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Abstract: The continuous quest for improving the performance of heat exchangers, together with
ever more stringent volume and weight constraints, especially in enclosed applications like internal
combustion engines and electronic devices, has stimulated the search for compact, high-performance
units. One of the shapes that has emerged from a vast body of research is the disc-shaped heat
exchanger, in which the fluid to be heated/cooled flows through radial—often bifurcated—channels
carved inside a metallic disc. The disc in turn exchanges thermal energy with the hot/cold source (the
environment or another body). Several studies have been devoted to the identification of an “optimal
shape” of the channels: most of them are based on the extremization of some global property of the
device, like its monetary or resource cost, its efficiency, the outlet temperature of one of the fluids,
the total irreversibility of the process, etc. The present paper demonstrates that-for all engineering
purposes there is only one correct design procedure for such a heat exchanger, and that if a few
basic rules of engineering common sense are adopted, this procedure depends solely on the technical
specifications (type of operation, thermal load, materials, surface quality): the design in fact reduces
to a zero-degree of freedom problem. The procedure is described in detail, and it is shown that a
proper application of the constraints completely identifies the shape, size and similarity indices of
both the disc and the internal channels. The goal of this study is to demonstrate that-in this, as in
many similar cases-a straightforward application of prime principles and of diligent engineering
rules, may generate “optimal” designs: these principles guarantee a sort of “embedded optimality”.

Keywords: bifurcated flows; disc-shaped heat exchangers; fluid transport; heat transfer

1. Introduction

The general structure of a disc-shaped heat exchanger (DSHE) element is shown in
Figure 1. A disc with an external radius “Rzb” is internally cooled or heated by a series of
internal channels that originate from an axial inlet O and develop radially outwards in a
branching fashion; the working fluid may be ejected radially or be collected by a toroidal
manifold placed on the external periphery of the disc. The channels may have different
cross-sections, hydraulic diameters and lengths. For the sake of simplicity, in this paper
the internal channels are assumed to have a circular section and to perform the function of
cooling the disc material.

One of the first problems designers must solve is the identification of the—rarely
unique—set of lengths Lj and diameters dj of the channels. Another design issue is how
to determine whether a larger number of branchings (i.e., a “more dendritic” structure)
leads to a performance improvement, and how to quantify the correlation between the
number of branches and the DSHE performance. Finally, one must investigate whether
the branching angles βj (that represent so to say the “footprint” of the branchings) have an
influence on the overall heat exchange characteristics.
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Figure 1. Sketch of a disc-shaped heat exchanger (a): highly-branched; (b): assembly; (c) single-

branched configuration. 
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Figure 1. Sketch of a disc-shaped heat exchanger (a): highly-branched; (b): assembly; (c) single-
branched configuration.

In heat exchanger textbooks and manuals the problem is usually formulated in terms
of “heat gain” of the working fluid versus “pressure drop” along the channels, the goal
being that of maximizing the former while minimizing the latter [1]. A somewhat more
sophisticated approach is that of calculating both the thermal entropy generation rate (due
to the local temperature gradients in the fluid and in the disc) and its viscous counterpart
(due to friction) and minimizing their sum; since the former is proportional to the HE
efficiency and the latter to the pumping power, a global optimum is reached that balances
benefits and costs of the energy exchange [2–7]. More recently, approaches have been
proposed that introduce material costs considerations, either by applying thermo-economic
principles or exergy analysis [8].

All of these studies lead to the definition of one or more similarity parameters directly
linked to performance indicators: these “shape parameters” are the ratio of the diameters
of successive branches, δj = dj+1/dj; that of successive lengths, λj = Lj+1/Lj and that of the
diameter of the first branch to the disc radius, δ0 = d0/Rzb. Quite obviously, the more
branches are etched inside of the disc, the more uniform the heat extraction from the solid
material, and the better the performance: thus, both the initial number of “sectors” in which
the disc is subdivided (first branches, z0) and the total number of peripheral discharge
points, zb = 2nz0 (n = 0, n being the number of branching levels) have an influence on the
performance of the device.

