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Abstract: The concept of hybrid control has been introduced, in which the analog implementation
of the control algorithm is combined with a digital algorithm for determining the PWM duty cycle.
Single-loop PD and PID control systems are compared to a double-loop architecture with additional
capacitor current sensing for both digital and hybrid controller realizations. The performance is
measured as the THD value under resistor-capacitor rectifier load. It has been shown that a properly
constructed continuous-time model of a digital controller with a PWM power converter behaves like
the actual discrete-time system, which allows for a simple controller analysis and design. The role of
a PWM type for capacitor current feedback is emphasized. The simulation models of a real inverter
are presented, which are used to tune the controllers and to evaluate the control performance for
both rectifier and abruptly changing resistive load. The obtained solutions achieve the THD values
comparable to the VSI without load. The results are contrasted with the control methods based on
resonant filters.

Keywords: UPS inverter; carrier frequency; PWM types; PID control; resonant controllers; hybrid
analog-digital control; capacitor current feedback; THD performance evaluation; modeling; simulation

1. Introduction

DC/AC Voltage Source Inverters (VSI) are commonly used as a basic component of
Uninterruptible Power Supply (UPS) units to convert the DC energy contained in batteries
into the appropriate AC voltage when the mains power fails. Due to the ever increasing
availability of renewable energy sources, single-phase UPS inverters have also found wide
application in supplying local electric power networks.

The sinusoidal output voltage of inverters consisting of conservative passive com-
ponents and semiconductor components acting as switches is obtained by a Pulse Width
Modulated (PWM) signal.

The performance of the inverter is usually measured as the Total Harmonic Distortion
(THD) value of the output voltage under the standard non-linear rectifier resistor-capacitor
(RC) load. Another measure of performance is the distortion of the output voltage caused by
a sudden decrease or increase of the resistive load. In the article, we use both performance
indicators regardless of the source of the distortion.

Since the performance of simple inverters without feedback control is usually not
satisfactory, many control schemes and algorithms have been proposed in the literature.
Since the 1990s, articles have been published that consider combining almost all known
control algorithms that appeared then in control theory, including both continuous and
discrete, with various inverter models.

Recent developments include digital control strategies such as repetitive control [1–5],
dead-beat control [6,7], and discrete-time sliding mode control [8,9].

Due to the sinusoidal reference, a popular concept is to use resonant controllers that
have excellent reference tracking ability under a constant resistive load. Unfortunately,
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single-loop control based on a Resonant (R), Proportionally Resonant (PR) [10–13], or
Repetitive Controller (RC) [2], have poor disturbance rejection properties.

Therefore, a double-loop architecture was proposed, where the outer loop should
follow the reference sine wave and the inner loop should be responsible for disturbance
attenuation. For this purpose, the outer loop was equipped with a Resonant (R), Propor-
tional Resonant (PR), or Repetitive Controller (RC), and the inner loop for controlling the
filter capacitor current was usually based on a proportional controller [2,14–16].

Even more complex multi-loop structures with DC bus voltage decoupling and load
current compensation are shown and discussed in [17]. Another sophisticated multi-input
solution is the Passivity-Based Control (PBC) [18–20] which uses three input variables:
Output voltage, and the inductor and output currents [7].

Since the task of the VSI control is to stabilize the amplitude of the output voltage,
not its phase, reasonable solutions focus on disturbance rejection rather than reference
tracking. This is possible both in the double-loop structure and in a simple single loop that
does not require additional sensors. This makes it possible to use a simpler Proportional-
Integral (PI) controller in the outer loop in a double-loop structure, or a Proportional-
Integral-Differential (PID) in the single-loop structure, instead of a resonant R controller
or proportionally-resonant PR which cause bad dynamics [14,17,21–23]. To maintain the
amplitude of the output voltage, this may only require modifying the amplitude of the
reference signal. One approach in this category is the Coefficient Diagram Method (CDM),
which leads to single loop with dynamical controllers of higher order [7,24,25].

It should be noted that it is practically impossible to compare the results presented
in the literature. They are written at various levels of abstraction, ranging from a ver-
bal description of the expected features of presented systems and ending with specific
quantitative results. The power part is modeled very differently, ranging from treating
the PWM signal as continuous, leading to a continuous-time description, to sophisticated
discrete-time models [26,27]. Some papers, e.g., [2,17], completely neglect digital data
processing and treat inverters as continuous-time systems. Others, such as [12,15], only use
the sampling rate to discretize continuous-time controllers that were designed, neglecting
the effect of sampling and PWM.

To evaluate different algorithms, comparisons should be made for inverters with
the same parameters. This requirement is fulfilled in [7,28–30] where the results refer to
the same physical system. Unfortunately, it is unclear to what extent the conclusions are
valid for other systems. For more general results, a theoretical model for control design is
required along with a simulation model to validate the results. This gives flexibility, which
makes it possible to test systems with different parameters. Such methodology, based on
the Quasi-Continuous-Time (QCT) model of the PWM-controlled system, developed in [31]
for a single-loop digital PID control, has been extended in this article to include hybrid
analog-digital control and double-loop structures.

The article is inspired by the research devoted to double-loop control structures with
additional capacitance current control [14,17,21–23], and on the influence of the sampling
rate on single-loop digital PID inverter control [31]. The positive effect of improving
performance with an increasing sampling rate is mainly due to the shortening of the one-
step delay introduced by the digital controller. This delay can be eliminated by replacing
the digital controller by a delay-less analog algorithm. Such a controller can be embedded
in a digital control system forming a hybrid control system in which an analog setpoint is
obtained as the output of DAC converting the reference value taken from a pre-computed
table, and the analog controller output is converted to the digital one used to determine the
duty ratio for a digital PWM forming system.

The article focuses on the comparison of a single-loop Proportional-Differential (PD)
or PID-type control with a double-loop structure consisting of an inner P capacitor current
control loop and an outer P or PI output voltage control loop. Both analog and digital
realizations of the control algorithms are taken into account and the influence of both
the PWM type and sampling frequency is studied. All control structures are optimally
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tuned to the RC rectifier load case by simulations carried out using the QCT approach and
validated on the PWM model. For comparison with other results, the article is based on the
parameters of an experimental VSI designed for the carrier frequency fs = 25.6 kHz, which
was presented in [7,29,30]. Although it was designed for the carrier frequency fs = 25.6 kHz,
it will be used in the article for two additional frequencies, 12.8 and 51.6 kHz.

