
����������
�������

Citation: Drabecki, M.; Toczyłowski,

E. Multi-Objective Approach for

Managing Uncertain Delivery from

Renewable Energy Sources within a

Peer-to-Peer Energy Balancing

Architecture. Energies 2022, 15, 675.

https://doi.org/10.3390/en15030675

Academic Editor: Dimitrios

Katsaprakakis

Received: 23 November 2021

Accepted: 12 January 2022

Published: 18 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Multi-Objective Approach for Managing Uncertain Delivery
from Renewable Energy Sources within a Peer-to-Peer Energy
Balancing Architecture

Mariusz Drabecki * and Eugeniusz Toczyłowski

Institute of Control and Computation Engineering, Warsaw University of Technology, 15/19 Nowowiejska Str.,
00-665 Warszawa, Poland; E.Toczylowski@ia.pw.edu.pl
* Correspondence: m.drabecki@onet.eu

Abstract: On the energy markets, conscious customers may exist who are not only interested in
minimising the cost of energy purchase, but, simultaneously, in optimising some other quality criteria
(arising from ecological concerns, or social responsibility of the energy producers). In this paper, we
develop both a mathematical optimisation problem and a market framework for balancing a power
system in a peer-to-peer market setup, where product differentiation can be considered directly on
the market. Thus, origins of energy may be clearly identified, and product quality characteristics can
be understood by various actors (including households). We derive a multi-objective (mixed-integer)
linear programming optimisation problem for balancing the energy system in a peer-to-peer energy
trading environment, where not only the cost but also other additional quality criteria are considered.
We have identified many possible actors to be present within the proposed market setup. They
include consumers, producers, brokers and flexible prosumers with storage. The approach was tested
on the IEEE 30-bus standard test system, over three different scenarios, by analysing the impact of
various actors/peers activities and different extensions. It has been shown that a multi-objective
energy balancing scheme may be developed through crafted optimisation problem and that each
type of studied peers may bring some added value to the power system balancing.

Keywords: peer-to-peer energy sharing; energy trade; energy policy; market architecture; product
differentiation; multi-commodity offers; network constraints; multi-objective optimisation

1. Introduction

Nowadays, there is a trend of shifting from the centrally-controlled power systems,
where control and trade actions are created by the system operators, towards more decen-
tralised, consumer-oriented systems, where market participants may reveal more prefer-
ences and may have greater impact on market operations. Prosumers are willing to actively
participate in this transformation.

Due to high penetration of the distributed energy resources (DERs), such as prosumers
and renewable energy sources (RES), the tasks of energy supply, dispatch of generating
units and system balancing in the power grids are becoming more and more complex.
High penetration of uncertain weather-related sources makes the secure delivery even
more difficult.

Therefore, appropriate market mechanisms allowing for direct participation of many
actors and for mitigating risks should be developed. A tempting approach is peer-to-peer
market [1], where peers trade energy directly with each other. Some real-life installations
of this market setup have already been put in place. Their examples include Piclo, UK [2],
Vanderbron [3], or SonnenCommunity [4].

Until today, the majority of research in that field has been focused on p2p market
setup that assumes that all peers are solely interested in minimising the cost of energy or
maximising the profits. However, some more conscious customers on the market may be
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interested not only in minimising the cost of the energy purchase, but, simultaneously, may
have preferences on the energy source characteristics that include various quality criteria
(the level of greenhouse gas emissions is the most obvious example, but there may be other
preferences that may arise from various ecological and sustainability concerns, or social
responsibility considerations).

Specifically, a peer may be interested in purchasing energy from particular types of the
green energy sources, or from producers that assure to comply socially responsible standards
of their business. A real-life example of such interest is the commitment made by one
of the world’s leading technology consulting firms—Accenture. Accenture claimed that,
by the year 2023, 100% of the energy it consumes worldwide will come from renewable
energy sources (RES) [5]. This example shows that, nowadays, peers already exist that
would like to consider various quality criteria, while making decisions on the origins of the
consumed energy.

Although tempting, in the current market setups, it is not directly possible to guarantee
that the energy consumed by a customer indeed comes from a particular type of the energy
sources, since, once energy is injected into the grid, it is impossible to distinguish it at
the destination. Today, one of the means to bypass this inconvenience is via the tradable
green certificates (TGC) [6]. In this setup, an RES obtains a governmental certificate for the
volume of energy it injected into the grid over a defined aggregated time horizon (year).
After the certificates are issued, they are traded at dedicated markets. Therefore, a party
that buys a certificate for a given volume of energy vcert may claim that its consumed
volume vcert came from RES. However, this is a virtual commitment that lacks direct links
to possible characteristics of the produced and consumed energy over shorter periods
of time. Therefore, it is not easy for the majority of peers to follow and fully accept
such arrangements. Moreover, the discussed peer should pay twice separately—once for
provision of the energy and then for the certificate itself.

In this paper, we analyse the peer-to-peer market setup with explicit product differen-
tiation, where origins of energy may be clearly identified, so that product characteristics
can be understood by various actors (including households). We explicitly focus on the
described environment. We derive a multi-objective (mixed-integer) linear programming
optimisation problem for balancing the energy system in a peer-to-peer energy trading envi-
ronment. In this multi-objective approach, not only the cost but also some other additional
criteria can be considered. For simplicity, we will be referring to this criterion as energy
quality. It is assumed that peers are not only entirely interested in minimising the cost of
their energy, but may also be interested in attaining a given value of the quality criterion.
In the paper, we propose a way to introduce the additional quality criterion in a trusted
manner. We use the reference point scalarisation method that seems to be well-suited to
solve this multi-objective optimisation problem. The resulting optimisation problem has to
be solved by the responsible market operator.

In that sense, we develop both a tool (in the form of mathematical optimisation
problem) and a framework for power system balancing in a peer-to-peer market setup when
ecological, social, or sustainability criteria are considered in addition to the cost criterion.
It would address willingness of some peers to buy from ecological or socially responsible
sellers. This development forms the contribution of this paper. When implemented,
it could give possibilities to interested peers to buy energy by considering additional
quality criteria, so it might imply the rise in demand for the services with higher values of
these criteria, and would possibly provide better incentives for development of desired
generating technologies or sellers’ business models.

The approach was tested on the IEEE 30-bus standard test system, over three different
scenarios, where the impact of various actors/peers activities and different extensions
was analysed.



