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Abstract: The application of Computer-Aided Engineering (CAE) tools in mechanical design has
consistently increased over the last decades. The benefits introduced by virtual models in terms of
time and cost reductions are the main drivers for their exploitation in industry as well as for research
purposes in academia. In this regard, Computational Fluid Dynamics (CFD) can be exploited to
study lubrication and efficiency of gears. However, the mesh handling complexities deriving from
the boundary motion is still a concern for its application to multi-stage gearboxes. In this work, an
innovative multi domain partitioning method for the simulation of a two-stage industrial speed
reducer is presented. The implemented solution foresees the combination of two remeshing strategies,
namely GRA (Global Remeshing Approach) and GRAMC (GRA with Mesh Clustering), and resulted
in a computationally effective performance. The results were compared with experimental data
obtained with measurements on the real system, providing a good agreement in the power losses pre-
diction. Considering the complexity of obtaining such results experimentally, the proposed numerical
algorithm can offer substantial benefits for an estimation of the transmissions’ efficiency in various
operating conditions. The numerical model was built in the open-source environment OpenFOAM®.

Keywords: CFD; gears; efficiency; lubrication; remeshing strategies; multi-stage gearboxes; mesh
handling; partitioning methods

1. Introduction

The reduction of wear in mechanical components as well as the more stringent require-
ments in terms of energy savings require the proper design of mechanical transmissions (i.e.,
gearboxes) to ensure a proper lubrication supply. Indeed, the lubricant is a fundamental
design factor to guarantee a long functioning time and to reduce the downtime periods
of the system. By establishing a thin film between the surfaces in contact, it decreases the
frictional (load-dependent) power losses. Lubricant is also involved in heat dissipation.
The determination of the correct lubricant quantity is, therefore, a key aspect to achieve
eco-friendly solutions. At the same time, due to the mutual interaction between the lu-
bricant and the system’s components, additional power losses originate. These losses are
called load-independent (or no-load) and can be subdivided in three main contributions:
churning, squeezing and windage. The churning phenomenon is typical of dip lubrication
conditions, where the oil resistance to the mechanical components’ movement causes high
pressure and viscous effects. Windage refers to the losses that arise from the interaction of
mechanical components and one fluid only (e.g., gears completely immersed in oil). Lastly,
the pressure gradients in the engagement region generate axial fluxes that promote the
squeezing power losses (also called pocketing).

The first analyses aimed at proposing empirical equations for the estimation of the
power losses were performed by [1–3], who derived analytical equations for the calculation
of the churning losses of a smooth disk in dip lubrication conditions. The first work on gears
was done by [4], who proposed an equation that considers the oil viscosity, the tangential
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velocity of the gear, the tip diameter and the face width. One of the milestones in the study
of the power losses in gears is represented by the work of Mauz [5], who, for the first time,
considered the mutual interaction between mating gears in the analytical formulations.
Despite being one of the most complete models available in the literature, it has some
important limitations, among which the fact that it can be used only for spur gears with
reduction ratios between 1 and 2. Moreover, the equations are valid for tangential velocities
between 10 and 60 m/s only. Specific studies focusing on the gears’ design parameters
(module, diameter, face width, etc.) and on the lubricant characteristics (immersion depth,
viscosity, density, etc.) were done by [6,7]. The experiments were performed varying the
rotational speed between 100 rpm and 3000 rpm, the module from 2 mm to 8 mm and the
oil viscosity from 20 mm2/s to 2000 mm2/s. The influence gearbox dimensions and the
radial wall distance were also investigated. An increase of the churning losses with the
immersion depth and the oil viscosity and a digressive growth with the angular velocity of
the gears was observed. Equations based on dimensionless numbers for the calculation of
the churning power losses were proposed by [8,9]. The scholars noticed that the module has
little influence on the churning losses and that the wheel’s diameter becomes an important
factor only at high rotational speed. Moreover, they observed that the total losses generated
by two mating gears are not equal to the individual contributions of each one of them
when measured separately. Specific experimental analyses on a gear pair were performed
by [10], who analyzed various operating conditions including the rotation direction of the
wheels (clockwise and counter clockwise). While all the above-mentioned studies have
focused on spur gears, recent formulations for the calculation of the churning power losses
of spiral bevel gears were proposed by [11,12], who concluded that the immersion depth
has a strong influence on the churning power losses of this type of gears.