2. Double-Loop Control Architecture, PWM Strategies, and QCT Inverter Model
2.1. Double-Loop Control Architecture

Consider the systems depicted in Figure 1 and assume that the Equivalent Serial
Resistance (ESR) of the capacitor is negligible.

(a) (b)

Figure 1. (a) Schematic diagram of a double-loop analog control system with the capacitor current
feedback and an analog PWM modulator, (b) continuous-time model with one reference input
according to [14,17,21–23]. RF is the ESR of the choke.

A distinctive feature of a double-loop structure, proposed in [14,17,21–23] and depicted
in Figure 1, consisting of an inner capacitor current control loop and an outer voltage control
loop, is that the current ic is proportional to the first derivative of vout, i.e.,

ic(t) = CF
d
dt

vout(t). (1)

As a result, instead of differentiating vout(t) to be used in control algorithms, which can
not be done exactly, the signal proportional to the exact derivative of vout(t) can be sensed.

Two combinations of controllers were proposed:

Cv(s) = kv, Ci(s) = ki, (2)

Cv(s) = kv
s + c

s
, Ci(s) = ki. (3)

The first one, called further 2L P+P, is equivalent with a single-loop control system
fitted with an ideal PD controller, while the second, called 2L PI+P, is equivalent with a
single-loop control system fitted with an ideal PID controller. Their transfer functions are:

C(s) = (kv + sCF)ki and C(s) = (kv
s + c

s
+ sCF)ki. (4)

It should be emphasized that neither the substitute diagram of Figure 1b nor the
controllers with a purely differentiating term are physically realizable, and as a result,
double-loop systems cannot be simply replaced by single-loop ones. This also suggests
that the double-loop structures can be superior to the single-loop ones, but at the cost of an
additional sensor. Therefore the main aim of the article is to compare the performance of
these structures.

The systems presented in the aformentioned literature were purely analog with the
natural PWM created by comparing a saw-tooth carrier with the analog output from the
current controller. Any analysis was done assuming the PWM signal as a continuous-time
one. It can easily be shown that such a system would be stable at any, even very large,
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values of ki and kv, leading to ideal control with a control error approaching zero. As for
the actual PWM system, this is of course not true.

Nowadays, in the digital age, analog systems are considered obsolete since all analog
solutions can be cheaply replaced by the digital ones. However, in the area of high-
speed control systems, this is not entirely true since computations take time that leads to
delays affecting the performance. Therefore, we also consider hybrid control, taking the
advantages of both analog and digital techniques with an analog delay-less controller core
and digital set-point and PWM generation.

To summarize, our task is to consider and compare double-loop and single-loop struc-
tures in both purely digital as well hybrid realization. This is illustrated in Figures 2 and 3
along with the notation used to distinguish the particular structure.

(a) (b)

Figure 2. Schematic diagrams of digital control systems: (a) 1Ld-digital single loop, (b) 2Ld-digital
double loop. Switches symbolize sampling performed by Analog-to-Digital-Converters (ADC).

(a) (b)

Figure 3. Schematic diagrams of hybrid control systems: (a) single loop, 1Lh (b) double-loop, 2Lh. It
is assumed that the continuous sine wave is produced from the discrete sinusoidal reference passed
by a Digital-to-Analog-Converter (DAC) and an analog smoothing filter.

2.2. Preliminaries: Open Loop System

The LC filter acts as a controlled plant, the output of which is to follow the amplitude
of the reference sine wave Vm sin ωt despite the variable load depicted in Figure 4.

(a) (b)

Figure 4. (a) Schematic diagram of the rectifier RC load, (b) abruptly changing resistive load.
According to [7,28,29,31], the parameters for th rectifier load in (a) are RLs = 1 Ω, CL = 430 µF,
RL = 100 Ω. For the abruptly changing resistive load in (b) there is RL = 500 Ω. RL is periodically
turned on when the reference sine wave Vm sin(ωt) = 0, and off when it reaches Vm or −Vm.

The dynamics of the inverter can be represented by transfer functions K(s) related to
particular modes of operation. As shown in [31], for the idle period there is:

K(s) =
1

LFCFs2 + RFCFs + 1
(5)

for the resistive load:
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K(s) =
1

LFCFs2 + [ LF
RL

+ RFCF]s + 1 + RF
RL

(6)

and for the conducting rectifier mode:

K(s) =
b1s + b0

a3s3 + a2s2 + a1s + a0
, (7)

with a3 = RLsRLCLLFCF, a2 = RLsCF(LF + RFRLCL) + RLLF(CF + CL), a1 = RLs(RFCF +
RLCL) + RLRF(CF + CL) + LF, a0 = RLs + RL + RF, b1 = RLsRLCL, b0 = RLs + RL.

For
RF = 1 Ω, LF = 1 mH, CF = 50 µF (8)

as in [7,29], the characteristics of these transfer functions are presented in Figure 5.

(a) (c)

(b) (d)

Figure 5. (a) Poles and zero, (b) step responses, (c) Bode, and (d) Nyquist plots of the open-loop
system in two modes. Blue lines−idle, green lines−activ load. In the no-load mode there is σLC = 500,
ωLC = 4444. The resonant frequencies fLC are 702.8 Hz for RL = ∞, and 701.4 Hz for RL = 50. Note
small differences between characteristics of the no-load and the resistive load system, and a large
discrepancy between the no-load and RC load system.

2.3. PWM Strategies

The inverters are controlled by the PWM signal produced by the appropriate switching
of MOSFET or IGBT transistors in the the H-bridge legs which produces a three-level PWM
signal taking the values VDC, −VDC and 0 whose entire length over the carrier period h
equals to d(ih)h. Duty ratio d(t) plays the role of the control variable. There are many PWM
strategies that use different switching techniques [32] implemented in microcontrollers
as so-called PWM with regular sampling, as opposed to natural PWM produced using
analog comparators. Figure 6 shows two symmetrical double-edge PWM along with the
single-edge PWM and PAM. Symmetrical double-edge PWM signals are denoted by PWMΛ
and PWMV according to the isosceles shape of the triangular carrier signal. PWMΛ consists
of two pulses of width hd(ih)/2: One at the beginning of the sampling period and one at
the end. PWMV consists of one pulse of width hd(ih) symmetrical around the centre of the
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period. As opposed to them, a non-symmetrical single-edge PWMS signal is produced by
comparison of the constant value with a sawtooth signal. Pulse Amplitude Modulation
(PAM) is a standard modulation strategy used in the classical theory of sampled-data
control systems. Its amplitude equals to VDCd(ih). As a result, the area of all pulses equals
to VDChd(ih). The PWM modulators are built into modern signal processors and digital
controllers. Pulse Amplitude Modulation (PAM) has a purely theoretical value in the
VSI context.

