional neural network (CNN). This study
chose a CNN as it benefits from greater context for feature extraction due to its stacked
layers, allowing the data structure to be kept intact [26]. Moreover, a CNN faces fewer com-
putational challenges than MLP and LSTM, due to its local connectivity feature that allows
for weight sharing and the limited use of fully connected layers [26]. Finally, the CNN
can be trained more quickly than an LSTM, for instance, as it can run concurrently [27].
This study will utilise a CNN for short- and medium-term electricity load forecasting for
SHS customers.

A few studies have used CNNs to predict electricity consumption of individual
households. Acharya et al. [28] forecasted households in Korea using a one-dimensional
CNN, which performed better than the LSTM when utilising augmented data. A French
household’s usage for the subsequent 60 hours was predicted by Amarasinghe et al. [29]
with a CNN, which fared better than their Support Vector Machine and was comparable in
performance to LSTM with sequence to sequence. Lang et al. [30] forecasted the next 36 h of
Irish households’ electricity usage using a CNN, highlighting the effectiveness of a simple
architecture. The CNN’s prediction of a solar photovoltaic system’s consumption in the
next 30 min in an Australian study was better than the LSTM and MLP model outcomes for
the same dataset [31]. Finally, Heo et al. [32] forecasted solar power output in South Korea
for the next month using a multi-channel CNN to extract more features. These studies all
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utilise a one-dimensional CNN architecture. In contrast, three-dimensional (3D) CNNs
have not yet been trialled for electricity load forecasting of time series data, as far as the
authors could see. A 3D architecture enables the data structure to remain intact, thereby
providing valuable spatial information that could improve the CNN’s prediction capability.

2.2. Intervention Research

Electricity load predictions of individual households help utilities offer relevant time-
of-use tariffs and assists load management purposes [33]. These forecasts also enable
providers or policymakers to intervene, in order to spark behaviour change in users. There
has been a recent focus on reducing electricity usage, particularly at peak hours to reach
emission targets in developed nations [34,35]. In countries where energy access levels are
low though, there has been a concerted effort to electrify households and to ensure their
electricity amount can satisfy their energy needs reliably.

Individuals’ electricity consumption could be influenced through behavioural inter-
ventions, such as “commitment, goal setting, providing information, reward [and] result
feedback” [36]. Bonan et al. [37] studied how households’ PAYG repayments for off-grid
electricity are affected by setting commitments, finding that a combination of commitment
and PAYG flexibility was better than a strict schedule to lower the number of defaults
in the long term. Interventions, such as information and feedback, place more emphasis
on the electricity provider. Gaining information relates to more general advice, whilst
feedback refers to specific tips to change behaviour, tailored to an individuals’ electricity
usage profile [36,38]. Smart meters that highlight the electricity used in a house in real time,
offer households such feedback, where multiple studies found their installation to have
reduced electricity consumption, usually in the short-term [16,39]. Normative feedback,
which involves informing a specific household how their energy usage differs to that of
others, has been shown as especially constructive [16,40]. Load forecasting could be used to
provide feedback information that potentially leads to behaviour change. This information
enables households to become aware of their future usage and manage their upcoming
expenditure [41]. However, the literature on interventions based on forecasted data is
limited. Electricity usage data from smart homes was used by Chen and Cook [42] to
train a linear regression and SVR model, the results of which were then accessible to both
households. However, future research is needed to understand whether this feedback
induces behaviour change and the longevity of this effect.

SHS providers and policymakers may use load forecasting to help make proactive
decisions and provide feedback to consumers. SHS companies can analyse their customers’
past and predicted consumption to spot trends on whether a households’ usage is on an
upward or downward trend. SHS consumers could then benefit from receiving a more
tailored service from their provider based on their individual profile. Households could
also react to a company’s feedback. For instance, if customers were informed in which
hours they use their SHS extensively, it may help them reduce occasions they run out of
battery. Moreover, being aware of their likely usage can help households better plan their
future expenditure and thus lower their likelihood of defaulting on payments and losing
their SHS. Microgrid operators that connect multiple SHSs to each other, could use the
electricity consumption forecasts for load balancing purposes to limit outages [43]. Finally,
it can be helpful for policymakers to examine past SHS usage data and load forecasts to
help pinpoint regions well suited for electricity grid expansion or microgrids.