Nowadays, it is possible to study the complex phenomena involved in gears’ lubrica-
tion exploiting numerical solutions. CFD offers the possibility to model the desired system
without the limitations on the operating conditions typical of the empirical models. Two
possibilities are available to build digital twins of geared systems: meshless and mesh-
based approaches. Meshless approaches are based on the discretization of the fluid with
discrete elements (contrarily to mesh-based approaches that discretize the spatial domain).
The great advantage of these techniques is related to the fact that the issues associated
with the topological changes are avoided. Meshless models are capable of predicting the
main lubricant fluxes, while the power losses calculation are not particularly accurate [13].
Complex domains involving worm and bevel gears as well as multi-stage gearboxes were
studied exploiting meshless methods as the SPH (Smoothed Particle Hydrodynamics) and
the MPS (Moving Particle Semi-Implicit) [14–17]. These works highlight the effectiveness of
meshless approaches in the prediction of the lubricant fluxes even for complex kinematics.
On the other side, mesh-based methods foresee the discretization of the “empty space”
between the moving objects, i.e., the regions where the oil can flow. Simplified numer-
ical models exploiting sectorial symmetry were presented by [18–20] for the prediction
of the windage power losses of a single gear. The assumption of a 2D model led to an
underestimation of the losses as compared with measurement. Dai et al. [21] exploited the
MRF (Moving Reference Frame) approach to study the windage power losses of a spur
gear, showing good agreement with experimental data, while Cavotta et al. [22] studied
the churning power losses of a disk. Following the same approach, Bianchini et al. [23]
analyzed the load independent power losses of an epicyclic gearbox, concluding that the
trend of dissipated power with rotational speed is less than cubic. Extensive analyses based
on a dynamic mesh approach were done by [24–26], who validated the numerical models
of a FZG gearbox (ISO 14635-1 [27]) with experimental data in several operating conditions,
demonstrating the accuracy of the implemented virtual models.

Thanks to recent advancements in computer science, more complex domains with
respect to spur gears were approached with numerical tools. Peng et al. [28–30] built
a CFD model of an hypoid gear pair. The results were compared with experimental
observations in terms of fluid flow and power losses. Lu et al. [31,32] analyzed the churning
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power losses and the temperature profile of an intermediate gearbox of an helicopter.
The simulations were massively parallelized to reduce the computational time. Oil jet
lubrication was studied by [33,34] in order to find the position of the nozzle that guarantees
the optimal lubrication of the teeth. A numerical model for the prediction of churning and
windage power losses of a single spiral bevel gear was presented by the authors [35]. The
simulations could predict the trend of the losses justifying from ta numerical point of view
the experimental observations.

As can be noticed, all the works deal with single-stage gearboxes of various gear types
(spur, helical, bevel), but not with multi-stage industrial gearboxes. On the other side,
works dealing with complex domains have been found only meshless approaches, in which
the issues of mesh deformation are avoided.

In this work, a Finite Volume Method (FVM) model for the study of a two-stage
gearbox has been implemented in the open-source environment OpenFOAM® [36]. The
numerical model is based on the exploitation of two remeshing strategies previously devel-
oped by the authors (GRA—Global Remeshing Approach and GRAMC—Global Remeshing
Approach with Mesh Clustering). These have been combined together in order to be able
to handle the rotation of multiple gear pairs. By doing so, a CFD model for the efficient
simulation of an industrial gearbox has been developed. Several operating conditions have
been investigated, including different rotational speeds and temperatures. The numerical
results have been compared with the experimental data. The aim of the proposed approach
is to show how, by exploiting an efficient strategy for the remeshing process, it is possible
to simulate a multi-stage gearbox efficiently even with a mesh-based approach.

2. Materials

Multi-stage gearboxes are characterized by a compact design with high transmission
ratios and the possibility to combine different gears’ types. In the current analysis, an
industrial gearbox produced by Comer Industries was considered. It is mainly employed
in combined harvesters and self-propelled machines, and in agricultural machinery and
garden equipment. Its main geometrical characteristics are reported in Table 1.

Table 1. Gears’ geometrical characteristics.

Characteristic Unit Gear 1 Gear 2 Gear 3 Gear 4

Normal module mm 2.65 2.65 2.65 2.65

Number of teeth - 22 27 17 66

Pressure angle 18 18 18 18

Helix angle 28 28 30 30

Face width mm 24 22 24 22

The analyzed solution consists in a two-stage gearbox, with a total transmission ratio
of 4.76. The power enters from the input shaft (on which the first gear is mounted) and is
transmitted through the gear train to the output shaft (where the fourth gear is mounted).
Each of the three shafts is supported by a pair of ball bearings. The cross-section of the
gearbox is illustrated in Figure 1.
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Figure 1. Cross-section of the gearbox.