(a) (b)

(c) (d)

Figure 6. Illustration of various modulation methods: (a)-PAM, (b)-PWMS, (c)-PWMΛ, (d)-PWMV .
Red crosses denote samples of the input signal, yellow dots-switching instants on the intersection of
the modulating function with appropriate sampled value.

2.4. QCT Model of the PWM Controlled Inverter Output

Consider two models of the open-loop system with the rectifier RC load depicted in
Figure 7, where:

M =
Vm

VDC
. (9)

is called the modulation index. In the article Vm = 20V and VDC = 40V are assumed as
default values.

The first model contains a PWM modulator, the second assumes a linear controllable
voltage source with a reference signal delayed by τ. The appropriate value of τ can be
determined as a mean delay introduced by the modulator.

(a) (b)

Figure 7. (a) Open loop PWM controlled system model, and (b) QCT model of the system in (a).

Assume that the system is unloaded and denote:

vout(t) =
∞

∑
k=0

Ak sin(kωt + ϕk) (10)

the output signal vout(t), and:

γ =
τ

h
=

ϕ
re f
1 − ϕ1

ωh
(11)
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the relative delay, where ϕ
re f
1 is the phase shift introduced by the LC filter, and ϕ1 is

the phase shift of the first harmonic after passing the sinusoidal reference through the
modulator and filter. The results for three values of the sampling rate fs and three values of
the modulation index M are collected in Table 1.

Table 1. Values of the relative delay γ as functions of M and fs.

M fs (kHz) PAM PWMS PWMΛ PWMV

12.8 0.5000 0.0849 0.5000 0.5000

0.2 25.6 0.5000 0.0849 0.5000 0.5000

51.2 0.5000 0.0849 0.5000 0.5000

12.8 0.5000 0.2122 0.5000 0.5000

0.5 25.6 0.5000 0.2122 0.5000 0.5000

51.2 0.5000 0.2122 0.5000 0.5000

12.8 0.5000 0.3395 0.5000 0.5000

0.8 25.6 0.5000 0.3395 0.5000 0.5000

51.2 0.5000 0.3395 0.5000 0.5000

It is noticeable that PAM, PWMV , and PWMΛ are characterized by τ = h/2, while
PWMS lives its own life. However, although the system with PWMS is nonlinear, the delay
does not exceed h/2. Linearity is one reason to prefer symmetrical PWM.

2.5. Distortion Functions and Total Harmonic Distortion-THD

Denoting the distortion function ψ(t) as:

ψ(t) =
vout(t)− A1 sin(ωt + ϕ1)

A1
=

1
A1

∞

∑
k=2

Ak sin(kωt + ϕk), (12)

the quality of the output voltage can be expressed by the value of THDH defined as:

THDH =
1

A1

√√√√ H

∑
k=2

A2
k (13)

for H high enough, i.e., covering an interesting range of harmonics. Similarly, a distortion
function χ(t) can be defined for a control signal determined by the duty ratio d(t). Let:

d(t) =
∞

∑
k=0

Bk sin(kωt + φk). (14)

Then the distortion function of d(t) is:

χ(t) =
d(t)− B1 sin(ωt + φ1)

B1
=

1
B1

∞

∑
k=2

Bk sin(kωt + φk). (15)

2.6. Distortion and THD Function in Open-Loop VSI without Load

A comparison of the distortion functions for an unloaded VSI with open loop, char-
acterizing the deviation of the actual output from its first harmonic, obtained for various
PWM types and various carrier frequencies fs, is presented in Figure 8. The residual values
of the carrier frequency are represented there as time functions. Surprisingly, they can have
quite large values, especially at 12.8 kHz. The THD values are collected in Table 2 for all
modulation methods. Note that they depend on both the modulation factor M and fs. They
play the role of a lower bound for a feedback-controlled VSI.
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Since the THD values for PWMΛ are smaller than those for PWMS, this is the second
reason that PWMΛ is used in the article in contrast to [31] which is based on PWMS.

(a) (c)

(b) (d)

Figure 8. Dependence of ψ(t) and THDH from fs and M in the no-load open loop PWMV and PWMS

controlled system. (a,b): ψ(t); M = 0.5, fs = 12.8, 25.6 and 51.2 kHz, (c,d): ψ(t); fs = 25.6 kHz,
M = 0.2, 0.5, 0.8.

The THD values for PAM depend only on fs and are more than two orders smaller
than those of PWMΛ. Unfortunately, since PAM is technically irrelevant to the VSI, this
finding is only of theoretical value.

Table 2. The values of THD∞ for a no-load open-loop PWM-controlled system as a function of M
and fs.

PWMΛ and PWMV PWMS

fs M M

(kHz) 0.2 0.5 0.8 0.2 0.5 0.8

12.8 0.4263 0.3201 0.1913 0.4479 0.4693 0.5814

25.6 0.1063 0.0798 0.0477 0.1266 0.1892 0.2786

51.2 0.0266 0.0199 0.0119 0.0435 0.0881 0.1378

2.7. Capacitor Current and QCT Method

While the output voltage vout(t) seems to be a smooth function of time, the capacitor
current ic(t) is not. Since the capacitor current ic(t) is proportional to the first derivative of
the output volatage vout(t), and vout(t) is contaminated with a ripple presented in Figure 8,
then the ripple gets amplified in ic(t). Figure 9 presents ic obtained assuming three types of
PWM together with the output from the QCT model and the values sampled at sampling
instants. It should be noted that despite the widely scattered inter-sample values, the
samples obtained using PWMΛ and PWMV coincide with the results of the QCT model.
With the exception of the PWMS, there is a close proximity of all models at sampling points
in spite of large inter-sample variability of PWM-controlled systems. This also justifies
the QCT model for non-smooth outputs provided that the appropriate modulation type is
selected. Therefore, in the article, PWMΛ is chosen.
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(a) (b)

Figure 9. Capacitor current ic(t) in the open-loop inverter of Figure 7a using different modulation
types compared with QCT output of the model of Figure 7b and the sampled values. The plots in (a)
are for the no-load system and in (b) for the inverter with a RC rectifier load. Observe that for PWMΛ

and PWMV the sampled values and the QCT values overlap, and for PWMS they differ. Details are
shown for individual sampling periods enlarged in the figures in (b).