2.3. Gaps in Literature

Despite research on SHS usage rising over recent years, a number of gaps remain in
the literature [44]. One of these is a lack of analysis on SHS usage patterns, with the limited
studies on this subject often examining self-reported data, for instance in the Opiyo [45]
study. Such self-reported data is normally recorded at seldom intervals or the respondent
is asked to estimate an average, thereby making the data less precise. Only a few studies
explored electricity consumption data directly derived from SHSs [8–11]. There is a need for
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more SHS analysis on larger customer samples and a longer time period, which this study
will address, thereby aiming to provide more generalisable findings. There are limited load
forecasting models that concern individual households in developing countries. Much of
the existing literature focusses on developed nations, which operate in a different context,
usually centred on electricity grid consumers. The SHS consumption forecasting sector
is particularly nascent, where a study by Manur et al. [12] was the only paper discovered
to tackle this issue. They used an LSTM to predict the next hour’s usage of a single SHS
customer in India. Finally, as discussed in Section 2.1, the lack of 3D CNNs for load
forecasting based on time series data should be addressed. 3D CNNs have become the
norm in image classification; however, this architecture should also be explored more
extensively in wider use cases, including load forecasting for individuals.

3. Materials and Methods

This study utilised data from a solar energy provider, Bboxx, which operates in
11 countries across Africa and Asia. They sell ‘smart’ SHSs, which have a sim card that
transfers data about the SHS on a millisecond scale back to their headquarters [46]. The
company offers SHSs with different capacity sizes, including 20-, 50- and 300-Watt (W)
SHSs. Bboxx uses a hybrid rent-to-own and fee-for-service business model to cater to the
low-income population, which are often unable to pay for a SHS outright [47–49]. This
involves households paying an initial down payment, followed by regular instalments
over a three-year period, at the end of which they own the accompanying appliances,
but not the solar panel or battery. After three years, the household pays an ‘Energy
Service Fee’ whenever they want to use electricity, for which they receive continued access
to maintenance services. The company offers customers a PAYG payment option, as
long as they pay for a set minimum number of days. This research focusses specifically
on customers in Rwanda using a 50 W SHS, which was the company’s first country of
operation and type of SHS, respectively, thus this combination resulted in the most data
to examine.

This study utilises a time series analysis and CNN to investigate SHS users’ past
and future electricity consumption patterns. The two methods examined different time
periods. Overall, only data until March 2020 was used to avoid any potential impact of the
COVID-19 pandemic on the electricity usage data. The CNN was tested on various input
time periods, starting with the one in Table 3, which comprised six months as input and
three months as output. However, the CNN’s forecasting ability improved with a lower
input period of 17 weeks, which was thus used to derive the results presented in this study.

Table 3. Dates and number of customers per method.

Method Dates Number of Customers

Time series analysis 1 March 2019–29 Feburary 2020 63,299
CNN 11 Feburary 2019–29 December 2019 48,485

Both methods utilised Python 3.7 and for the CNN PyTorch 1.6 was used as the
machine learning framework.

3.1. Time Series Analysis

A time series analysis was conducted to gain insights on the electricity usage be-
haviour of SHS customers. Specifically, the yearly, monthly and weekly patterns were
examined. The Wilcoxon signed-rank test was used to investigate whether the weekday
and weekend samples derived from different distributions, where a p-value of below 0.05
was deemed significant. The customers were also placed into groups depending on which
appliances they owned. The SHS provider offered the following appliances: torches, bulbs,
shavers, radios and televisions. After examining the electricity consumption data, the
clearest distinction in usage was visible between television owners and households without
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a television. Additional appliances did not have a considerable impact on this divide.
Therefore, the time series analysis focussed specifically on television and non-television
owners (Table 4).

Table 4. Number of customers and average daily electricity consumption per group.

Groups Customers Percent (%) Mean Daily Electricity
Usage (Wh)

No television 56,166 90 43.2
Television 6291 10 66.3

62,457 100

Individual SHS users’ consumption at different stages across a year was examined
to better understand their customer journey. Specifically, households that became active
customers between February and March 2019, which owned a television (n = 219) and ones
without a television (n = 2288). Each household’s total electricity usage was calculated a
month after their SHS was installed and then compared to their consumption in three, six,
nine and twelve months’ time. A t-test for paired samples was performed to see whether
the difference in electricity usage from the first month to each of these subsequent months
was statistically significant, where the significance level was 0.05. This analysis provides a
valuable insight into how electricity usage of individual households tends to change over
time, highlighting when customers may require additional support.