Investigators have taken different approaches to determining the solution: in general,
global design optima have been identified either by fixing the fluid regime inside of the
channels or recurring to some “allometric” formulae that define δj the and/or the λj for
a given δ0 (an allometric correlation is one in which the scaling relationship between some
relevant attribute and a characteristic length of the problem depends on some power of the
characteristic length itself. For example, in biology, it is established opinion that within a
certain species or family the metabolic rate depends on the cube of a single characteristic
body length). Only a few studies [5,8,9] have investigated the influence of the number of
branchings. The few numerical studies available are usually based on a pre-assigned initial
choice of z0 and take advantage of the circumferential symmetry of the problem to simulate
only a sector spanning 2π/z0 radians (Figure 2) [10,11].

From a designer’s point of view, the problem can be divided in a series of concatenated
steps:

(a) For a given thermal load (amount of power required by the fluid), calculate the
necessary external load, or vice versa;

(b) Link the thermal load to the external radius of the disc;
(c) Identify the desired branching configuration;
(d) Verify that the load requirements are satisfied.

Point “c” above has been the object of extensive debate in the last decade. Leaving
aside the considerations related to the selection of the materials (a choice that has though
a direct influence on manufacturing costs), the problem is to find an “optimal” balance
between the internal heat exchange coefficient in the channels and the related pressure
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loss. This is the well-known dilemma of the heat exchanger designer: smaller tubes lead
to higher pumping work but a higher heat transfer coefficient. It is thus clear that the
selection of the tubes diameters is of paramount importance. For the purpose of this
paper, it is irrelevant whether a constant velocity, a constant Reynolds number or any
other allometric criterion is selected for the ratio δj of two successive branches: the choice
influences the DSHE performance, but there is no a priori proof that one method is better
than the other under all circumstances [12–14]. Referring the reader to specific comparisons
among different choices of δj [3,7,12], we shall adopt in this paper a constant Reynolds
number criterion: a perusal of the procedure will though show that other choices can be
immediately integrated within the calculations.
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More important for the “optimality” of the design is the choice of a proper criterion for
the slenderness ratio of successive branches. It is definitely more convenient to impose each
length so that the fluid remains inside the “entrance length” zone where—for comparable
pressure losses—the Nu is substantially higher.

Notice that the above two choices represent “best practice engineering”, and the
possible implicit approximations (e.g., the entry length ratio κGz = Lj/dj) fall well within
the responsibility of the designer.

Once δj and κGz have been assigned their value, the DSHE design reduces to a com-
pletely deterministic engineering procedure. The procedure rests on the rigorous appli-
cation of thermo-fluido-dynamics principles and on a careful analysis of the implications
of the selected topology (z0, zb) on the global device performance. Section 2 presents
a topological description of the disc, Section 3 demonstrates that a physically correct
design procedure leads to an under-specified problem (more variables than equations),
and Section 4 shows how the imposition of a correct set of common-sense engineering
constraints can make the problem well-posed. Section 5 provides two examples of the
advantages of a practical application of the procedure.

2. Classification of a Disc Heat Exchanger as to Its Design Purpose

(a) The relevant topological parameters of a DSHE are:
(b) The ratio of the diameters of successive branches, δj = dj+1/dj;
(c) The ratio of successive lengths, λj = Lj+1/Lj;
(d) The inlet shape ratio defined as the ratio of the diameter of the axial inlet tube to the

disc radius, διν = din/R;
(e) The initial number of “sectors” in which the disc is subdivided, z0;
(f) The total number of peripheral outlets, zb = 2nz0.
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The above parameters define the shape of the DSHE: its size depends obviously on
the design specifications. There are two fundamental operational modes that influence the
DSHE configuration: either the fluid flowing in the channels cools the disc (i.e., from the
point of view of the fluid, the DSHE is a heater), or the fluid is cooled by the disc (the DSHE
is a cooler). Hereafter, the “DSHE heater” mode is analyzed, in which the cooling fluid
flows through the disc internal channels, and the hot source is either the surroundings (via
convection on the DSHE external surfaces, Figure 3a), surface heating by conduction or
electrical (Figure 3b), or surface heating on one side and convection cooling on the other
side (Figure 3c). In either configuration, the coolant absorbs heat from the bulk material of
the disc, which in turn receives a continuous heat influx on one or both of its surfaces.
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both sides; (c) Conduction and convection.