3. Control Systems
3.1. Remarks on the Loop and Controller Gains

Note that in the schematic diagrams depicted in Figure 3 and 4, the control systems
work with original variable vout expressed in volts. This is of course not true in the physical
VSI system where these variables are scaled by the measurement path to v′out(t) such that:

v′out(t) = kxavout(t), (16)

where the non-dimensional kxa is the gain of the measurement path chosen so that e.g.,
v′out(t) fits the allowable range of further components. The variable v′out(t) is either sampled
in a digital control system, or it is a physical variable expressed in volts in analog systems.
In the hybrid control system, the physical output of the controller is sampled by an ADC.
In either case, sampling means conversion form volts to machine units, which can be
expressed as [x(ih)] = kadx(ih), where x(ih) are samples of a variable x(t) standing either
for vout(t) or the output u(t) of the analog controller expressed in volts, and [x(ih)] is its
digital representation expressed in machine units. As a result, the dimension of kad is 1/V,
and in the digital control system the actual output of the VSI is represented by its digital
counterpart according to the formula:

[vout(ih)] = kDvout(ih), where kD = kxakad, (1/V). (17)

Conversion of the digital controller output [u(ih)] into the duty cycle involves another
gain kPWM such that d(ih) = kPWM[u(ih)]. As described in [31], kPWM depends on fs.
Moreover, it depends on the PWM type, and for PWMΛ or PWMV is twice as large as for
PWMS. In the hybrid control system, the machine representation of the controller output
u(ih) is [u(ih)] = kDu(ih). And finally, the amplitude of the PWM signal is VDC. As a
result, the entire loop gain kc whose value determines the properties of the closed loop can
be expressed as:

kc = VDCkPWMkDk′c, (18)

where k′c is the controller gain.
In further considerations, we use kc or its equivalent as the loop gain. Then the gain of

the physically existing controller is:

k′c =
kc

VDCkPWMkD
. (19)
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Similar considerations can be made for double loop system also with regard to ic(t),
such that i′c(t) = kxaic(t) with i′c(t) expressed in (V), but they do not influence the loop gain
represented by ki in the same way as kc in the single loop.

3.2. Digital Control Systems

The digital single-loop control systems with a PID controller have been the subject
of extensive analysis in [31]. Here we extend the class of controllers to the PD ones. The
appropriate discrete-time transfer functions are:

1Ld (PD) : H(z) = kc(b0 + b1z−1), (20)

1Ld (PID): H(z) = kc
b0 + b1z−1 + b2z−2

1− z−1 . (21)

The QCT controllers are obtained by the following transformation:

C(s) = H(z)|
z−1=

1−s h
2

1+s h
2

. (22)

As a result the QCT controllers in Figure 10a corresponding with those in (13)–(14) are:

1Ld (PD) : C(s) = k?c
s + c

h
2 s + 1

= kc
s + c
s + 2

h
, (23)

1Ld (PID): C(s) = k?c
(s + c1)(s + c2)

s( h
2 s + 1)

= kc
(s + c1)(s + c2)

s(s + 2
h )

. (24)

Discrete-time controllers applied in the double-loop structure are as follows:

2Ld (P+P) : Hv(z) = kv, Hi(z) = ki, (25)

2Ld (PI+P): Hv(z) = kv
b0 + b1z−1

1− z−1 , Hi(z) = ki. (26)

The corresponding QCT controllers in Figure 10b are:

2Ld (P+P) : Cv(s) = kv, Ci(s) = ki, (27)

2Ld (PI+P): Cv(s) = kv
s + c

s
, Ci(s) = ki. (28)

(a) (b)

Figure 10. Schematic diagrams of QCT models for digital control systems depicted in Figure 3a:
(a) 1Ld-single loop and (b) 2Ld-double-loop with the capacitor current feedback.

3.3. Hybrid Control Systems

The subject of this section is the analysis of control systems depicted in Figure 3. Con-
sider schematic diagrams of QCT models of hybrid control systems depicted in Figure 11.
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(a) (b)

Figure 11. Schematic diagrams of QCT models for hybrid control systems depicted in Figure 2:
(a) 1Lh-single loop and (b) 2Lh-double-loop with the capacitor current feedback.

Analog controllers of the single-loop structure are:

1Lh (PD) : C(s) = k?c
s + c

µs + 1
= kc

s + c
s + 1

µ

, (29)

1Lh (PID) : C(s) = k?c
(s + c1)(s + c2)

s(µs + 1)
= kc

(s + c1)(s + c2)

s(s + 1
µ )

(30)

with kc = k?c /µ, while in the double-loop control system there is:

2Lh (P+P) : Cv(s) = kv, Ci(s) = ki, (31)

2Lh (PI+P) : Cv(s) = kv
s + c

s
, Ci(s) = ki. (32)

The denominator of the transfer function in Equation (29) and (30) acts as a filter
enabling the physical impementation of the PID controller. The time constant µ > 0 should
be small, but at the same time large enough not to amplify noises or ripples contained in
the sensed voltage vout(t). We assume µ = h/2 as an option compatible with a QCT model
in Equation (24) of the discrete-time PID regulator in Equation (21). Then the fundamental
advantage of hybrid control over digital is the lack of one-step delay in the control path in
Figure 11, as it is in Figure 10.

3.4. Optimal Controller Tuning

As far as tuning of the control systems is concerned, it described in detail in [31]
for single-loop discrete-time controllers. With small modifications, it can also be used
for hybrid controllers. More modifications are necessary for differently parameterized
double-loop systems, where for the hybrid control there is:

C(s) = (kv + sCF)ki = kiCF(s +
kv

CF
) = k?c (s + c), (33)

C(s) = (kv
s + c

s
+ sCF)ki =

kiCF
s

(s2 +
kv

CF
s +

kvkσσ0

CF
), (34)

= k?c
(s + c1)(s + c2)

s
. (35)

The easiest way is to express THD as a function of parameters kv or kv, kσ and to find
its minimum assuming the value of ki providing a certain value ∆A of the gain margin
for the no-load system. Another method consists in determining c1 = ĉ2 using methods
of [31]. Exemplary surfaces of the THD values as functions of parameters are shown
in Figure 12. Note the flatness of THD near the extremum. From this it follows that no
particular precision of analog PID components is required.