3.2. CNN
3.2.1. CNN Architecture

A multivariate 3D CNN was developed for this research to predict short- and medium-
term electricity consumption of SHS customers. The model development process is high-
lighted in Figure 1, which outlines the splitting of data and the individual model steps,
which proceed in a largely linear manner, with the exception of two loops.
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Figure 1 highlights that the first step was to clean the SHS electricity consumption data,
which included removing households that had not used their SHS for a minimum of three
months and patching implausible electricity and temperature data for specific timestamps.
The cleaned data was split into individual training, validation and test datasets. Each of
these datasets were pre-processed before being loaded into the model, which involved
reshaping the data, so it had the required number of dimensions. The electricity usage
and temperature values were normalised before the initial hyperparameters of the CNN
were specified and the weights initialised. The training data was shuffled before the model
was trained on batches of the dataset. The initial loop in Figure 1 details whether the
network has converged or in other words whether the loss has stopped reducing and is
stable. The loss function used to train the CNN was the mean absolute error (MAE), which
quantifies the absolute difference between the model’s forecasts and the true values [50].
The model calculates the MAE for each batch of input data received and the adaptative
moment estimation (Adam) optimiser uses this to effectively adjust the weights to reduce
the loss, thereby training the model. The second loop in Figure 1 is activated if the model
performance is unsatisfactory, which leads to the hyperparameters being changed and the
weights being initialised again to train the model anew. The hyperparameter values have to
be set by the researcher prior to training and are key, as they influence the learning process
and the model’s shape [51]. If the CNN performance is satisfactory, the model is saved and
to highlight its generalisability, it is trialled on an unseen test dataset.

This study shows the first 3D CNN architecture utilised for load forecasting based on
time series data, as far as the authors are aware. This design enables the CNN to make use
of the spatial dimensions to determine temporal patterns, as is done in image classification.
CNNs consist of one input layer, multiple hidden layers and an output layer, with the
specific model architecture used in this study visualised in Figure 2.

Energies 2022, 15, x FOR PEER REVIEW 9 of 26 
 

 

 
Figure 2. CNN architecture. 

The input channel receives the input data on an hourly scale. The fifteen convolu-
tional layers examine the time dependent variables: electricity usage and temperature on 
an hourly scale, as well as days from the start of the month and until the end of the month. 
Figure 2 shows that the CNN receives this data and views it in three different ways using 
convolutional filters: weekly, daily and hourly. For the weekly view, the CNN examines 
all the data from week 1 to week 17. The hourly view focusses on every hour from 00:00 
to 23:00 across 17 weeks. The daily view examines the data on a daily basis from Monday 
to Sunday. This approach thus highlights every variable’s hourly and daily trends thereby 
providing more information that increases prediction performance. The weekly view is 
depicted in Figure 3, where the data slice first viewed by the CNN consists of four varia-
bles at midnight across one week (shaded slice). Following this, the CNN examines the 
data for a week at 01:00, etc., until finally reaching 23:00. 

 
Figure 3. Used 3D CNN data structure for ‘weekly view’ (stacked by hours, days, variables). Ar-
row indicates first data slice examined. 

The daily view is identical to Figure 3, except that the hours are replaced by the weeks 
(Week 1 to 17). For the hourly view, an additional change is required, which consists of 
swapping the days to hours (0 to 23). Dimensionality reduction occurs in all three views 
by using strided convolutions, where convolutional layers have a stride above one, which 

Figure 2. CNN architecture.

The input channel receives the input data on an hourly scale. The fifteen convolutional
layers examine the time dependent variables: electricity usage and temperature on an
hourly scale, as well as days from the start of the month and until the end of the month.
Figure 2 shows that the CNN receives this data and views it in three different ways using
convolutional filters: weekly, daily and hourly. For the weekly view, the CNN examines all
the data from week 1 to week 17. The hourly view focusses on every hour from 00:00 to
23:00 across 17 weeks. The daily view examines the data on a daily basis from Monday to
Sunday. This approach thus highlights every variable’s hourly and daily trends thereby
providing more information that increases prediction performance. The weekly view is
depicted in Figure 3, where the data slice first viewed by the CNN consists of four variables
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at midnight across one week (shaded slice). Following this, the CNN examines the data for
a week at 01:00, etc., until finally reaching 23:00.
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The daily view is identical to Figure 3, except that the hours are replaced by the weeks
(Week 1 to 17). For the hourly view, an additional change is required, which consists of
swapping the days to hours (0 to 23). Dimensionality reduction occurs in all three views
by using strided convolutions, where convolutional layers have a stride above one, which
means the CNN moves across the data more than one step at a time, thereby summarising
the data (Figure 2). Figure 2 shows that after the convolutional layers, the data passes
through two transformations: batch normalisation and a Leaky Rectified Linear Unit (Leaky
ReLU) activation function. The data is then flattened from three to one dimension and
additional variables that are not time dependent are concatenated. Once this is done, the
data passes through six fully connected layers, also known as linear layers, before the
predicted electricity values are outputted in the output layer (Figure 2).