Energies 2022, 15, 675 3 of 22

2. Literature Review

Peer-to-peer energy trading has been gaining interest for the past few years since more
and more energy market participants are showing their willingness to participate directly
in the market themselves, and many consumers are becoming prosumers [1].

A significant number of papers were published in the field. Some of them covered the
idea of general setup of such distributed markets, some of them proposed mathematical
models of operating p2p markets and some looked at technical implications of various
setups. Furthermore, some technical reports were already published, looking at technical
implications of p2p implementations [7]. It is worth noting that, apart from classic research
papers, some review articles in existing methods for peer-to-peer and transactive energy
paradigms have already been published [8–12], which shows increasing interest in that field.

Some important examples of papers focusing on general setup may be [1,13–15]. Parag
and Sovacool [1] look at three market setups that may successfully integrate prosumers,
with peer-to-peer being one of them. However, the authors are cautious that some changes
must be made prior to its large-scale introduction. Seeing the p2p market as a possibility
for incentivising prosumers is also in line with findings of [16]. Pires Klein et al. [13] devel-
oped a dedicated p2p business model, which was successfully applied in three physical,
real-life, pilot projects, under Portuguese real energy market data. They demonstrated
that such a model brings cost savings to participants and is indeed feasible to be imple-
mented. However, they outlined that, due to the lack of precise legal regulations, it is not
straightforward to be mounted. Baez-Gonzalez et al. [14] claim that peer-to-peer structures
show benefits such as the ability of working in dynamically changing environments, scala-
bility and symmetric role of peers, which are all important in power systems. However,
they pinpoint some drawbacks too, such as concerns on security, fault tolerance, and the
imperfect assumption that all peers are altruistic and share a common objective (social
welfare). Zia et al. [15] look at a broader term, namely the transactive energy paradigm in mi-
crogrids. They propose a design for both peer-to-peer and community-based markets with
its functional layers. One more example of analysis of real-life peer-to-peer market is [17].
The authors analysed user behaviour in a real-life p2p market consisting of 37 households.
They found that household users showed high interest in energy market operations of the
studied setup. They have also outlined that p2p may increase saliency of renewable energy
sources and may promote load shifting behaviours. However, not every location or cur-
rently existing microgrid may be considered a good candidate for establishing peer-to-peer
trading mechanisms. The authors of [18] propose a method based on optimisation to assess
the feasibility of setting up the p2p mechanism for a given microgrid.

From another perspective, we can pinpoint many papers focusing on producing
appropriate mathematical models of peer-to-peer operation. The authors of [19] used the
game theory simulation approach to show that the p2p trading scheme may improve the
local balance of energy of a low-voltage microgrid. Other game theory approach examples
are [20], whose authors analyse implications of p2p from an equilibria perspective and [21],
where the authors propose a motivational psychology framework that may be used to
design p2p markets.

Apart from game-theoretical approaches, much research interest is given to (dis-
tributed) optimisation models for peer-to-peer energy trading operations. The authors
of [22] propose a mixed-integer nonlinear program for optimising operations of smart
homes in a p2p environment. Due to high computational burden, a heuristic for solving
a similar problem is later proposed in [23]. The authors of [24] propose an optimisation
for p2p decentralised operations, when considering network constraints. Nizami et al. [25]
propose a model for prosumers equipped with an energy storage. Another approach is pre-
sented in [26], where electric vehicles (EVs) are explicitly considered in the model. Another
paper worth noting is [27], where the authors integrate aggregators in power balancing
over a transactive energy paradigm.

From our article perspective, however, one of the most important notions is electricity
product differentiation, since in this work we are explicitly interested in a situation, where
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peers aspire for a given amount of good energy consumed. By good, we mean energy with
quality characteristics that interest the peer—e.g., energy from an ecological source, or
energy produced in a socially responsible manner. Therefore, the differentiation of its origin
is important. The notion of energy differentiation at energy markets is described well in [28].
This concept has already been applied to peer-to-peer trading in [20,29,30]. However, the
approach of all authors of these papers is to introduce peers’ trading preferences (which is
implied by the notion of product differentiation) as an additional cost component inserted
implicitly into their respective cost function. We believe that such an approach is of little
tangibility to the peers and corresponding values may not be well understood by them.
Furthermore, it may be difficult for consuming peers to correctly quantify their preferences
in terms of the costs of trade with other actors.

All things considered, peer-to-peer energy trading is a subject of extensive research.
However, few papers consider differentiation of the energy, and, to the best of our knowl-
edge, none treats the product differentiation as additional criteria in the multi-criteria
optimisation framework. Moreover, despite their research value, the cited papers that
consider product differentiation do not analyse impacts and consequences for different
actors. They also do not take into account that the approach could be interactive. Our
paper intends to fill this gap. In that sense, we develop a mathematical optimisation tool,
together with a market framework to operate power system balancing with preference
criteria additional to the cost of energy. When implemented, this tool may give possibilities
to interested peers to buy energy from preferable sources and to imply the rise in demand
for the services with higher values of these quality criteria. As a result, improvements of
generating technologies or sellers’ business models could be experienced.

3. Proposed Balancing Architecture

It is impossible to physically distinguish energy from different sources when already
injected into the grid. Thus, we believe that only when energy is directly purchased by
customers from particular sellers is it possible to truly reflect buyers’ preferences on origins
of the purchased energy. Other known market mechanisms (such as, for instance, trade of
green certificates), although correctly reflect an amount of physical energy injected, making
it less tangible for customers to understand the origins of its purchased energy well.

In this work, we propose a balancing architecture for day-ahead over a horizon
h = 1, 2, . . . , H accomplished in a peer-to-peer (p2p) manner. In the proposed architecture,
each seller s submits individually priced offers to each buyer j over the considered balancing
horizon. A detailed offering process is described further in Section 3.3.

We specifically consider not only the energy cost criterion, but also other various
ecological social or sustainability criteria that may be of interest for peers participating in
the market. A detailed description of mechanism for considering these criteria is given
further in Section 3.3.1.

3.1. Role of Operator

It is important to remember that it is required for power systems to be operated safely
and securely at all times. Energy/power balance in the power system must be met in
each time period, subject to satisfying many technical and security constraints. In a truly
distributed p2p environment, sellers submit crafted offers to dedicated buyers, and trade
happens directly between peers. Generally, one may envisage the following problems:

• some consumers may receive offers that are not covering their demands;
• some peers may try to execute market power over others;
• dispatch of the generating units that result from bilateral trade may yield network-

infeasible power flows.