It should also be noted that the open-loop gain, which determines the dynamics of the
system, is the product of the controller gain and VCD. The gain values presented in Table 3
and Figure 13 and 14 should be interpreted as open-loop gains, not just controller gains.
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(a) (b) (c)

Figure 12. Exemplary surfaces of THD as functions of parameters (a) THD(kv) for 2Lh (P+P) and
(b) THD(kv,kσ) for 2Lh (PI+P), (c) zoomed in view of (b).

Table 3. Values of the optimal gains kc, ki, kv for different systems, ( fs = var).

fs (kHz) 1L (PD) 2L (P+P) 1L (PID) 2L (PI+P)

digital
12.8 kc = 8.5 ki = 8.4, kv = 0.20 kc = 9.1 ki = 8.1, kv = 0.22
25.6 kc = 31.7 ki = 15.5, kv = 0.50 kc = 35.9 ki = 17.2, kv = 0.45
51.2 kc = 124.6 ki = 30.4, kv = 1.01 kc = 146.9 ki = 37.2, kv = 0.80

hybrid
12.8 kc = 19.1 ki = 23.3, kv = 0.78 kc = 20.3 ki = 23.3, kv = 0.72
25.6 kc = 73.8 ki = 46.5, kv = 1.55 kc = 90.1 ki = 46.5, kv = 1.45
51.2 kc = 294.9 ki = 93.1, kv = 3.08 kc = 379.1 ki = 93.1, kv = 2.95

(a) (b) (c)

Figure 13. Dependence of (a) the gain kc for PID single-loop controllers, (b) ki and (c) kv of PI+P
double-loop structures as functions of carrier frequency fs in both digital and hybrid implementation.

The difference between the THD values obtained using various values of kc as func-
tions of the gain margin ∆A at different carrier frequencies fs are displayed in Figure 14.
These characteristics can be used to determine the effect of controller detuning.

(a)

(b)

Figure 14. Dependence of THD and the gain kc from the gain margin ∆A for different values carrier
frequency fs: (a) 1Lh PID and (b) 1Ld PID.
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4. Simulation Results
4.1. Results for the Basic Carrier Frequency fs = 25.6 kHz

A comparison of the distortion functions, characterizing the deviation of the actual
output from its first harmonic, obtained in various control structures with different types
of controllers, is presented in Figure 15. It is to be noted that the 2L structures perform
better than the 1L ones, and that the results of (PI+P)/(PID) are better than of (P+P)/(PD).
Therefore, in the article we will focus on the 1L (PID) and 2L (PI+P) control structures.
Nevertheless, the full set of results in terms of THD for (P+P)/(PD) structures is collected
in Table 4.

1Ld 2Ld 1Lh 2Lh

(a)

(b)

Figure 15. Distortion function ψ(t) and THD values of vout(t) in 1L (PD)/(PID) and 2L (P+P)/(PI+P)
control systems optimized for rectifier RC load working at carrier frequencies fs = 25.6 kHz;
(a) (PD)/(P+P) controller and (b) (PID)/(PI+P) controller.

Blurring is seen in the original PWM output around the QCT one, making the differ-
ence between their THD values shown in Figure 16, where the THD jump in fs is due to
the residual presence of fs in vout.

(a) 1Ld(PID) (b) 2Ld(PI+P) (c) 1Lh(PID) (d) 2Lh(PI+P)

Figure 16. THDH of vout(t) as a function of H in optimally tuned control systems with ψ(t) displayed
in Figure 15b. In (a–d) control structures are arranged as in Figure 15b. Here fr denotes the closed-
loop resonant frequency in the no-load mode. According to Table 6, it equals approximately to
2.4 kHz for (a), 2.9 kHz for (b), 4.8 kHz for (c) and 8.0 kHz for (d).

The dependence of THDH on H has such property that to find controller parameters
minimizing THD, it is enough to use the THD of the QCT system, taking H so that the
frequencies up to the closed-loop resonant frequency fr are covered. To find the final THD
value for a PWM-controlled system, the number H of harmonics taken for the calculation
should be great enough to cover the carrier frequency fs.

Another interesting feature is the shape of the duty cycle d(ih), which in digital
systems is produced by a digital controller, and in hybrid systems can be considered as
samples of a d(t) signal produced by an analog controller. Exemplary plots of both d(t)
and χ(t) along with d(ih) and χ(ih) are displayed in Figure 17.
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(a) 1Ld(PID) (b) 2Ld(PI+P) (c) 1Lh(PID) (d) 2Lh(PI+P)

Figure 17. Functions d(t) and χ(t) and their sampled values in optimally tuned control systems
ordered in (a–d) as in Figure 16 at fs = 25.6 kHz under a rectifier load. Note that the blurry shape of
the continuous-time controller output d(t) is due to large intersample deviations from the values at
sampling instants d(ih) depicted in light blue.

4.2. Results for Carrier Frequencies fs =12.8, 25.6 and 51.2 kHz

The comparison of PD/P+P with (PID)/(PI+P) controllers shown in Figure 15 reveals
the superiority of controllers with integral action. Therefore only plots for better structures
(PID)/(PI+P) are presented in Figures 18 and 19 and further considerations.

1Ld(PID) 2Ld(PI+P) 1Lh(PID) 2Lh(PI+P)

(a)

(b)

(c)

Figure 18. Distortion function ψ(t) and THD values of vout(t) in 1L (PID) and 2L (PI+P) control
systems optimized for the RC rectifier load operating at different carrier frequencies fs: (a) 12.8 kHz,
(b) 25.6 kHz, and (c) 51.2 kHz. All plots are displayed in the same scale. Plots in (a) extending beyond
the display window are also displayed in the appropriate scale in Figure 25.

1Ld(PID) 2Ld(PI+P) 1Lh(PID) 2Lh(PI+P)

Figure 19. Zoomed-in views of the distortion function ψ(t) showed in Figure 18c for various structures
at carrier frequency fs = 51.2 kHz.