The gearbox was tested in no-load operating conditions. An electric motor supplies
the power that is completely dissipated in terms of heat by the mechanical components.
The current testing configuration allows a direct measurement of the load-independent
power losses. It is based on the principle of power circulation. The transmitted torque
is applied by a load clutch and measured by a load torque meter. The electric engine
only supplies the total power loss, which is measured by a loss torque meter between the
electric engine and the power circle. In no-load operating conditions, only negligible torque
is applied to the load clutch, so that the load-independent power loss can be evaluated
directly. A Shell Spirax S4 TXM oil, whose properties are listed in Table 2, is used. This
lubricant exhibits excellent characteristics for what regards stability against oxidation and
resistance to wear, corrosion, and foaming effects. It is mainly used for hydraulic systems
and auxiliary systems of agricultural machines and tractors.

Table 2. Lubricant’s properties.

Property Unit Value

Density at 15 ◦C kg/m3 882

Kinematic viscosity at 40 ◦C mm2/s 60

Kinematic viscosity at 100 ◦C mm2/s 9.4

Viscosity index - 138

Flash point ◦C 220

Pour point ◦C −42

3. Methods
3.1. Mathematical Description

The numerical model has been implemented in OpenFOAM®. CFD codes are based on
the mass, momentum, and energy conservation equations. These are second-order partial
differential equations. Except for few simple cases in which the system of equations can be
solved analytically, numerical methods should be introduced. In the current analysis, the
thermal effects have not been considered. Therefore, the energy equation was not activated.

The FVM method [37] is adopted. This implies that the computational domain is
subdivided into finite volumes. The integration of the conservation equations on each finite
volume leads to the following:

d
dt

∫
V

ρdV +
∫
A

ρU·ndA = 0 (1)
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d
dt

∫
V

ρUdV +
∫
A

(
ρUU − P

=
I +

=
τ

)
·ndA−

∫
V

ρGdV = 0 (2)

where ρ is the density, U is the velocity, P is the pressure,
=
τ is the viscous stress tensor, G

represents the external forces, dA is the differential area, and dV is the differential volume.
These equations are approximated to linear equations through the Gauss quadrature.
Generally, higher interpolation orders and finer mesh size lead to more accurate numerical
results. In order to consider the simultaneous presence of more than one fluid, the Volume
of Fluid (VOF) method [38] was adopted. This model foresees the introduction of the
volumetric fraction, representing the percentage of each fluid in a computational cell:

∫
V

∂α

∂t
dV +

∫
V

∇
(
αU
)
dV = 0 (3)

where α is the volumetric fraction (0 for pure air and 1 for pure oil, in this case). The
physical properties of the equivalent fluid (ϕeq), calculated as a combination of the ones of
the two fluids (ϕ1 and ϕ2), are defined as:

ϕeq = ϕ1·α + ϕ2·(1− α) (4)

A two-phase solver for incompressible and isothermal conditions, and immiscible
fluids was used. The properties of the lubricant have been set a priori based on the following
relationships [39]:

ρθ =
(ρ15 ◦C

1000
− (θ − 15)·0.0007

)
·1000 (5)

νθ = ν40 ◦C +

(
θ(kelvin) − 313

60

)
·(ν100 ◦C − ν40 ◦C) (6)

where ρ is the density, ν is the viscosity, and θ is the operating temperature.
Each gear is assigned with its rotational speed according to the transmission ratio,

while the pressure and the volumetric fraction must be calculated (Neumann boundary
condition). The box, on the contrary, is fixed in space and has a zero-velocity boundary
condition, while the pressure and the volumetric fraction must be calculated (Neumann
boundary condition). The PIMPLE (merged PISO-SIMPLE) algorithm was adopted to solve
the transient simulations. The SIMPLE algorithm allows to reach the solution’s convergence
very fast, but it can be used only for steady-state cases. The effectiveness of this algorithm
is limited by the fact that it does not contain temporal information. Conversely, the PISO
algorithm is time conservative and can be used in transient simulations. However, the
solution’s convergence is associated with a reduction of the maximum allowable time step.
The PIMPLE combines the advantages of the two schemes: it allows to use big time steps
with relaxation (from the SIMPLE) and, at the same time, it assures the time consistency of
the solution (from the PISO). Three correctors of the pressure equation were imposed to
maintain the stability of the solution. A convergence criterion of 1 × 10−5 was imposed to
all field’s variables. The PCG (Preconditioned Conjugate Gradient) solver was used for the
pressure. The velocity was solved with the PBiCG (Stabilized preconditioned bi-conjugate
gradient). The timestep was set to achieve a maximum Courant number of 1. The time
derivative was discretized with the first-order implicit Euler scheme, while the velocity
with the second-order linearUpwind scheme and the convection of the volumetric fraction
with the vanLeer scheme.