The contracted positions of all peers resulting from bilateral trade may appear to
be infeasible or unsatisfactory. In order to resolve the above infeasibility issues, these
balancing problems may be sorted out by the System Operator. The Operator may gather
all balancing offers issued from sellers and buyers, check them for issues mentioned above,
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and reschedule all contract positions of all peers, by solving appropriate balancing problem
that takes into account individual aspirations and reservations of each individual peer
towards its all criteria. Such an approach is viable, since the Operator may have knowledge
of technical details and security issues of the system under operation. The Operator could
serve as the trusted third party for peers. For simplicity of further considerations and
notation, but without any loss of generality, we may assume that the contracted positions
prior to balancing are set to zero and balancing offers can be simply treated as offers.

3.2. Proposed Architecture

As already stated, we propose in this paper a power system balancing architec-
ture/energy market framework. It can be simply summarised in the following points:

1. Each peer submits its aspirations and reservations towards all criteria present on the
market, together with information on its technical constraints.

2. Sellers submit technically identical offers to buyers, but with different individual
prices, as per (2). Prices are offered as per individual business decisions of sellers.

3. The copy of each offer is submitted to the Operator for review and joint optimisation.
4. Optimisation is performed by the Operator and results are returned to all peers.
5. System operates as per balancing dispatch calculated through optimisation.

A simplified version of the process described above is visualised in Figure 1. The
figure illustrates a simple market with only one seller and two buyers.

Buyer j

Seller s

Buyer j+1

Trusted 3rd 

party -

Operator

Figure 1. Schema of proposed balancing architecture.

3.3. Offers
3.3.1. Integration of Additional Criteria

As already described in the previous sections of this paper, the cost of energy is
not the only criterion for peers, as they may be interested in purchasing energy from
particular green sources, or from producers that respect various ecological, social and/or
sustainability concerns. Let us assume that these additional criteria (e.g., amount of green
energy produced, ratio of social responsibility, or others) are quantifiable and linked directly
to a given seller s (assumption forming the basis of the proposed market framework). Then,
for s, we can denote them by vector qs = (q1, q2, . . . , qm), where m is the number of all
possible criteria taken into account and qk is certified value for criterion k. For the proposed
scheme to work properly, peers must be confident that submitted values of qs are genuine.
Therefore, in this work, we assume that there should exist a trusted notified body that would
officially certify sellers on qs. In the proposed scheme, the values of qs are known to peers,
whenever offers are submitted by s.

3.3.2. Multi-Commodity Offering Mechanism

Green and/or socially responsible energy is often produced from renewable, highly
variable sources. If the dispatch of units results from a single-period load optimisation
performed by the Operator, a given source g may be dispatched with maximum available
output for just one single period of time t and not be dispatched for other periods. From a
producer’s perspective, such a situation may be too costly or infeasible—firstly because,
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for some units, its startup may be simply too expensive or infeasible; secondly, because
some generating units are variable and often depend on weather. In a case where, as a
result of optimisation, a seller is committed for only a single time period, and due to force
majeure happening in that very time period, it cannot deliver the demanded amount of
energy, the seller may be charged high penalty costs. Therefore, it is desirable to balance
generation with loads by considering some form of security-constrained unit commitment
and economic dispatch problem over a longer horizon, say, consisting of many time periods
t = 1, 2, . . . , H.

A convenient way of handling multi-period requirements on the market is by using
integrated offers that may represent bundles of commodities in a single offer, in order to
clear up simultaneously many commodities on the multi-commodity market, as presented
in [31]. Here, we can use this general approach to create multi-period offers that represent
profiles of generated or consumed energy over time, in a joint manner for multiple time
periods, but at a single, averaged unit price. If a seller s is able to sell energy profile over
multiple time periods, it can mitigate the risk of paying higher penalties than the total
income over the balancing horizon.

It is worth noting that a given seller normally would be more interested in receiving
the highest income over the entire balancing horizon, and not for a particular time period
only. Thus, offering in a joint manner (for multiple time periods, at an averaged constant
unit price) may bring additional benefits, while mitigating risks of having the generating
source dispatched for only one time period. However, as described further in this section,
when a multi-commodity offering mechanism is available on the market, it is the only
option, and it does not restrain sellers from submitting many single-period offers with
time-varying prices (it is always a matter of the individual seller’s business decisions, how
they wish to design their offers).

A single multi-commodity offer covers many time periods within the balancing hori-
zon. The ith offer of seller s is defined by a vector of parameters αi,s = (α1

i,s, α2
i,s, . . . , αH

i,s),
0 ≤ αt

i,s ≤ 1, ∀t = 1, 2, . . . , H, maximum volume P̄i,s offered over entire horizon, and con-
stant unit price ei,s (over the entire horizon), and the quality vector qs described previously.
Parameter αt

i,s reflects the portion of offered volume Pi,s, 0 ≤ Pi,s ≤ P̄i,s, in a given time
period t. Hence, the amount of energy Pt

i,s offered by s in time period t through offer i is
given by (1)

Pt
i,s = αt

i,s Pi,s. (1)

To conclude, a given multi-commodity offer may be formally described by a four
given in (2).

(P̄i,s, ei,s, αi,s, qs). (2)

It is worth noting that the multi-commodity notation is general enough to also express
standard single-commodity (single-period) offers, as a particular case. Table 1 gives exam-
ples of vector αi,s for a single-commodity and for a multi-commodity offer over balancing
horizon H = 3. Assigning α1

i to 1 and all other α2,3
i to 0 expresses a single-period offer,

with time-varying price. Therefore, the proposed notation allows for consideration of both
time-varying and time-constant offering prices directly.

Table 1. Examples of αi,s a in for single-commodity and multi-commodity offers.

Single-Commodity Multi-Commodity

α1
i 1 0.4

α2
i 0 0.5

α3
i 0 1



Energies 2022, 15, 675 7 of 22

4. Mathematical Modelling and Possible Peers

This section gives mathematical formulation of the multi-objective (mixed-integer)
linear programming optimisation problem for balancing the energy system that takes into
account aspirations and reservations of peers towards all considered criteria. We describe
separately exemplary peers that may take part in the proposed architecture with their
corresponding mathematical models.