For such a DSHE-heater, a suitable set of design specifications includes:

(i) The thermal flux qin the DSHE receives by conduction/convection or electrical input;
(ii) The inlet and outlet coolant temperatures Tin and Tout;
(iii) The final ∆T between the disc and the fluid: TD − Tout;
(iv) The average temperature Text of the immediate surroundings;
(v) The density ρf, specific heat cp,f , viscosity µφ of the coolant;
(vi) The density ρD and specific heat cp,D of the disc material;
(vii) An average heat transfer coefficient for the convection on the outside surface of the

disc, hext (if present).

2.1. Thermal Load and DSHE Efficiency

The net heat input Qdes depends on the type of operation, and the formulae related to
some illustrative examples of operation are provided in Table 1. Once Qdes is known, the
coolant mass flowrate can be calculated from the global energy balance:

min =
Qdes

ηDSHEcp(Tout − Tin)
(1)

where ηDSHE can be approximated as follows:

ηDSHE = 1− Qλ

Qdes
∼= 1− πsRhext(TD − Text)

Qdes
(2)

Table 1. Definition of the design DSHE thermal load.

Type of Operation (Heater) Needed Design Specifications QDES

Heat input by convection on both sides hext, Text, TD Qdes = 2πhextR2∆TD

Electrical or conduction heating on both sides qin, sD, kD Qdes = 2πqinR2

Electrical or conduction heating on one surface,
cooling by free convection on the opposite one hext, Text, TD, qin, sD, kD Qdes = 2πR2(qin − hext∆TD)
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Incidentally, the numerical value of ηDSHE is not essential for the design procedure
outlined here and is reflected only in the ∆T of the working fluid. Notice that Equation (2)
shows that the DSHE efficiency depends mainly on the ratio s/R, “s” being the disc thickness:
the higher this ratio, the higher the convection losses on the disc peripheral surface. This
dependence is not considered in this study, in the sense that s is not considered a relevant
variable.

From Equations (1) and (2), and using the formulae indicated in Table 1, one can
calculate the mass flow rate of fluid for a given load Qdes, or alternatively the required load
given the mass flow rate. In either case, both the efficiency ηDSHE and the external radius R
can be directly calculated as well.

Notice that when the above formulae are used for cases (a) and (c) their results are
approximate, because the disc is likely to have a radially variable surface temperature,
meaning that ∆TD is not a constant but a function of R: if more accuracy is required, the
value of R can be calculated iteratively using the final results of the procedure specified
below.

2.2. Selection of the Inlet Pipe

A designer would in general select the range of Reynolds number for the inlet flow in
such a way as to minimize the pressure losses in an area not involved in the heat exchange.
Therefore it is advisable to select Re in the vicinity of the laminar→turbulent transition
(where the friction factor is lowest). Once Rein is specified:

din =
4min

πµRein
(3)

d0 =
4min

z0πµRe0
(4)

The above equations provide the designer with a tentative size R of the disc, with the
diameter d0 of the first level of branching and with the required coolant mass flowrate:
notice that the diameter din of the inlet tube is not a relevant parameter in the DSHE
design, since it depends on the feeding arrangements. On this basis, an “intrinsically feasi-
ble”design procedure is described in the next section. There is no “optimization” proper
here, because the proposed design procedure uses only fluid-thermodynamic constraint
(the constancy of Re and the Graetz assumption, see below), and the feasibility arises simply
out of symmetry and of the geometric features of the branchings. But the emerging solution
is a very good start for a configuration optimization.