3.2. Numerical Approach

In order to simulate the deformation of the mesh arising from the engaging wheels,
a dynamic mesh approach must be introduced. Indeed, the gears’ rotation requires to
update the numerical grid every little angular step so to ensure that low-quality elements
do not impact the solution’s convergence. The mutual engagement of the wheels cannot be
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approached with simple modeling techniques as the Moving Reference Frame or the Sliding
Mesh approaches. Therefore, an advanced mesh handling strategy has been employed.
Generally, two remeshing methods are used to simulate multiple gears: Local Remeshing
Approach (LRA) and Global Remeshing Approach (GRA). The LRA is implemented in
some commercial software to handle dynamic domains. With this technique, the distorted
elements are substituted with new valid ones based on the imposed quality criteria. This
approach is very effective and allows to simulate not only spur gears, but also more
complex systems such as helical and bevel gears. In OpenFOAM®, this method is not
available, and a different procedure should be followed, namely the GRA (implemented by
the authors). The main advantage of the GRA is that the user has a direct control on the
elements’ size, which can be kept constant throughout the simulation without the risk of
very small elements that may impact the time step and, consequently, the computational
effort required. On the other side, the GRA is an efficient methodology as far as the mesh
generation is performant, e.g., for spur gears, where it is sufficient to mesh only a 2D plane
and then extrude it properly to create the full 3D swept mesh. For additional details on
the GRA, refer to [40]. The authors have implemented another remeshing strategy, named
GRAMC, in order to efficiently simulate also gears’ geometries that do not belong to the
previous category. The latter approach is based on the recursive use of a set of meshes
that covers one engagement. By doing so, with only few numerical grids it is possible to
simulate the whole wheels’ rotations. Exploiting this algorithm, it was possible to also
model helical and bevel gears [41,42].

The system under investigation is a two-stage helical gearbox. A straight application of
the GRAMC is not possible. In fact, this method requires to coherently set the time libraries
and the rotational speeds based on the transmission ratio. In this case, the transmission
ratio is an irrational number. This means that it is not possible to synchronize the two
stages of the gearbox so only a limited number of meshes can be used. Indeed, the positions
of each of the two gear pairs are not periodic, and therefore, another solution must be
considered. In order to contain the computational cost of the remeshing process deriving
from a pure GRA implementation, a multi-domain approach that exploits a combination of
GRA and GRAMC has been adopted. In particular, the GRAMC was used for the input gear
pair (1&2), while the GRA was used for the output gear pair (3&4). By doing so, the whole
domain was decomposed in two sub-regions, each one assigned with a different remeshing
strategy. Salome [43] and Python [44] scripts were used to create the numerical grids. The
Netgen [45] algorithm was used. In a first step, the corners’ points are computed. Then, the
edges are meshed in segments. Finally, an advancing front surface algorithm discretize the
faces. The elements are generated by a Delaunay triangulation, which subdivides the edges,
seeds each surface with internal points, and connects them together. The final elements’
number of the assembled partitions was about 600k tetrahedral cells. The numerical
connection between the two domains was achieved via the introduction of an interface that
links the non-conformal grids (Figure 2).
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1 

 

Figure 2. Domain decomposition: assembly of the two partitions and detail of the mesh on a
section plane.

The input gear pair was handled with the GRAMC. One complete engagement required
the computation of 12 mesh. At the 13th mesh substitution, the first mesh could be reused.
On the other side, the output gear pair was managed with the GRA. This means that the
grids are created and substituted based on the rotation of the input gear pair. However,
since the output gear rotates at a much slower angular velocity, the mesh deformation is
lower. Therefore, there was no need to update the mesh of the output domain every time
the mesh of the input domain was substituted. In the current analysis, the output gear pair
mesh could withstand a deformation equal to 3 mesh substitutions of the input gear pair.
Afterwards, a new valid mesh with the wheels in the new positions was provided and the
simulation could restart. In Figure 3, the flowchart of the described mesh handling strategy
is reported.