3.2.2. Scenarios

The data was split into high and low energy consumers, depending on whether they
consumed more or less than 2.1 Watt-hours (Wh) on average. This value marks the average
hourly consumption across all customers. This divide led to better results than providing
the CNN with all the data at once, which resulted in more outliers. Both groups had their
own training, validation and test sets (Table 5). The forecasting ability of the model is
trialled based on the test set.

Table 5. Number of low and high energy users per training, validation and test datasets.

Low Energy Users
(<2.1 Wh)

High Energy Users
(≥2.1 Wh)

Training 25,973 7308
Validation 5018 2561

Test 5054 2571
36,045 12,440

All datasets initially had six months input and three months of prediction data. How-
ever, the optimal input time period was trialled and the CNN turned out to have a lower
average validation loss with an input of 17 weeks. The CNN was developed to be highly
adaptable, in terms of forecasting scenarios and the variables that can be added. Several
forecasting intervals were trialled and this study will present three: 24 h ahead, daily sums
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for the next week and the mean hourly consumption in a week across the next three months
(Table 6). The forecasting intervals were chosen to enable both a short- and medium-term
view of customers’ consumption, which can be utilised for multiple purposes. For instance,
to improve companies’ decision-making on how to support individual households, for
load balancing SHS powered microgrids and to provide customers with useful feedback on
their usage.

Table 6. Model scenarios.

Scenario CNN Forecast
Interval CNN’s Output Naïve Baseline

1 24 h 24 Previous 24 h
2 1 week (daily sum) 7 Previous 1 week (daily sum)

3 3 months (hourly
mean over a week) 168 Previous 4 weeks (hourly sum)

The naïve baseline method was used to place the CNN results into context. The naïve
baseline is a simple and a commonly used method, which can often be highly effective [52].
The assumption in this method is that future electricity consumption will continue as it
has done in previous timestamps. For each scenario in this study, a fitting baseline was
chosen, which are outlined in Table 6. These baselines are calculated for every individual
rather than as an average across the entire sample, which improves their accuracy. As a
performance measure the mean squared error (MSE) was utilised to evaluate the difference
between the CNN forecast and the actual predictions. The MSE was also calculated for the
naïve baseline output versus the actual values. This enables a comparison in forecasting
performance of the CNN and baseline, where the baseline’s MSE should be higher to make
it worthwhile to use a CNN.

3.2.3. Used Variables

A multivariate time series analysis was utilised and the importance of the variables
was tested. The CNN was initially run with all 18 variables for 300 epochs to establish
the average validation MSE in the last ten epochs, which was taken as the control value.
Following this, one variable in the model was set to the constant value of one and the
model was rerun and the validation MSE was recorded. In each subsequent model run, a
different variable was set to one each time. For each of these runs, the percentage difference
to the control value was calculated. If this difference is positive, it highlights that the
CNN performs better with this variable as a non-constant value and thus it is important,
alternatively the variable can be removed. Table 7 displays the positive variables that
were included in the CNN, with the first variable consisting of hourly power usage, which
remained unaltered.

The most important variable according to the CNN was the mean hourly consumption
over the previous four weeks. The second key variable concerned the number of days until
the end of the month, indicating that customers’ usage differs across the month, potentially
being related to when they receive their pay checks. This was followed by the province in
which the customer resided, where a breakdown of energy consumption by province did
highlight key differences in usage.
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Table 7. Variables utilised in CNN.

Variables Description Unit of Measurement Average % Difference
to Control Value

1 Hourly power usage
Mean power usage per hour per
customer, where:
power = current × voltage

Wh N.A.