3. The Geometric/Fluid Dynamic Design Is an Underspecified Problem

The first design step is to calculate the diameter of the first branch. To do this, the
designer must assign the number of sectors, z0, in which the disc is divided, select a
Reynolds number Re0 and then use Equation (4): both choices are obviously arbitrary and
may depend on technological issues.

Now, the designer must specify the total number of branchings by assigning the value
of the exponent n. This choice is also arbitrary, but an obvious consideration is that the
more branchings, the more outlet points there will be on the disc periphery, the more
uniform the disc temperature will be and the most effective the cooling. In practice, this
choice is limited by technological considerations about the minimum feasible diameter of
the smallest branches (see below). Once n has been selected, the configuration of the disc is
schematically represented in Figure 4.
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Figure 4. DSHE nomenclature (here, z0 = 3, zb = n = 1, γ0 = 60◦).

For a given surface quality (that depends on material and technological considerations),
the internal coefficient of heat transfer in each channel depends on the Nusselt number that
in turn is a (non-linearly growing) function of the Reynolds number: for the generic j-th
branch:

Nuj =
hjdj

k
= f (Re, Pr) (5)

Since it is obviously convenient to have as high a Nuj as possible, a good design choice
is to control the slenderness λj = dj/Lj of the channels in such a way that the flow in all of the
j branches is within the respective Graetz entry lengths (Figure 5): in other words, Lj = κgdj,
with κg falling in the shaded portion of the graph. On the other hand, the friction losses
are—under the posited assumptions—also a growing function of Re:

∆pj

Lj
= f (Re) (6)

so that the design choice reproduces the well known dilemma of the HE designer: higher
pressure losses vs. higher heat transfer coefficient. Previous theoretical work on bifurcated
structures [5,13] suggests to impose Rej = Re0, which leads to:

δj = 1/2 (7)

This is the design choice adopted in this paper. Any other selection of dj can be
accommodated by the procedure, but of course it modifies the resulting configuration.

Thus, the diameter of the internal channel halves at every new split: this is the reason
for which zb has an upper bound, posed both by Equation (6) and by possible technological
limitations on the attainable surface roughness. The Graetz ratio must be checked at each
level to make sure that it remains in the high-Nu region (Figure 5):

κGz = Lj/dj = Lj/
(

d0δj
)

(8)

For circular tubes, The Graetz entry length varies between 5 and 15 diameters (kGr = 5 ÷ 15),
depending on the boundary conditions on the tube wall and the flow structure. In most
practical applications, a value kg ≈ 8–10 is satisfactory, see Section 5 below.
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With the geometric parameters thus defined, from simple trigonometric manipulations
it follows that the radii of the zb circumferences identified by each splitting level are given
by a recursive formula:

R0 = L0 + Rin; Rj+1 = Rj + Lj

j

∏
1

cos
(

β j
)

(9)

A graphical representation for the structures defined by Equation (9) is provided
in Figure 6. Equation (9) solves the problem, because Rin, R0, Rzb and d0 are known
(Equations (2) and (4)), but it contains zb unknowns, namely, the splitting angles βj. To
close the problem, zb−1 auxiliary conditions must be specified.
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4. The Proper Additional Constraints

Once the initial number of branches (level 0), z0, and the total number of branchings
zb are specified, a series of geometric constraints can be derived that completely defines
the configuration by providing an equation for each of the βj. The line of reasoning
is as follows: the circular arc ÂB at the external radius Rzb defined by γzb will contain
(Figure 6) 2zb terminal points, each one being the outlet of a single channel. For all of the
terminal points on the circumference to be equispaced, the central angle γzb spanned by
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two adjacent terminal points 〈C, D〉 (with ˆCD = ÊF) must be equal to π

z02(zb−1) . Then by

simple trigonometric considerations, and making use of Equations (7) and (8):