Figure 3. Flowchart of the implemented mesh handling strategy.
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The results were mapped from mesh to mesh until a quasi-stationary condition of the
fluid dynamics forces was reached. In Figure 4, the scheme of the simulation procedure
is shown.

Figure 4. Scheme of the solution procedure.

In order to ensure the solution convergence and stability, a very strict control over
the mesh quality parameters has been implemented. The maximum allowable non-
orthogonality and skewness were set to 75 and 2, respectively. A Bash [46] script that
controls the quality of each generated mesh was coded. If the imposed quality parameters
were satisfied, the mesh was kept and saved for the simulation process; otherwise, a new
mesh was generated for the same gear position with slightly different meshing parameters
until the criteria were satisfied. In Figure 5, the scheme of the meshing process is reported.

Figure 5. Scheme of the meshing procedure.
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4. Results

The validation of the virtual model was made by means of the comparison of the
power losses with experimental measurements. The numerical calculation considers the
inertial and viscous contribution given by each gear:

P = ω·∑
i

(
ri × Fpi + ri × Fτi

)
i (7)

where Fpi are the inertial forces, Fτi are the viscous forces, ri is the distance of each face
center from the specified axis of rotation, and ω is the rotational speed. The individual
contributions are then summed, providing the total power dissipation. The measured
power losses include the bearing (PLB) and the seal contributions (PLD). In order to isolate
the gears’ losses (PLG), the PLB and the PLD contributions have been calculated according
to the ISO 14179 [47] and then subtracted from the total losses. The power loss for a specific
operating condition is taken as a mean value over subsequent engaging periods. The
simulation was considered stabilized when less than 5% different was observed between
two subsequent averages.

The gearbox was tested in a vertical position and filled with 0.8 L (corresponding to
half of the output gear filling level). In Figure 6, the experimental apparatus is shown.
An electric motor supplies the input power to the big wheel, from which the motion
of the system is initialized. The power is completely dissipated in terms of heat by the
mechanical components.

Figure 6. Experimental apparatus.

Three rotational velocities (3000÷ 9000 rpm) and three temperatures (40–60–80 ◦C) for
a total of nine operating points were analyzed (3 × 3 full factorial Design of Experiments).
In Figure 7, the comparison between the experimental data and the numerical predictions
in terms of non-dimensional quantities are reported. Indeed, because of confidential rea-
sons, the results have been divided by the maximum predicted power loss, such that the
maximum value is 1. The best agreement was found for 3000 rpm. The results at 6000 rpm
agree with experimental data with a maximum error of 14%. For the 9000 rpm cases, the
numerical results exhibit an error about 30%. Considering that the prediction of the effi-
ciency’s trend can already give important design information, the implemented approach
seems to be an effective tool even for complex geometries as multi-stage gearboxes.
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Figure 7. Power losses vs temperature for the three rotation velocities.

The effect of temperature on the power losses in the range of investigated velocities
can be clearly identified: the higher the temperature, the lower the losses. The other
variable (the velocity) being the same, this trend can be explained through the temperature-
density/viscosity relationships. Indeed, the increase of the temperature is associated with
a decrease of the density and viscosity of the lubricant. This translates into a reduction
of the power dissipation, but also into poorer lubrication capabilities and lower system
reliability. During the experimental tests, it was observed that at high rotational speeds,
the temperature effects became not-negligible. Consequently, the physical properties of
the lubricant change during operation. This could be a possible explanation for the higher
discrepancy between the numerical results and the experimental data at 9000 rpm. In
Figure 8, the thermal measurement performed with a thermal camera are reported. A
maximum of 95 ◦C can be noted on the input seal, while the mean temperature on the box
is about 83 ◦C.

Figure 8. Temperature map of the gearbox measured by a thermal camera.

In Figure 9, the percentage contributions of the three sources of losses (gears, bearings,
and seals) are reported. It can be observed that the gears losses represent the majority of the
total losses. The bearings’ contributions were significantly lower with respect to the gears’
contributions. The power dissipation given by the seals gave a non-negligible contribution,
especially at low speeds.
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Figure 9. Percentage share of the different components for the no-load losses.

In Figure 10, the percentage contribution of the four wheels to the total load indepen-
dent power losses is shown. It can be noticed that for all the analyzed configurations the
bigger gear gives the highest contribution. The losses are generally proportional to the
rotational speed. This effect is evident comparing the losses of gears 1 and 2. Gear 2 and
gear 3 have the same rotational speed, but different pitch diameters, i.e., different tangential
velocities: this reflects the lower power dissipation given by the latter.

Figure 10. Percentage share of each of the four gears for the no-load losses.