2 Mean power Mean weekly power values over
the entire training period Wh 1.059%

3 Days until month end The number of days until the
end of the month Integer 0.926%

4 Province

Province in which the SHS is
installed. Categories: Eastern,
Southern, Western, Northern,
Kigali City

Text 0.744%

5 Number of torches Number of torches per customer Integer 0.433%

6 Age Customer age Integer 0.405%

7 Number of bulbs Number of bulbs per customer Integer 0.337%

8 Maximum power Maximum weekly power values
over the entire training period Wh 0.336%

9 Temperature Hourly temperature recorded
per SHS, i.e., customer Celsius 0.346%

10 Number of TVs Number of televisions
per customer Integer 0.340%

11 How heard
about Bboxx

Method through which customer
first heard about Bboxx.
Categories: sales agent, flyer,
other client, radio, shop, tv, other

Text 0.325%

12 Days from month start The number of days from the
start of the month Integer 0.307%

13 Number of radios Number of radios per customer Integer 0.147%

14 Previous
lighting source

Previous light or energy source
used by customer. Categories:
candles, batteries, lantern, other

Text 0.001%

In addition to ensuring the variables were relevant, the researchers needed to choose
the hyperparameter values, as discussed in Section 3.2.1. Different hyperparameter values
were trialled on the validation dataset to test model performance. To aid the selection
of hyperparameter values, Bayesian optimisation was used. Minimum and maximum
values are chosen for each hyperparameter and the Bayesian optimiser starts off with a
random value between these two to try on the validation dataset. The MAE is evaluated
for each model run, where the optimiser is able to recall the values that performed well
and can thus narrow down the range within the set number of model runs until it finds the
optimal value [51]. In this study, the optimiser trialled 20 variants for each hyperparameter,
where the CNN’s epoch number was 200, before the value with the lowest MAE was
picked. Bayesian optimisation was used to determine multiple hyperparameter values,
including dropout, number of input neurons and batch normalisation momentum, where
the minimum and maximum ranges specified and the value eventually used for each are
shown in Table 8.
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Table 8. Minimum to maximum hyperparameter values specified for Bayesian optimisation and the
hyperparameter value used in presented CNN.

Hyperparameter Min to Max Value Range Value Used

Batch size 128–256 256
Dropout 0–0.7 0.5
Input neurons 128–2048 900
Batch normalisation
momentum 0.6–0.99 0.65

Learning rate start
Learning rate patience
Learning rate weight decay
Learning rate minimum

0.01–0.05
3–5

1 × 10−5–1 × 10−3

0.0005–0.002

0.02
5

1 × 10−4

0.001

An epoch number of 400 was used for all three forecasting scenarios. To reduce the
likelihood of overfitting, the dropout method was utilised, where a specified number of
neurons are arbitrarily deactivated. The validation loss continued to reduce during each
model run, providing reassurance that overfitting did not occur.

4. Results and Discussion
4.1. Yearly Usage

The electricity consumption trends of SHS customers were observed at different
timescales, including yearly, daily and hourly. Figure 4 shows the seven-day rolling mean
for the year 2019 across all television and non-television owners.
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The consumption is quite stable for customers without a television, whilst television
owners experience more fluctuations (Figure 4). The variations in usage can stem from dif-
ferences in weather conditions across the year, as was observed by Khan et al. [53]. Figure 4
also shows that SHS customers’ daily electricity consumption is relatively low. This is
partly due to the SHS provider’s appliances being particularly energy efficient, in order to
maximise SHS usage time. Soltowski et al. [54] found Rwandan users with 50 W SHS to
have daily consumption levels up to 110 Wh, depending on the appliances owned. van der
Plas and Hankins [55] observed an average daily energy usage of 113 Wh in Kenya. How-
ever, consumption can be even higher with a larger SHS capacity, where Heeten et al. [56]
observed an average usage of 310 Wh per day when examining households with a 100 W
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SHS in Cambodia. Electricity consumption is constrained by the SHS capacity and the
number of appliances owned and their efficiency. However, these results show that, on
average, customers are far from reaching the capacity limit and many customers may find
that smaller SHSs could sufficiently meet their needs. Previous studies have also observed
that SHS users tend produce surplus energy [11,54].

4.2. Usage across a Year

Households’ average electricity usage was split into four hourly groups to understand
how consumption differs across time periods (Figures 5 and 6).
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rolling mean).