The THD values in the right part of Table 4 are shown graphically in Figure 20. Notice
that THD of 1Ld (PID) at 25.6 kHz approximately equals to that of 1Lh (PID) at 12.8 kHz.
The same applies to 2Ld (PI+P) at 25.6 kHz and 2Lh (PI+P) at 12.8 kHz. These dependencies
also apply to the frequencies of 25.6 and 51.2 kHz in the sense that the use of a more
complex structure 2L is equivalent to doubling the carrier frequency. This property is valid
for both hybrid and digital implementations. Figure 20c suggests that this property is also
valid for intermediate frequencies.
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Table 4. Summary of THD values for the PWM modulator and QCT method, written as PWM/QCT,
for the RC rectifier load. The difference between both components is due mainly to the ripple caused
by the carrier signal.

fs (kHz) 1L (PD) 2L (P+P) 1L (PID) 2L (PI+P)

digital:

12.8 2.011/1.980 1.753/1.469 2.156/2.141 1.782/1.559

25.6 0.793/0.786 0.548/0.506 0.717/0.717 0.419/0.409

51.2 0.239/0.238 0.150/0.144 0.184/0.183 0.083/0.081

hybrid:

12.8 0.848/0.672 0.534/0.242 0.715/0.614 0.387/0.176

25.6 0.241/0.202 0.121/0.064 0.150/0.124 0.089/0.036

51.2 0.063/0.054 0.028/0.016 0.032/0.024 0.021/0.007

(a) (b) (c)

Figure 20. THD values for different structures with controllers PI/PID and carrier frequencies fs.
(a) THD in linear scale, (b,c) in logaritmic scale.

4.3. Abruptly Changing Resistive Load

As far as the effect of abruptly changed resistive load according to Figure 4b is con-
cerned, Figure 21 shows that the 2Ld structure does not significantly improve the response.
However, it shows the excellent control results for hybrid systems. Interestingly, the maxi-
mum value of ψ(t) is similar as in a digital system, but it extinguishes much faster, so that
the THD value is smaller.

1Ld(PID) 2Ld(PI+P) 1Lh(PID) 2Lh(PI+P)

(a)

(b)

(c)

Figure 21. Distortion function ψ(t) and THD values of vout(t) in 1L (PID) and 2L (PI+P) control sys-
tems optimized for the rectifier resistive load operating at different carrier frequencies fs: (a) 12.8 kHz,
(b) 25.6 kHz, and (c) 51.2 kHz. Plots in (a) extending beyond the display window are displayed in the
appropriate scale in Figure 25.
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5. Other Features

In this section, comparisons of the considered structures will be made using various
characteristics. Further interpretations and explanations can be gained from the root loci
and frequency characteristics.

5.1. Closed-Loop Roots

The root loci of single-loop PID hybrid and digital control systems for different values
fs are shown in Figure 22, with the dominant roots:

s1,2 = −σ0 ± jω0 = −σ0(1± jθ); ω0 = 2π f0 (36)

pointed by arrows. Two aspects are to be noted. First, that ω0 thus f0 increases as the
sampling rate fs increases. Second, that at the same fs, f0 of the hybrid system is greater
than that of the digital system.

Figure 22. Root loci of 1L PID hybrid and digital control systems for different values of fs. The top
row is for 1Lh (PID), the (bottom) row for 1Ld (PID). From (left) to (right), fs takes ascending values
of 12.8 kHz, 25.6 kHz, and 51.2 kHz. The dominant roots are indicated by arrows.

In Figure 23a, comparison is made between double-loop and single-loop systems
working at the same fs = 25.6 kHz. Similarly, as previously, the f0 of hybrid control
systems is greater than of digital ones. However, when comparing f0 of more advanced
double-loop systems with simpler single-loop systems then the benefit in terms of higher
frequency f0 is much greater for a hybrid than for digital implementations. This is clearly
seen in Table 5 where the dominant roots are listed for all structures (with integral action)
and for all frequencies considered. These roots are also shown in Figure 24 illustrating the
relationships between them graphically.

The absolute value of the real part of the root, σ, called the degree of stability, deter-
mines the rate of extinction of transients envelope. The higher σ is, the faster the transients
approach zero. Specifically, the time tr to shrink the envelope r times equals to:

tr =
1
σ

ln r. (37)

θ, called the degree of oscillability, relates two consecutive amplitudes, Ai+1 and Ai, by
the relation:

Ai+1

Ai
= e
−2π

θ (38)
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and determines the number of oscillations during transients. High θ values mean visually
more dense filling of the space between transients asymptote by oscillations to be observed
on plots of ψ(t) presented in Figures 15, 18 and 21. These parameters are collected in
Table 5 and it is clearly seen in the previous plots of ψ(t) that they improve as fs increases.

(a) (b)

(c) (d)

Figure 23. Comparison of (a) 2Lh (PI+P) with (b) 1Lh (PID) and (c) 2Ld (PI+P) with (d) 1Ld (PID) at
fs = 25.6 kHz. Comparison of hybrid and digital systems is also possible. The dominant roots are
shown by arrows.

Table 5. Dominant roots in various control structures and their parameters: f0, σ, and θ.

fs (kHz) 1Ld (PID) 2Ld (PI+P) 1Lh (PID) 2Lh (PI+P)

f0 (Hz)

12.8 1470 1714 2447 3929

25.6 2396 2930 4770 8018

51.2 4798 5938 9650 16,533

−σ0(1± jθ0) and −σ1

12.8 −σ1 = −270 −σ1 = −343 n.a n.a.

−397(1± j23) −547(1± j20) −691(1± j22) −2373(1± 10)

25.6 −752(1± j20) −1065(1± j17) −1958(1± j15) −4626(1± j11)

51.2 −1678(1± j18) −2963(1± j12) −4903(1± j12) −8578(1± 12)

Dominant real roots are the distinguishing feature of the 1Ld (PID) and 2Ld (PI+P)
systems. As a result, the transients in the no-load mode consist of two components: Damped
oscillations and a decaying exponent. This can be seen in Figure 25 as a certain asymmetry
of the oscillations. Another unpleasant property is the relatively high THD value, not much
better than in the uncontrolled system, and the phase lag with respect to the reference
signal, see Figure 26a. The reason of the latter is the relatively small gain value that makes it
necessary to increase the reference amplitude to obtain the required output voltage vout(t)
at 50 Hz. Increasing the gain does not influence the phase. As a result, the system does not
follow the phase but is able to maintain the required amplitude. Figure 26 shows that there
are no such problems at higher carrier frequencies. Summarizing, it can be concluded that
12.8 kHz is too low a frequency for the digitally controlled VSI under consideration.
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(a) (b)

(c) (d)

Figure 24. Dominant roots of the closed-loop systems. (a,b) single-loop systems, (c,(d) double-loop
systems. Axis scales other than in Figures 22 and 23 are used to show the details. Therefore, angle
α = arctan θ differs from α′. In particular, α = 86.8◦, Ai+1/Ai = 0.70 for θ = 18, and α = 85.2◦,
Ai+1/Ai = 0.59 for θ = 12.