However, as already stated in Section 3.2, we propose that all balancing calculations
are performed by the Operator. Therefore, the complete optimisation problem presented in
Section 4.5 must be solved by the Operator. The individual optimisation subproblems of
different peers are presented in this section for the sake of deriving constraints to problem
of the Operator.

4.1. Producer g

In this work, we assume that all producers are formally certified on qs, and the origin
of resources or fuels to produce energy is not considered. Therefore, a given producer g
considers only one criterion, i.e., maximisation of its income. If we assume for simplicity
that production cost function is constant, it is equivalent to profit maximisation. This
having been said, the optimisation problem of g takes on the form of (3):

max fg = ∑
i∈Cg

(ei,g

H

∑
t=1

Pi,gαt
i,g) (3)

subject to

Pt ≤ ∑
i∈Cg

Pi,gαt
i,g ≤ Pt ∀t = 1, 2, . . . , H

where:

• Pt / Pt—min/max generating capabilities of g in time instance t
• Cg—set of peers buying from g
• description of the offer as in (2).

4.2. Consumer i

In this work, we consider a situation where consumers are not only interested purely
in minimising the cost of consumed energy but also in reaching their aspirations towards
additional criteria q.

For simplicity and without losing generality of derivations, in the remainder of this
paper, we will be referring to a single additional criterion q present on the market and
consequently to a single certified value of this criterion for sellers - qs. Under the assumption
that only one additional criterion is considered, a given consumer i is interested both in
minimising the cost of its energy and in reaching its aspiration towards this additional
criterion q. Assuming that i is willing to maximise q, i’s optimisation problem is given
in (4):

max [− f i
1, f i

2]

subject to

f1 = ∑
s∈Ki

ei,s

H

∑
t=1

Pi,sαt
i,s

f2 =
1

∑H
t=1 ∆t

∑
s∈Ki

qs

H

∑
t=1

Pi,sαt
i,s (4)

∑
s∈Ki

Pi,sαt
i,s = ∆t ∀t = 1, 2, . . . , H
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Pi,s ≥ 0 ∀s ∈ Ki

where:

• f1—total cost of energy bought by i;
• f2—q of i averaged over the entire balancing horizon;
• Ki—set of selling peers that submitted an offer to i;
• ∆t—i’s demand for energy in a given time period t;
• description of the offer as in (2).

4.3. Broker b

In the described market setup, we may also foresee the participation of brokers. Their
role may be to group small buyers and to represent them on the peer-to-peer market.
Brokers would buy energy on their behalf and resell it to them afterwards. In that way,
weak buyers may achieve better prices, in comparison to direct negotiations with producers.
This is obviously due to the fact that the aggregated demand of broker b is usually much
higher than the demand of single smaller buyers and in that way b may negotiate much
better unit prices. Furthermore, broker b may also serve to disaggregate multi-commodity
offers into single-commodity ones or vice versa. We assume that a broker is a party that
cannot store energy and needs to resell it immediately after it has been bought—i.e., in the
same time period t.

A broker both buys and sells energy. On one hand, it is willing to reach aspirations
towards q of buyers to whom it is selling the energy; on the other, as it sells the energy
to buyers, b should equally be certified towards q as seller. We propose that it is certified
basing on a broker’s reservation on q submitted to the Operator (averaged over the entire
horizon). This is given in (5):

qb = w rq
b (5)

where:

• w—empirically determined coefficient (w ∈ [0, 1]), describing the ratio of what per-
centage of the reservation has been finally determined by optimisation, usually w ≈ 1

• rq
b—reservation of b towards q over the entire balancing horizon.

A broker is willing to fulfil aspirations/reservations of represented buyers. Thus, it
looks at two criteria—profit maximisation and reaching the desired value of q. Contrary to
the problem of the producer, the broker maximises its profit (and not income) as the cost
components are well known to the Operator. Since the value of criterion q is directly linked
to amount of energy bought over the balancing horizon, it is necessary that this amount is
estimated.

Due to high variability of flows to and from the broker, we propose to estimate the
volume of energy bought by b on the basis of forecasts of the sales. Hence, the expected
values can be used in the optimisation model. Such an approach is a commonly known
method that is currently used by many Distribution System Operators for estimating energy
demand profiles of households based on typical (expected) consumption, as documented
in one of the Polish DSO’s (Tauron Dystrybucja) Distribution Grid Code [32].

Having said all of the above, the broker’s optimisation problem takes the form of (6):

max [ f b
1 , f b

2 ]

subject to

f b
1 = ∑

m∈Cb

em

H

∑
t=1

Pmαt
m − ∑

l∈Kb

el

H

∑
t=1

Plα
t
l

∑
m∈Cb

Pmαt
m = ∑

l∈Kb

Plα
t
l ∀t = 1, 2, . . . , H (6)
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f b
2 =

1
E(∑l∈Kb

Pl)
∑

l∈Kb

ql Pl

Pl , Pm ≥ 0 ∀m ∈ Cb, l ∈ Kb

where:

• f b
1 —broker’s total profit;

• f b
2 —broker’s value of q averaged over entire horizon;

• Kb set of selling peers that submitted offers to b;
• Cb set of buying peers to whom b submits its offers;
• E(∑l∈Kb

Pl)—expected amount of energy bough by broker during entire exchange
horizon;

• description of the offer as in (2).

4.4. FLECSP f

In the peer-to-peer market environment, we can foresee the existence of the most
general type of peers, flexible prosumers with storage, denoted as FLECSP in this work.
They are able to act simultaneously as producers, consumers, and storage operators. They
may then produce energy for their own needs, sell its excess to interested buyers, and use
storage to shift time periods of different actions (e.g., buy energy in time period t and sell it
in t + 5).

In that way, FLECSP should be certified on q equally as a seller. However, it possesses
both its own generating source and can buy energy from others to resell it to other peers
afterwards. Thus, its certification on q should take into consideration both its own source
and the fact of buying energy from others. We propose to denote it as in (7):

q f =
qg

f + qm
f

2
(7)

qm
f = w r f

where:

• r f —reservation of f on q of energy being bought;
• qg

f —officially certified value of q of FLECSP’s generating unit;

• w—empirically determined coefficient (w ∈ [0, 1]), describing ratio of what; percentage
of the reservation has been finally determined by optimisation, usually w ≈ 1.