Figures 5 and 6 highlight that television owners mostly used their electricity in the
afternoon (12:00–17:59) and evening, respectively, whilst customers without televisions
saw the reverse pattern, using a large amount of electricity in the evening (18:00–23:59).
The other key difference between the groups was that television owners used their SHS
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more in the morning period (06:00–11:59) compared to households that did not possess
a television. This could be due to household occupants watching television at that time.
Consumption at night was low and similar between television owners and households
without a television. Gustavsson [8] examined Zambian SHS customers’ usage through
data loggers and also found night-time usage to be low, particularly compared to the high
consumption in the evening and morning. Although, the SHS usage did vary depending
on appliance ownership, where high users’ peaks were particularly pronounced.

4.3. Daily Usage

Differences between weekday and weekend consumption were examined, where
weekend usage was slightly higher (Figures 7 and 8). However, this was only statistically
significant for customers without a television (Wilcoxon Signed-Rank Test, p-value: 0.037).
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Households’ electricity consumption may be higher at the weekend (Figure 7), due
to more occupants being present in the house and additional usage of appliances [57,58].
Laicane et al. [59] also discovered that electricity usage was higher on the weekend, rea-
soning that families spent more time in the house than on weekdays. Figures 7 and 8
highlight the hourly profile across a day, showcasing an evening peak from 17:00 to 18:00.
Several studies observed that electricity grid users in both developing and developed
countries faced a peak in usage in the evening. Soares and Medeiros [60] found peak hours
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to be between 19:00 and 21:00 for electricity consumers in Brazil. In Nigeria, grid users in
rural areas experienced their evening peak between 17:00 and 22:00 [57]. Heeten et al. [56]
observed a pronounced evening peak between 19:00 and 21:00 when examining 111 SHS
customers in Cambodia. The increased usage in the evening is likely linked to a higher
occupancy rate and fading daylight, the latter leading to lights being turned on.

Television customers in this study also experienced a second smaller usage peak in
the afternoon between 11:00–13:00 (Figure 8). This could be linked to consumers watching
television at that time, as households without a television do not have a comparable
peak. This highlights a key distinction in behaviour between households with different
appliances. Heeten et al. [56] also observed a usage peak around noon and suggested that
it was due to the powering of a fan at lunchtime. McLoughlin et al. [61] used unsupervised
clustering methods on residential electricity load data in Ireland to identify ten electricity
load profiles depending on their customer characteristics. They discovered that each of
these profiles had different load peaks, although most had a peak around midday [61].
This study offers a rare glimpse into SHS users’ daily usage patterns, with differences in
consumption occurring based on whether it is a weekend and the appliance type owned.
This knowledge enables SHS companies to provide a more targeted service that can better
meet consumers’ needs.

4.4. Usage Change per Customer

Another area of investigation covered whether and how SHS usage changes for
individual consumers following their SHS installation. Households that became active
customers between February and March 2019 and either owned a television or not were
examined. Their total electricity usage in the month following installation, as well as six,
nine and twelve months following this first month were recorded (Figures 9 and 10).
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The results highlight that television and non-television owners experienced a fall in
usage after the first month (Figures 9 and 10). This drop is especially evident for television
customers (Figure 10). The t-test for paired samples performed reveals that for customers
without a television the difference in households’ first month of electricity usage compared
to a year later was statistically significant (t(2287) = 25.21, p-value = 5.82 × 10−124). The
difference between these two periods was also statistically significant for television owners
(t(2287) = 9.70, p-value = 1.018 × 10−18). Specifically, 71% of non-television and 76% of
television owners’ electricity usage decreased in a years’ time. The difference between each
of the other intervals (3, 6, 9 months) and the first month of usage was also statistically
significant. Customers with a television pay higher prices each month, which could thus
leave them more vulnerable if their finances worsen after SHS purchase, leading to usage
changes. SHS customers’ monthly income can be quite unstable and they may struggle to
make electricity payments in particular months [62]. Television usage would also have a
larger drain on a SHS’ battery compared to other appliances, which could deteriorate the
battery’s performance and in due time affect consumption levels.

Few studies examined the question of whether SHS consumption rises over time.
Opiyo [45] saw an increase in average daily electricity consumption for 27 Kenyan SHS
users over a five-year period, which was accompanied by higher appliance ownership.
However, this study utilised self-reported data on average daily usage, which might not be
entirely accurate. Bisaga and Parikh [10] found that consumption did not increase across a
three-month period of hourly data derived directly from the SHS. Although, in this short
time, any alterations in usage may not have manifested themselves yet.

4.5. CNN Results

The 3D CNN was used to forecast three scenarios: 24 h ahead, daily sum for the
next week and an average week across the next three months for low and higher energy
users. The MSE for the CNN and naïve baseline forecasts are displayed in Table 9, which
showcase their prediction performance for both types of energy users.