The high losses exhibited by gear 4, which has the same pitch velocity of gear 3, is
related to the different loss mechanism (oil churning vs air windage). Indeed, the lubricant
density and viscosity are of some order of magnitudes higher than the ones of air. This has
a direct impact on the individual loss contributions. This effect could be clearly observed
in Figure 11, where the shear of viscous contribution is negligible for gear 4 (oil churning).
For the other three gears, the total losses depend on both the inertial and the viscous
contribution (windage).



Energies 2022, 15, 837 12 of 16

Figure 11. Percentage share of the inertial and viscous contribution for each gear at the analyzed
rotational speeds.

Most of the oil is involved in the lubrication of the output gear pair, thus generating
power losses due to churning, while the input gear pair is less wetted and the windage
effects are predominant (Figure 12).

 

2 

 

Figure 12. Wetted surface (volumetric fraction of oil–alpha oil) of the output wheel and pressure
contour (p) of the input gear pair.
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In Figure 13, it is possible to see the streamlines of the lubricant fluxes inside the
gearbox. The majority of the droplets of lubricant escape radially from the wheels.

Figure 13. Velocity streamlines (U) and flow path inside the transmission.

5. Discussion

Differently from previous analyses, for the first time a mesh-based approach was
successfully applied for the CFD simulation of an industrial multi-stage gearbox. This was
possible thanks to the combination of two remeshing strategies (multi-domain approach),
each one assigned to one stage of the gearbox. The proposed approach has a general
validity and can be applied to study any multi-stage gearbox. Indeed, once a gear pair
is selected for the remeshing with the GRAMC, the remaining stages can be meshed with
a simple GRA and the domains merged together through the introduction of interfaces.
The simulations were parallelized among four cores (INTEL Xeon® Gold 6154 CPU, 4
Cores, 3 GHz−48 GFLOPS) and required about 1 day to reach the regime condition where
the efficiency was evaluated (given that all the meshes have been calculated in advance—
1/2 day of computation—and are immediately available for the interpolation process). The
simulation results showed a good agreement with experimental measurements, despite
some discrepancies at 9000 rpm. The assumptions that have been made (bearing and
seals are not modeled and the box shape is simplified) can be a possible explanation for
this mismatch. Moreover, experimentally, it was observed that at higher velocities, the
hypothesis of isothermal fluid loses its validity; the inclusion of a thermal solver would
probably increase the accuracy of the numerical results. Furthermore, complex physical
interactions between the lubricant and the air were neglected. Recent findings by the
authors [48] have shown that, especially for fluids having a high energetic content (namely
for high rotational speeds), aeration could reduce the losses with respect to the ones
calculated for completely immiscible fluids. This could be another explanation for the
discrepancies at high speeds.

The analyzed gearbox includes small vanes and complex gears’ geometries. Addition-
ally, the complexity of the box shape is higher with respect to the standard test rigs that are
used to validate CFD models of gears. Despite the adopted geometrical simplifications, the
computational domain is still of another level of difficulty in terms of meshing procedure
and topological management. Without an efficient mesh handling strategy, the simulation
of such a system would become unacceptably expensive from a computational point of
view. This work highlights the maturity of CFD codes as well as their possible application
in industrial practice, where such a model can be exploited for an initial estimation of the
efficiency trend in various operating conditions.



Energies 2022, 15, 837 14 of 16

6. Conclusions

The introduction of virtual prototyping in mechanical design has been continuously
increasing. Indeed, the advancements in hardware and software technology led to the
possibility to study specific physical phenomena numerically (structural—fluid dynamics—
multibody—problems). These numerical tools allowed a better understanding of the
physical phenomena and to preliminary evaluations of the systems’ performance. In this
work, a CFD model of an industrial two-stage gearbox was implemented. The decom-
position of the domain in two sub-domains allowed to exploit a limited set of mesh for
the input gear pair, and to create the mesh of the output gear pair at occurrence, thus
limiting the computational costs of the remeshing process. The virtual model allowed to
study the efficiency of the gearbox in different operating conditions. The best accuracy was
achieved at low (3000 rpm) and medium (6000 rpm) rotational speed, while at 9000 rpm,
some discrepancies were noticed. The trend of the power losses at different operating
temperatures could be in any case identified. Moreover, some interesting considerations on
the wetted surfaces and velocity streamlines could be gathered. Considering the amount
of information that such a model can provide in the design phase, the benefits of the
introduction of numerical tools in industrial practice can be clearly understood.
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