With such defined certification, we can write FLECSP’s optimisation problem, as in (8).
Similarly as for the broker b, FLECSP is interested both in maximising its profit and in
reaching the targeted level of q over the balancing horizon. Charging and discharging
of storage unit cannot happen simultaneously. This is modelled using binary variables,
causing the optimisation problem to be a mixed-integer program (MIP):

max [ f f
1 , f f

2 ]

subject to

f f
1 = ∑

m∈C f

em

H

∑
t=1

Pmαt
m − ∑

l∈K f

el

H

∑
t=1

Plα
t
l

f f
2 =

1
E(∑l∈K f

Pl)
∑

l∈K f

ql Pl

Pt
f f s + ∑

l∈K f

Plα
t
l + Pt

f g = Pt
f ts + ∑

m∈C f

Pmαt
m + Pt

f d ∀t = 1, 2, . . . , H
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Pt
f d ≤ Pt

f f s + ∑
l∈K f

Plα
t
l + Pt

f g ∀t = 1, 2, . . . , H

Pt
f g ≤ Pt

f g ≤ Pt
f g ∀t = 1, 2, . . . , H

0 ≤ Pt
f f s ≤ SOCt ∀t = 1, 2, . . . , H

SOCt = SOCt1 + ηPt−1
f ts − ηPt−1

f f s ∀t = 1, 2, . . . , H (8)

SOC ≤ SOCt ≤ SOC ∀t = 1, 2, . . . , H

0 ≤ Pt
f ts ≤ M yt

1 ∀t = 1, 2, . . . , H

0 ≤ Pt
f f s ≤ M yt

2 ∀t = 1, 2, . . . , H

yt
1 + yt

2 ≤ 1 ∀t = 1, 2, . . . , H

yt
1, yt

2 ∈ {0, 1} ∀t = 1, 2, . . . , H

Pl , Pm ≥ 0 ∀m ∈ C f , l ∈ K f

where:

• f f
1 —FLECSP’s total profit;

• f f
2 —FLECSP’s value of q averaged over entire horizon;

• K f set of selling peers that submitted offers to f ;
• C f set of buying peers to whom f submits its offers;
• Pt

f f s—amount of energy taken from storage in time period t;
• Pt

f ts—amount of energy sent to storage in t;
• Pt

f g—amount of energy generated in t;
• Pt

f d—amount of energy demanded for f ’s needs in t;
• SOCt—state-of-charge of the storage in t;
• SOC/SOC—min/max constraints on SOC;
• η—effectiveness of charging/discharging system;
• Pt

f g/Pt
f g—constraints on generation from f ’s own generating source in t;

• M—large constant;
• yt

1, yt
2—binary variables for storage modelling;

• description of the offer as in (2).

4.5. Operator

As stated previously in Section 3.2, the only complete optimisation problem considered
in this work is the one for the Operator. All previously described mathematical models,
i.e., the ones of the producers, consumers, brokers and FLECSPs were prevented only to
formulate the Operator’s optimisation problem. All other actors’ sub-problems are built
into the Operator’s problem in the form of constraints.

Having said this, we propose the Operator’s optimisation problem in the following form:

max [ fg,− f i
1, f i

2, f b
1 , f b

2 , f f
1 , f f

2 ] ∀g, i, b, f

subject to
Producers′ constr. ∀g

Consumers′ constr. ∀i

Brokers′ constr ∀b (9)

FLECSPs′ constr. ∀ f

+ DC−OPF network constr. (optionally)
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Incorporating Assurance of Network Feasibility

Power flow resulting from calculated dispatch must stay within its technical limits for
the transmission to happen. As such, the proposed Operator’s optimisation problem may
be extended to take this phenomenon into consideration.

Therefore, additionally to already described constraints, we optionally add to (9) the
network constraints of the standard linear DC Optimal Power Flow problem. DC-OPF is a
linear approximation of the AC-OPF problem, for modelling active power flows within the
power grid in the optimisation problem. Inclusion of the network constraints to the pro-
posed optimisation problem allows the Operator to determine a network-feasible dispatch
of the generating units. However, this happens at the cost of higher computational burden.

Since the DC-OPF problem is well known in the literature, formulation of those
constraints will be omitted in this paper. However, an interested reader may consult
references [33–35] for detailed explanations.

Furthermore, to assure for even more secure transmission, for each time period, the
Operator (together with negotiating peers) may iteratively run the method described in [36].
However, this is given only as a possible extension to the proposed framework and is not
studied within this paper.

5. Methods

The optimisation problem proposed in this work (9) is a multi-objective (mixed-
integer) linear program. Operator is a trusted third party who will perform all necessary
calculations to assign a Perto-efficient market solution that reflects as well as possible
desires of all peers towards their immanent criteria. In that sense, we assume the Operator
drives its decisions based on Pareto preference of solutions. This certainly should yield
efficient (Pareto-optimal) solutions of (9). More information on the notion of rational
decision-making, preferences and Pareto efficiency may be found in [37].

Multi-criteria decision-making is sometimes understood as listing all efficient solutions
of the problem and letting the decision maker decide on which solution they would like to
take [38]. However, the nature of the problem described in this paper is different.

Balancing market should be cleared in the most transparent way possible. Furthermore,
as already discussed, there may exist many peers with many differing aspirations on criteria
considered during balancing. Thus, we propose that it is up to the peers themselves to
provide to the Operator the values of their aspirations (subjectively ideal values of given
criterion) and reservations (values that are acceptable for peers, yet subjectively not ideal).
With those values defined, Operator may perform optimisation calculations, where (9)
must be scalarised. We propose to use for that purpose the reference point method [39]
with partial achievement function as introduced in [40]. For clarity, a brief description of
the method is given below.