(a) (b) (c) (d)

Figure 25. Plots of vout(t), iout(t) and ψ(t) for the rectifier RC load and abruptly changing resistive
load in a 1Ld(PID) system at 12.8 kHz using PWMΛ and PWMS modulation. (a) PWMΛ, rectifier
load; (b) PWMS, rectifier load; (c) PWMΛ, resistive load; (d) PWMS, resistive load. The presence of
slow real root in the no-load mode demonstrates visually in the last part of the ψ(t) plots in (a,b), and
in the first part of the ψ(t) plots for a system with a resistive load in (c,d), as asymmetry with respect
to the time axis. Observe that there is greater agreement between PWMΛ and QCT than between
PWMs and QCT.

5.2. Closed-Loop Frequency Plots

Further interpretations can be obtained from the frequency plots of the complementary
sensitivity function T(ω) and the sensitivity function S(ω) defined generally as:

S(ω) =

∣∣∣∣ 1
1 + C(s)K(s)

∣∣∣∣
s=jω

, T(ω) =

∣∣∣∣ C(s)K(s)
1 + C(s)K(s)

∣∣∣∣
s=jω

. (39)

Figure 26 shows a comparison of these functions for single-loop hybrid and digital
systems at all considered carrier frequencies fs. The values of resonant frequencies fr,
collected in Table 6, are equal to the values f0 which determine the pair of dominant roots
defined in Equation (29) of the closed-loop system. It is to be noted that a single-loop hybrid
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system with µ ' 0 is equivalent to a double-loop hybrid system. In Figure 27, 1L and 2L
structures are compared separately at all considered carrier frequencies. It is interesting to
note that, analogously to THD, an upgrade from 1Ld (PID) to 1Lh (PID) is equivalent to
doubling fs in 1Ld (PID). This is, however, not the case for 2L structures where an upgrade
from 2Ld (PID) to 2Lh (PID) leads to a value of fr greater than the one obtained when
doubling fs in 2Ld (PID).

(a) (b) (c)

Figure 26. Frequency plots T(ω) of the closed-loop systems. Collections of T(ω) for all structures
considered at various carrier frequencies fs: (a) 12.8 kHz; (b) 25.6 kHz; (c) 51.2 kHz. The values of fr

are summarized in Table 6. fLC ≈ 700 Hz.

Table 6. Resonant frequencies fr for different structures and carrier frequencies fs.

fs (kHz) 1Ld (PID) 2Ld (PI+P) 1Lh (PID) 2Lh (PI+P)

fr (Hz)

12.8 1479 1714 2446 3930

25.6 2395 2927 4770 8013

51.2 4795 5922 9650 16,520

5.3. Impact of PWM Type on Control

PWMΛ was selected as the standard PWM type in this article due to the property
shown in Figure 9 that the samples of actual ic(t) coincide with ic(t) resulting from the
QCT model. It is interesting to check the impact of the PWM type on control structures
considered in the article. The results are shown in Figure 28. As expected, PWMΛ-controlled
systems are closer to the QCT model. Surprisingly, except for the 2Lh structure, the PWM
type is irrelevant to the control performance.

(a) (b)

Figure 27. S(ω) and comparison of (a) 1L structures and (b) 2L structures at various fs.
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(a) (b)

(c) (d)

Figure 28. Influence of PWM type on control. The capacitor current ic(t) and distortion function
ψ(t) are displayed for the structures (a) 1Ld (PID), (b) 2Ld (PI+P), (c) 1Lh (PID), and (d) 2Lh (PI+P)
operating at 25.6 kHz.

6. Comparison with Other Control Methods

The aim of the section is to compare our solutions with Resonant (R), Proportional-
Resonant (PR), and Integral-Resonant (IR) single-loop control structures known in the
literature and mentioned in the introduction. Open Loop (OL), Proportional (P), and
Proportional-Integral (PI) controllers are also a part of this comparison. They are briefly
discussed for digital implementations only.

Observe that for the closed-loop system to reproduce the reference magnitude Vm at
fout = 50 Hz, the Vm value of the reference should be replaced by Vm/T(ωout), where T(ω)
is defined in (39). If desired, the phase can also be adjusted by applying an appropriate
phase shifter to the reference signal.

6.1. Open-Loop System with a Rectifier Load

The Open-Loop system and its QCT representation is presented in Figure 7. Note
that the signal M sin(ωt) can be generated by a resonant controller with apropriately
chosen initial conditions. To maintain amplitude A1 of the fundamental harmonic of Vout(t)
independent of VDC, any change of VDC can be easily compensated in OL by adjusting
M = Vm/VDC. Plots of vout(t), iout(t), ψ(t), d(ih), and χ(ih) as well as the start-up process
are presented in Figure 29.
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(a) (b) (c) (d)

Figure 29. Control in the OL system with rectifier RC load. (a–c) steady-state variables, (d) start-up
process. Note that the start-up process is very fast

6.2. Proportional controller P

The continuous-time transfer function CP(s) and the discrete-time one are:

CP(s) = kp, HP(z) = kp. (40)

The optimal value kp = 0.6 of the gain was found as the one minimizing THD in
Figure 30d using the QCT method. Then Vm has to be multiplied by (1+0.6)/0.6 = 2.67.

(a) (b) (c) (d)

Figure 30. Control with the digital P controller. (a–c) steady-state variables, (d) THD as a function of
kp. Note a small improvement of THD from 3.72% in OL to 2.9% with the P controller

6.3. Resonant Controller R

The continuous-time transfer function CR(s) of the R controller and its digital imple-
mentation HR(z) are:

CR(s) = kr
s

s2 + ω2 , HR(z) = kr
3.9057 · 10−5 − 3.9057 · 10−5z−1

1− 1.9997z−1 + 0.9998z−2 (41)

where ωout = 2π fout. Since for any kr, T(ωout) = 1 at fout = 50 Hz then Vm has not been
modified when using the R controller.