Energies 2022, 15, 857 17 of 25

Table 9. CNN and naïve baseline results for each scenario for low and high energy users (presented
in an hourly format).

Scenario Forecast Interval Type of Energy User Baseline MSE CNN MSE Percentage
Difference

1 24 h
Low 2.788 1.386 50.3%

High 8.052 4.577 43.2%

2 1 week (sum per day)
Low 0.669

(385) 1
0.382

(220) 1 42.9%

High 2.014
(1160) 1

1.265
(729) 1 37.2%

3 3 months (hourly mean)
Low 0.768 0.369 52.0%

High 2.568 1.194 53.5%
1 Converted to daily format.

The results highlight that the CNN’s best performance compared to the naïve baseline
was forecasting an average week across the next three months for both low and high energy
users. The percentage difference between the CNN and baseline MSE was lowest in the
second scenario, which forecasts the following week, although the CNN forecast was
still superior.

4.5.1. Scenario 1: 24 Hours

The first scenario consisted of the next 24 h of each individual households’ electricity
usage. The CNN’s predictions compared to the actual hourly electricity consumption values
for both low and high energy users are depicted in Figure 11. The Pearson correlation
coefficient assesses the linear association between the CNN’s forecasted and actual values,
where 1 represents perfect correlation [63]. In this case, the correlation coefficient was 0.692
and 0.674 for the low and high energy users, respectively (Figure 11a,b). Figure 11a,b show
that actual hourly electricity consumption tends to be higher than the CNN predictions.
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In the absence of SHS specific electricity load forecasting models, SHS operators likely
rely on naïve baselines. In this scenario, the CNN performed over 40% better than such
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a naïve baseline for both low and high energy users (Table 9). As the CNN forecasts
individual customers, it is difficult to portray the results representatively. Therefore, the
average hourly electricity consumption over all test dataset customers was examined for
low and high energy users, respectively (Figures 12 and 13).
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The results highlight that overall the CNN tends to predict lower values than SHS
users’ actual consumption. The predictions are particularly close to reality in the morning
hours and during the evening peak (Figures 12 and 13). Gustavsson [8] also showed
that households mainly utilised their SHS in the evening (18:00–21:00). The 24 h ahead
forecast could be used by operators of SHS based microgrids to improve their ability to
balance loads and anticipate potential demand surges. Soltowski et al. [54] highlights
that connecting multiple SHSs to each other in such a microgrid would likely lead to less
generated electricity being squandered.
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4.5.2. Scenario 2: 7 Daily Sums

The CNN forecasted the next seven days’ total daily electricity consumption for
individual customers (Figure 14a,b). The low and high energy users had Pearson correlation
coefficients of 0.704 and 0.714, respectively. Figure 14 shows that the CNN tends to predict
that households consume less than they actually do.
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Figure 15 displays customers’ actual electricity consumption and the CNN’s prediction
for both low and high energy users. It highlights that the CNN performs generally well
when forecasting the actual sum values for the next seven days.
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The average actual daily consumption across customers is relatively stable over the
week, although for high energy users there does appear to be an increase in usage on the
weekend in Figure 15. SHS companies could provide valuable feedback to households
on their expected energy usage for the next seven days through phone calls or visits. For
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instance, if these forecasts highlight a stark difference in usage for particular days in the
next week, customers could be informed of this early on. This enables households to change
their behaviour and reduce their likelihood of running out of battery. Consumers may also
be interested to know by how much their consumption varies on a weekday compared to a
weekend and reflect for what activities they utilise their SHS. As discussed in Section 2,
previous studies highlighted the effectiveness of such feedback interventions on changing
consumption behaviour [16,39]. Both Fischer [64] and Karjalainen [65] observed that
households value regular feedback information on their past electricity usage. Moreover,
consumers could be informed of their likely future electricity usage based on the model’s
forecast, enabling them to manage their upcoming expenditure [41,42]. Future studies
could trial this approach to gauge the impact on households’ electricity consumption and
perceived financial control.