Interval Reference Point Method

Let us consider a general multi-objective optimisation problem with m different criteria
f (x) = [ f1(x), f2(x), . . . , fm(x)], with x being the vector of decision variables, denoted as
(10)

max f (x) = [ f1(x), f2(x), . . . , fm(x)] (10)

subject to
x ∈ Q

where Q is the feasible set of solutions.
For the sake of simplifying the notation, in the remainder of this section, we will be

referring to j’th criterion function ( f j(x)) as f j.
Let also aj denote aspiration (ideal value) of j’th criterion, rj denote the reservation

(acceptable, but not ideal value) of the j’th criterion. Then, we can define piece-wise partial
achievement function for the j’th criterion as proposed in [40]



Energies 2022, 15, 675 12 of 22

hj =


γ

f j−rj
aj−rj

for f j ≤ rj
f j−rj
aj−rj

for rj < f j < aj

β
f j−rj
aj−rj

+ 1 for aj ≤ f j

(11)

where γ and β are arbitrarily taken constants such that 0 < β < 1 < γ. Under this
assumption, the partial achievement function is strictly increasing and concave [38]. For
instance, β may take the order of magnitude of 10−3 and γ of 103.

The achievement function hj is piece-wise linear and strictly increasing. Value of hj
is negative until reaching rj, hj equals 0 when f j = rj and equals 1 when f j = aj. After
passing aj, it keeps increasing but at a much slower slope. Therefore, hj can be seen as a
mapping of decision maker’s (DM) satisfaction on achieved output of criterion f j. General
behaviour of achievement function discussed is shown in Figure 2.

𝑓𝑗𝑎𝑗
𝑟𝑗

ℎ𝑗

Figure 2. Partial achievement function of f j.

Having defined the mapping between value of the criterion and DM’s satisfaction,
it is finally possible to scalarise (10). Scalarisation is performed in order to maximise the
minimum value of hj over all criteria j = 1, 2, . . . , m. To assure for Pareto-optimality, a com-
ponent with the sum of all achievement functions is added, with a small weight assigned.
This having been said, one can implement the scalarisation as a linear program (12):

max v + ε
m

∑
j=1

zj

subject to
v ≤ zj ∀j = 1, 2, . . . , m

zj ≤ γ
f j − rj

aj − rj
∀j = 1, 2, . . . , m

zj ≤
f j − rj

aj − rj
∀j = 1, 2, . . . , m (12)

zj ≤ β
f j − rj

aj − rj
+ 1 ∀j = 1, 2, . . . , m

x ∈ Q

where ε = ρ
m and ρ is an arbitrarily chosen small constant [38]. For instance, ρ = 10−4.

We propose scalarisation (12) for solving the Operator problem (9) due to the following
reasons. First, given the nature of achievement functions used and the nature of scalari-
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sation LP itself, it is guaranteed that the resulting solution is always Pareto-optimal. This
may be assured also in other scalarisations (e.g., weighted sum of all criteria). However, the
interval reference point method is interactive. It allows the peers to provide to the Operator
their aspirations/reservations as per their very interest. Thus, the resulting solution is
always transparent and reflects well the desires of all peers.

6. Case Study

The proposed approach has been tested on the IEEE 30-bus standard test system [41]
with six producers. Its one-line schematic is shown in Figure 3. The standard IEEE 30-
bus system does not have any limits on branch flows imposed. Thus, when considering
additional network constraints, we apply branch flows limits as given in Case 30 available
in MATPOWER [42]. For mathematical modelling of the approach, we used Matlab with
MATPOWER and CVX—a package for specifying and solving convex programs [43,44].

Figure 3. IEEE 30-bus system. Graphics taken from [45].

In the case study, we assume certifications on qs of the generating units as given
in Table 2. We assumed that higher certified values of qs imply higher price offered by
generating units.

Table 2. Assumed values of qs.

Gen ID qs

1 0.2221
2 0.4565
5 0.9000
8 0.7981
11 0.8919
13 0.8303

Tests have been performed in a few different settings, depending on types of actors
present and analysed. For the test, we assumed a day-ahead 15-min balancing horizon,
implying that the optimisation horizon is equal to 96 time periods—i.e., H = 96.

First, we look at a simple market with producers and consumers only. Then, we also
analyse the impact of the multi-commodity offers and inclusion of network constraints
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to (9). Furthermore, we also analyse the impact of introducing brokers and also FLECSP
prosumers to the discussed setup. In the last cases, for simplicity, generally we present
results obtained when peers submitted single-commodity offers only. Operations on the
multi-commodity mechanism are limited to Section 6.1.1 only.

6.1. Simple Market—Producers and Consumers

In this section, we analyse a simple market structure, where only producers g and
consumers i are present. We assume they are attached to buses as in Figure 3. We tested the
approach over three scenarios, differing by values of aspirations and reservations of peers.

In Scenario 1, none of the consumer peers care about q, all of them want to pay as
little as possible for their energy. On the other hand, all producers want to earn as much as
possible. This is expressed by their aspirations acost

i and aincome
g , respectively. The interval

between reservations (rq
i ) and aspirations (aq

i ) of consumers towards q is large enough to
cover the entire space of possible values q—to reflect consumers’ indifference towards
this criterion.

In Scenario 2, consumer 9 wants to have a higher value of q associated with consumed
energy, ideally equal to 0.9. This is expressed by its aspiration aq

9 towards this criterion.
However, the peer would also accept q = 0.8 as its reservation towards this criterion,
therefore rq

q = 0.8. At the same time, other consumers would still want to pay as little as
possible; only consumer 9 agrees to pay more for energy with a higher value of q.

In Scenario 3, however, the situation slightly changes. Here, we consider not only
Consumer 9 as aspiring for q = 0.9, but also the remaining consumers wish to have values
of q within interval [0.5, 0.6]. The assumed values of the reservations and aspirations for
different scenarios are summarised in Table 3.

Table 3. Assumed values of aspirations and reservations taken for different scenarios.

Scenario 1 Scenario 2 Scenario 3

aincome
g [$] 5× 105 5× 105 5× 105

acost
i=1,2,..,21\{9} [$] 1× 102 1× 102 1× 102

acost
9 [$] 1× 102 1× 102 1× 102

aq
i=1,2,..,21\{9} 0 0 0.6

aq
9 0 0.9 0.9

rincome
g [$] 1× 105 1× 105 1× 105

rcost
i=1,2,..,21\{9} [$] 4× 104 4× 104 4× 104

rcost
9 [$] 4× 104 6× 104 6× 104

rq
i=1,2,..,21\{9} 1 1 0.5

rq
9 1 0.8 0.8

In our experiments, we observed the following criteria: total cost of balancing for
the entire test system, the number of criteria with optimised values that are better than
the associated reservation, and values of q for consumers 9 and 1. We look at Consumer
9 since it is assumed to aspire for higher values of q in Scenarios 2 and 3. Consumer 1 is
randomly taken for comparison. Numerical results of tests are presented in Table 4. In
this test, only single-commodity offers were submitted. Unit prices were taken randomly,
under the assumption that, for a higher value of qs, the offering price is also higher.
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Table 4. Results of numerical tests—simple market.