In Figure 31 the characteristics T(ω), S(ω) and root locus are shown for the unloaded
system along with roots at relevant values of kr. Note that the imaginary part of these roots
is almost the same and equals to jωLC at which T(ω) and S(ω) have resonant maxima.
Therefore the transients in the no-load mode in Figure 32 have the same frequency fLC.

(a) (b) (c)

Figure 31. (a) T(ω), (b) S(ω) and (c) root locus of R controlled system in the no-load mode for
various kr. As kr increases, oscillability at fLC increases. The system loses stability at kr = 964.4.

The steady-state of regulation process is presented in Figure 32, and the start-up
process in Figure 33. From T(ω) displayed in Figure 31, it follows that in the unloaded
system the sinusoidal reference can be recreated exactly regardless of kr. On the other hand,
the shape of S(ω), far from 0 except for ω = ωout, with a resonant peak at ωLC increasing
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with increasing kr, explains why the THD in the system with rectifier load increases with
kr increasing.

(a) kr = 1 (b) kr = 450 (c) kr = 900 (d) kr = 1100

Figure 32. R control at different values of gain kr. (a) ∆A = 964.4, kr = 1, no-load mode is stable;
(b) ∆A = 2.143, kr = 450, no-load mode is stable; (c) ∆A = 1.072, kr = 900, no-load mode is stable
but close the stability boarder; (d) ∆A = 0.877 < 1, kr = 1100, no-load mode is unstable.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 33. Start-up process of the R control. (a–h) Transients of vout(t) ordered for increasing values
of kr. Note that it is slower than in OL in Figure 29, even for large kr.

Figures 32 and 33 show that there is a trade-off between the THD value and the
start-up time, where shortening the time results in an increase in THD. As a result, the
minimum THD value approaches the OL value as kr → 0. Whenever kr > 0, sooner or
later the system automatically adjusts to VDC. In the limit situation, kr = 0, the system
becomes OL with the control signal generated by the R-controller with a zero input and
appropriately selected initial values. Then, to conform to actual VDC, it needs to be sensed
and compensated as described in the previous subsection.

6.4. PI, PR, and IR Controllers

Let us consider three controllers:

CPI(s) = kp +
ki
s

, CPR(s) = kp + kr
s

s2 + ω2 , CIR(s) =
ki
s
+ kr

s
s2 + ω2 . (42)

Their digital implementations can be built on the basis of earlier solutions. The
performance surfaces as a function of their parameters are shown in Figure 34.
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(a) (b) (c)

Figure 34. Surfaces of THD values as functions of controller gains for (a) PI, (b) PR, and (c) IR control
systems. Parameters leading to the lowest THD values are marked with a reddish background.

It can be interpreted that the optimal PI controller approaches P with THD = 2.90, so
the optimal PR controller and IR controller also approach the R controller with THD = 3.72.

6.5. Summary

THD for the controls considered here is at best as good as that of the P controller when
PR or PI is used, and for R and IR at best as in an open loop system. To avoid long start-up
process, it is necessary to increase the R-controller gain, leading to a performance worse
than in the open-loop system. As a result, it is hard to find a good reason to choose the
former, especially if VDC=const or no compensation for its variations is necessary.

Summing up, this group of controllers is dramatically inferior to the PID-type struc-
tures analyzed in the article.

7. Conclusions

Two architectures were compared, single loop and double loop for VSI voltage control
systems using hybrid (analog/digital) and purely digital controller implementations. In the
double-loop variant, the the output voltage is controlled by an external loop equipped with
a P or PI controller. The inner loop with a P regulator is based on the filter capacitor current.
The effects of discrete-time data processing and PWM signal modulation were analyzed
using the Quasi-Continuous-Time (QCT) approach that approximates such systems with
continuous-time models. It has been shown that the type of PWM modulation is important
for applicability of the QCT method in a double-loop control architecture where symmetric
double-slope modulation is required.

While building the model and tuning the controller, the variable dynamic structure
of the inverter with rectifier load was taken into account. This was achieved by using a
physical VSI model in the form of electrical circuit for all calculations.

Control loop delay due to PWM signal and the digital control delay are the main
factors that reduce the control performance. Delays can be reduced by increasing the
sampling rate and replacing digital control algorithms with analog.

Another factor diminishing the performance is the implementation of signal differenti-
ation either by differences in digital solutions, or filtered differentiation in analog ones. This
factor is counteracted in the double-loop structure by sensing the capacitor current that is
exactly proportional to the derivative of the output signal. Its disadvantage is the need for
an additional sensor. When comparing more advanced double loop systems with simpler
single-loop systems, the benefits in terms of THD reduction are much greater for hybrid
than digital implementations. Another interesting property is that compared to a 1L struc-
ture, the use of a more complex 2L structure is equivalent to doubling the carrier frequency
in the 1L structure. This property is valid for both hybrid and digital implementations.

In order to obtain good control performance, a high sampling rate should be used, and
the digital control should be replaced with hybrid in which the analog controller core is
integrated with a microprocessor that generates a sinusoidal reference and produces a PWM
signal. An additional benefit is then the release of the processor from the control algorithm
calculations, leaving more time for inverter monitoring, e.g., for detecting overloads and
short circuits [33,34], and other system interface functions or for increasing the sampling
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frequency. Moreover, this can be done almost at no cost as an extension of the signal
conditioning circuit. Unfortunately, upgrading to a 2L design requires investment in an
additional sensor.

As an alternative to the analog controller, a high-speed digital regulator consisting
of A/D converters, hardware-accelerated programmable compensators and digital mod-
ulators implemented using FPGA or as a dedicated CMOS integrated circuit capable of
operating in the range of hundreds kHz [35–37], can be used.

Our solutions control both the first harmonic amplitude and the distortion caused by
the rectifier and abruptly changing resistive load. They are superior in all respects over P,
R, PR, IR and PI controllers.

As the carrier frequency increases, the THD of the controlled VSI with rectifier load
can theoretically approach the lower bound obtained for the system without load. Our
model does not take into account switching delays, ESR of the capacitor, sensor dynamics
and noises becoming important in such extreme situations. This creates space for experi-
mentation and, if necessary, for further model development. The article provides guidelines
and methodology how to do that.
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