β j = f
(
γj, Rj−1, Rj

)
(10)

where f is an arctan function of the indicated arguments. The set (10) contains zb equations,
that together with the second equations in (9) and (2) make the problem position complete
(via the solution of a set of trigonometric equation in Rj). Consider that the angles γ0 γj γzb
are given by the recursive formula:

γj =
π

2jz0
(11)

5. Examples of Application

To demonstrate the usefulness of the above procedure, two DSHE designs are critically
examined here below. Both are real applications, actually built by different teams in one
of the thermal sciences laboratories of the University Roma Sapienza between 2017 and
2019. Independently from one other, both configurations were “optimized” according to
two different criteria: our goal here is to assess whether these configurations could be
improved.

5.1. Comparison of Possible DSHE Configurations for a Glycol/Water Heater

In this application [3,12] the DSHE is cooled by a 50/50 (% mass) mixture of glycol
and water. The coolant enters the disc from the axis (Figure 7) and is heated as it flows
through the internal channels. The Al-Mn disc receives a uniform heat flux on its bottom
surface, the upper one being insulated. The case specifications are listed in Table 2.
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The above device has been built and tested, the results being reported in [3,12]. How-
ever, application of the procedure described in the previous sections demonstrates that:

(a) The three branches at level 0 are far too short, and therefore the temperature of the
portion of the disc within the radius R0 (refer to Figure 6) is bound to be higher-than-
optimal, because the heat exchange area z0πd0L0 is too small, even if the Nu0 is here
rather high;

(b) Since the branches at levels 1 and 2 do not respect the constant-represcription (the
design choice was in this case δ =

√
2/2, i.e., constant velocity in successive branches),
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there is a disuniformity in the heat transfer (and therefore in the disc bulk temperature)
between R1 and R2;

(c) The κGZ is not the same in branches 1 and 2, and this adds up to the non-constant re
effect, increasing the disuniformity in the disc body.

Table 2. An Al/Mn alloy DSHE cooled by a glycol/water mixture (Data adapted from [3]).

Disc Radius, m 0.075 Glycol Mix Mass Flowrate, kg/s 0.181

Disc Thickness, m 0.015 Glycol Mix Density at Inlet, kg/m3 1088

Number of Root Splits, Z0 3 Glycol Mix Viscosity at Inlet, m2/s 5.97 × 10−6

Branching Exponent, Zb 2 Glycol Mix Conductivity kW/(m × K) 0.65

Dfeed, M 0.022 Glycol Mix Specific Heat, J/(kg × K) 870

D0, M 0.013 Tglycol,In, K 300

D1, M 0.0065 Tglycol,Out, K 303

D2, M 0.00325 Texternal Air, K 293

L0, M 0.011 Qelectr, W 500

L1, M 0.048 LMTD, K 6.38

L2, M 0.024 Uavg, W/(m2 × K) 7227

ReCHANNELS 913 ηDSHE 0.91

Applying the procedure outlined above, and retaining the same values for the fluid
properties, the configuration shown in (Figure 8) is obtained: a slightly smaller size (new
external radius 7.0 cm versus the original 7.5), the increased Re and the better allocation of
the channel lengths (higher Graetz number) lead to an almost 1 K increase of the fluid exit
temperature (304 vs. 303 as reported in [3]).
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5.2. Selection of the DSHE Configuration for the Cooling of an Electronic Chip

In this application [10] the DSHE is made of an Al-alloy and serves as the cooling
unit of an electronic chip. it receives a constant heat flux (72 W) on its upper external
surfaces, and it must be designed under the constraint that its upper surface temperature
never exceeds 358 K when the disc lower external surface is insulated. The cooling fluid,
(dimethylsulfoxide, DMSO) enters the disc from the axis (Figure 9) and flows through two
sectors of equal diameter (z0 = 2, each shaped as a single split (zb = 1). Design specifications
are listed in Tables 3 and 4.