Scenario 1 Scenario 2 Scenario 3

Total cost [$] 8.2024× 105 9.3740× 105 9.7246× 105

Number of criteria with values
equal to or better than rj (max. 48) 40 41 40
Values of q of consumers 9 and 1
—[q9, q1] [0.4110, 0.4351] [0.8550, 0.3824] [0.8087, 0.5000]

As seen from the results, the overall cost of balancing increases, when more restrictions
on q are imposed. This is not especially surprising under assumptions that a higher
generator’s certification implies higher offer prices.

We observed that, despite finding Pareto-optimal solutions, not all optimised criteria
always were at least equal to the reservation values, and some reservation levels of some
peers were unattainable. However, the vast majority of the criteria have been optimised in
a way to be at least as good as their corresponding reservations.

6.1.1. Introduction of the Multi-Commodity Offers

In this subsection, we present simulation results for the case, when a multi-commodity
mechanism was introduced. To better outline why this specific mechanism may be of inter-
est to peers, we assume that producer in node 5 is a photo-voltaic farm whose generation
profile outcomes from real-life solar radiation data are taken from Pescara, Italy. Historical
solar radiation data were obtained from SOLCAST [46].

We assume that the above producer submits both single and multi-commodity of-
fers to all consuming peers. Single-commodity offers have exactly the same unit price as
in previous experiments. However, the unit price for multi-commodity offers is lower
due to the fact of much larger volume of offering. It is then up to the Operator to op-
timally decide on offers taken, by solving (9). In our test, we assumed that unit price
in a multi-commodity offer is equal to 80% of the average unit price offered through a
single-commodity mechanism.

For experiments, we take Scenario 1, as parametrised in Table 3. We specifically
compare calculated profiles of generation of PV producer in node 5, between situations
where only single-commodity and both single and multi-commodity offers are submitted.
Calculated PV generation profiles are shown in Figures 4 and 5. Numerical results are
shown in Table 5.

Table 5. Comparison of market indicators between single-commodity offers and single + multi-
commodity.

Single-Commodity Single and Multi-Commodity

Total cost [$] 8.2024× 105 8.3325× 105

Number of criteria with values
equal to or better than rj (max. 48) 40 40
Income of Producer
in node 5 [$] 5.0812× 103 4.6268× 103
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Figure 4. PV generation profile when only single-commodity offers are submitted.
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Figure 5. PV generation profile when both single and multi-commodity offers are submitted.

PV farm is a variable and weather-dependent source. The introduction of a multi-
commodity offering mechanism allowed for committing the PV producer for the best
possible generation profile over the whole time horizon, rather than zigzagging output as
seen in Figure 4. This gives the possibility of reducing startup costs, as well as mitigating
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weather variation-related risks, without further restricting the feasible region of (9). When
no special restrictions, or no multi-commodity offers are in place, in an extreme situation, a
variable source may be dispatched for one time period only. In case of a sudden weather
change, the source concerned will not have any possibility of reacting to the new situation
and will only be charged some penalties.

From presented results, we can also see that introduction of the multi-commodity
offers slightly increased the overall cost of balancing and slightly decreased the profit of
Producer 5. However, the number of criteria being at least as good as its corresponding
reservation has not been changed. Therefore, we may say that functionality is not worse
than in the case of single-commodity offering.

6.1.2. Addition of Network Constraints

Ensuring that power flow resulting from computed dispatch is technically feasible is
of great importance to the Operator. Thus, in problem (9), we envisage the possibility of
adding DC-OPF network constraints.

In this section, we present numerical results of the performed test, where we compared
situations with and without the additional constraints, under Scenario 1, with no multi-
commodity offers allowed. For a test, we restricted branch limits to 60% of their nominal
values given in Case 30 in MATPOWER. Then, for each time period, we run the regular
AC-OPF as built in MATPOWER [42], assuming that the regular AC-OPF could change
each unit’s dispatch by no more than ±3% of the output calculated by solving (9). When
under such a setup and such limitations, the AC-OPF converged, and power flow in the
given time period was concluded to be network feasible. Otherwise, it was concluded
infeasible. Obtained results are presented in Table 6.

Table 6. Results of numerical tests—network constraints.

Without Constraints With Constraints

Total cost [$] 8.2024× 105 9.9676× 105

Number of criteria with values
equal to or better than rj (max. 48) 40 41
Number of feasible time periods
(max. 96) 25 74

As we see from the results, the number of feasible time periods increased significantly
with the addition of DC-OPF constraints, yet still did not reach its maximum number.
The increase of feasibility came with a significant increase of balancing cost. This is not
surprising since the addition of network constraints cuts many solutions out of the feasible
region. Therefore, it is a matter of trade-off if feasibility or cost is a more important criterion.

6.2. Market with a Broker

In this section, we present some test results for the case when a broker is introduced to
act on the market. In this case, balancing performance is tested under Scenario 3. We choose
this scenario since it is the most restrictive and therefore may outline better differences in
performance between cases with and without the broker.

For testing, we make some assumptions—as summarised in points below:

• one broker is introduced,
• the broker can buy from all producers, but can sell only to consumers in nodes 16, 18,

20, 23, and 29;
• since the broker represents many customers, it has special, lower prices negotiated;
• the broker adds 30% of markup on the price;
• expected value of sold energy is equal to total sum of demand of peers able to buy

from the broker;
• the broker cannot store energy and must resell it in the same time period as bought;
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• consumers are free to buy energy either from the broker or from the producers directly.

In this test, we assume that the broker’s aspiration on profit—apro f it
b = 1 × 105$,

with the reservation rpro f it
b = 1× 102$. The broker’s aspiration and reservation on q (as

consumer) are equal to 0.6 and 0.5, respectively.
This having been said, numerical results are shown in Table 7.

Table 7. Results of numerical tests—market with broker.