4.5.3. Scenario 3: Usage across 3 Months

The final scenario consists of forecasting an average week in the next three months
for each customer. This prediction offers a more robust picture of a household’s future
consumption than if the CNN was tasked with only predicting a week 3 months in the
future, which may feature atypical usage patterns. This scenario shows households’ average
usage in the future, enabling decisions based on these forecasts to be made more confidently.
The CNN performs better in this average based scenario compared to forecasting sum
values (Figure 16a,b). The Pearson correlation coefficients for low and high energy users
are 0.795 and 0.811, respectively. The CNN is more likely to predict higher usage values
compared to the actual values in the high energy scenario, which accounts for the outliers
in Figure 16b.
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The electricity consumption of all low and high energy consumers within the test
dataset are pictured in Figures 17 and 18, respectively. The CNN’s forecasted results nearly
match the real values, although the model tends to be quite cautious, being prone to predict
lower peaks than actually occurred.
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for all high energy test dataset customers. The black vertical line separates the days.

The electricity consumption across a week for the whole customer base is relatively
stable and follows a regular pattern (Figures 17 and 18). High energy users had a more
pronounced peak during midday compared to low energy users. A similar distinction
was observed in the behaviour of television and non-television owners in Section 4.3, with
television owners also experiencing this midday peak.

The SHS provider can use these predictions to better cater to their customers’ needs
based on their specific past and future usage profile. For instance, a household’s forecast
may reveal that their consumption levels will result in them regularly running out of
battery, which other studies have also identified as an issue affecting consumers [8,12]. The
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company could then intervene by giving customers the option to switch to a SHS with a
higher capacity that would match their requirements. Policymakers could also aggregate
these load forecasts to a district or even province level to pinpoint areas that will experience
high average consumption levels. This information, in addition to an investigation of the
districts’ past usage trends, could factor into decision-making on where future microgrids
should be built or grid expansion should commence. Zeyringer et al. [66] highlighted the
importance of regionally specific electricity planning, as in certain areas decentralised solar
solutions can be more cost efficient than grid expansion.

5. Conclusions

Significant strides were made to increase energy access over recent years, including
providing additional support for off-grid energy technologies, which have grown in promi-
nence. However, more work is urgently required to achieve energy access for all by 2030.
To aid this mission, it is important to gain a better insight of the households that adopt
off-grid energy systems, such as SHSs, to understand both how they use them and for what
purpose. This enables off-grid energy providers to reach unelectrified households more
effectively and retain customers that are at risk of repossession.

This paper provided a rare insight into SHS customers’ electricity usage based on a
large-scale analysis of real-time data derived directly from the SHSs of 63,299 households.
The past usage trends revealed differences in daily electricity consumption patterns for
television owners and those without a television. In addition to an evening peak, television
owners also experienced a second usage peak in the afternoon. This study found that for
over 70% of customers monthly electricity consumption had decreased a year after SHS
installation. This highlights that merely owning a SHS is not enough, as households also
require the financial stability to make regular payments in the long run. SHS providers
and policymakers should take note of this finding and examine possible strategies to
aid affordability. These could include companies offering longer payment periods or the
government introducing end-user subsidies.

This is the first study to utilise a CNN to forecast SHS customers’ electricity consump-
tion and one of the first to use a 3D CNN architecture for load forecasting with time series
data, as far as the authors are aware. A novel 3D CNN was tested on three scenarios, which
forecasted individual SHS customers’ electricity consumption. These consisted of predict-
ing 24 h ahead, the daily sum for the next week and an average week across the next three
months for low and high energy users. The CNN’s performance was consistently superior
when predicting low energy users compared to high energy users’ consumption and the
lowest MSE was derived when forecasting an average week across the next three months.
This study highlights the value of using an advanced forecasting model, such as a 3D CNN,
which outperformed the naïve baseline in each scenario. Despite the challenge of SHS
users’ highly variable electricity usage, this study argues that more electricity forecasting
should be performed, as the results could aid policymakers, off-grid energy providers and
households. SHS companies could use these predictions to offer a more tailored service to
individual households and provide them with direct feedback, enabling customers to better
budget for their future expenditure and avoid running out of battery. The CNN could
also be utilised to aid load balancing for SHS based microgrids and help policymakers to
identify areas with high consumption that could be well-placed for future grid expansion.

The findings of this research and the developed model could be applied to a multitude
of contexts. It would be insightful if future studies used this type of model to forecast
individual household’s consumption in different countries to observe potential similarities
or differences. To gain an even deeper insight of customers’ usage pattens, more advanced
clustering techniques should be considered. Different models could be used to forecast
SHS users’ future electricity consumption, including a LSTM or a one-dimensional CNN,
whose performance could then be compared to this study’s CNN. Finally, future studies
could test the performance of 3D CNNs for other load forecasting purposes.
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