Without Broker With Broker

Total cost [$] 9.7246× 105 9.3250× 105

Income of the broker [$] − 4.1221× 103

q of the broker (consumer) − 0.5012
Avg cost for consumer
able to buy from the broker [$] 2.0889× 104 1.0561× 104

As seen from the results, introducing a broker to the market may help to reduce both
overall costs of balancing and costs of peers buying from the broker. Surely, this is due to
the broker’s ability to negotiate good unit prices.

6.3. Market with a Broker and with a FLECSP

In this section, we analyse the case with both broker and FLECSP introduced to the
market. In this paper, we consider FLECSP to be a flexible prosumer equipped with a
storage utility. It may produce energy for its own needs, sell to others and buy from others
either to use for own needs or to resell to other consumers. Since FLECSP is equipped with
energy storage, it does not have to sell the energy right after buying/producing it but may
shift time periods of delivery.

Similarly to a previous case with a broker only, for testing, we take Scenario 3 with
single-commodity offers only. We assume that the FLECSP is located at node 2 of the
studied network, and has a 5 MW PV plant with a 48 MWh storage (assumption). It
substitutes a generating unit analysed in previous cases in this very node, yet the load
attached to it is preserved as it was previously. As FLECSP possesses a different energy
source, a linked certified value qs now equals 0.8. All assumptions on broker’s behaviour
are identical to the ones in Section 6.2.

Completely changed setup in the node 2 induced changing previously assumed
pricing. Therefore, comparing numerical results is of use only within this subsection, and it
is not relevant when comparing with previously shown results.

Numerical results with FLECSP in place are shown in Table 8. They are compared with
the situation with no FLECSP installed. In this case, node 2 is a purely consuming node—
with no generating unit at all. This differs from testing setups in previous experiments.
Assumed aspiration and reservation on cost that node 2 needs to take are as follows—
acost

f lecsp = 1× 102$ and rcost
f lecsp = 1× 104$. However values on q are 1 (aspiration) and 0.3

(reservation).

Table 8. Results of numerical tests—market with a FLECSP.

Without FLECSP With FLECSP

Total cost [$] 1.1819× 106 1.1813× 106

Cost paid by entity at node 2 − 4.6827× 103

q of consumer at node 2 − 0.6450

As seen from the results, the introduction of FLECSP may improve balancing by
reducing its overall cost. Furthermore, not surprisingly, it also reduces the cost that the
consumer at node 2 needs to pay. However, building storage units as well as generation
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units will require significant CAPEX costs to pay. Its impact has not been analysed in
this paper.

7. Conclusions

In this paper, we present a novel architecture for handling electrical energy balancing
in a peer-to-peer manner, where, in addition to the cost criterion, other individual quality
criteria can be taken into account for feasible unit dispatch of generation and load peers.

We propose a multi-objective (mixed integer) interactive linear program to be solved
by the market Operator, considering aspirations and reservations of all peers present on
the market towards their respective criteria. The idea behind the proposed approach is that
all peers submit values of their aspirations and reservations towards their criteria to the
Operator. Then, the Operator solves the proposed optimisation problem, by finding Pareto-
efficient solutions that respect submitted reservations and aspiration levels. Therefore, the
resulted market positions reflect as much as possible different preferences of the partici-
pating peers. Here, it should be noted that Pareto-efficiency alone does not guarantee the
maximisation of the total economical wealth, or fairness/equity of the solutions. Fairness
optimisation is, however, beyond the scope of this paper. An interested reader is invited to
consult the following references for more information [47–49].

The proposed optimisation problem is fairly general, so it allows for including multi-
commodity peer-to-peer offers, network constraints, etc. The former significantly improves
offering performance, especially for weather-dependent energy sources. In the case study,
we observed that, when multi-commodity offers are introduced, a photo-voltaic source
is committed for the complete capability profile during all time periods, rather than for
selected periods only. This happens without further constraining the feasible set of the
problem.

Inclusion of network constraints to the balancing problem restricts, however, the space
of feasible solutions. However, we have shown that it may be very helpful in obtaining
technically feasible power flows, for the majority of cases. This, however, may come at the
expense of making the balancing more costly.

For the proposed approach, we have identified many possible actors to be present
within the discussed market setup. They include consumers, producers, brokers and
flexible prosumers with storage. We have shown that such actors may be well integrated
into this novel market and each one of them may give some added value to the balancing.

We studied the cases limited to actors described in the previous paragraph. We have
not analysed other types of peers that may be envisaged. However, we believe that the
set of peers reflects quite well a variety of possible interests. The described approach is
purely conceptual, validated only in the case study given in Section 6 of the paper. Further
simulation studies are desired and a real-live prototype of the multi-objective market could
be built to validate the approach under more realistic operating conditions.

This brings us smoothly to further research possibilities. As already stated, it might be
interesting to build a pilot micro-grid, where the proposed setup could be further developed
and tested. Second, the approach relies on multiple data exchanges between the peers
and the Operator. The sensitive data should be kept private at all times and therefore
secure protocols of communication should be studied. Furthermore, modelling of storage
constraints of the flexible prosumer peer (FLECSP) is accomplished with the help of binary
variables. For markets with many peers of this kind, computational burden of the proposed
mixed-integer linear program may be significantly increased. However, whenever found,
the Pareto-optimality of the solution is guaranteed. To reduce the computational burden,
some dedicated optimisation heuristics may be developed in future works.

It should also be noted that the proposed model considers directly the operational
cost criterion only. However, one may also study the impact of other costs, such as the
costs of obtaining formal certification of the quality attributes of the generating sources.
Such a consideration would yield another interesting decision-making problem for sellers,
namely to infer whether it is more beneficial to obtain higher certified values of q or not.
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However, this lies out of the scope of this paper as it is linked more to the capital cost
(CAPEX) considerations. However, we identify this problem as a topic of further research.

Despite simplifications mentioned above, this paper develops both a framework
and a tool (in the form of a mathematical optimisation problem) for balancing a power
system, when the cost is not a single criterion considered, but some other, ecological,
social or sustainability criteria—referred to here as the quality criterion—can be also taken
into consideration. This is the basic contribution of this paper. In the multi-objective
optimisation model, the individual aspirations and reservations of all peers considered
towards their respective criteria are specifically addressed. Such an optimisation tool, if
implemented on the energy market, would allow interested peers to buy energy from
sellers who are certified with higher values of the quality criterion, so it would increase the
demand for that quality service. As a result of higher demand, technology shift towards
sources with higher quality (ecological, social, sustainability or others) may be experienced.
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