Table 3. Improved design of the DSHE of example 5.1.

Disc Radius, m 0.084 L0, M 0.030

Disc Thickness, m 0.015 L1, M 0.031

Number of Root Splits, Z0 3 L2, M 0.033

Branching Levels, N 2 TGLYCOL, IN , K 300

Total Number of Fluid Outlets, Zb 12 TGLYCOL, OUT, K 304

Dfeed, m 0.022 TEXTERNAL AIR, K 293

D0, m 0.0059 QELECTR, W 500

D1, m 0.0029 LMTD, K 6.66

D2, m 0.00148 Uavg, W/(m2 × K) 14,400

RECHANNELS 2000 ηDSHE 0.91

Table 4. A DMSO-cooled ultra-micro DSHE.

Disc Radius, m 0.052 DMSO Mass Flowrate, kg/s 7.84 × 10−4

Disc Thickness, m 0.001 DMSO Mix Density at Inlet, kg/m3 1101

Number of Root Splits, Z0 2 DMSO Mix Viscosity at Inlet, m2/s 1.8 × 10−6

Branching Exponent, N 1 DMSO Mix Conductivity K, W/(m × K) 0.16

Dfeed, M 0.0012 DMSO Mix Specific Heat, J/(kg × K) 1960

D0, M 0.0011 Tdmso,In, K 298

D1, M 0.00055 Tdmso,Out, K 352

L0, M 0.0123 Texternal Air, K 300

L1, M 0.0093 Tdisc, W 358

Rein 209 Qload, W 72.22

Re1 694 LMTD, K 35

Re2 968 Uavg, W/(m2 × K) 35,400
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The results of the CFD simulation [9] show that:

(a) The level 0 branch is too long: the Graetz number is relatively low, and the (calculated)
Nu is about 8;

(b) The branches at level 1 are, on the contrary, too long, and the flow does not become
fully developed at the end of the channels (Figure 9, right): the Nu1 is high but the
fluid displays a strong radial temperature disuniformity at the outlet;

(c) In spite of the above shortcomings, the temperature of the disc is approximately
constant, validating the assumption made in Section 2 as to the external convection
loss.

Applying the procedure outlined above, again with the same fluid properties, the
following configuration is obtained (Table 5, Figures 10 and 11). One more branching level
is introduced, and the external diameter is reduced to 2.1 cm vs. the original 5.7.

Table 5. Improved design of the ultra-micro DSHE.

Disc Radius, m 0.01 L0, m 0.0055

Disc Thickness, m 0.001 L1, m 0.0043

Number of Root Splits, Z0 4 L2, m 0.0034

Branching Exponent, N 1 Tdmso, In, K 298

Total Number of Fluid Outlets, Zb 8 Tdmso, Out, K 345

Dfeed, m 0.0012 Texternal Air, K 300

D0, m 0.0011 Qelectr, W 72.22

D1, m 0.00055 LMTD, K 31

D2, m 0.00027 Uavg, W/(m2 × K) 2973

RECHANNELS 115 Rein 839Energies 2022, 15, 1250 12 of 14 
 

 

 

Figure 10. The improved ultra-micro DSHE-C2. 

 

 

Figure 11. Two 3–D renderings of the improved DSHE-C2. 

6. Conclusions 

A simple procedure for the design of a disc-shaped heat exchanger with internal bi-

furcated cooling channels is presented and discussed. The goal of this exercise is to show 

that, while the study of the onset and operation of bifurcated structures in nature requires 

accurate considerations of optimal energy (exergy) use ratios [5,13–15], when it comes to 

engineered devices it is not always necessary to “mimic Nature”, as many authors (in-

cluding the present one!) have repeatedly stated. As mentioned in the Introduction, it is 

necessary to consider the “Interpretation of Nature” and the “Design of a branched heat 

exchanger” as two quite different activities: the former is a reverse design problem, while 

the second is obviously a direct one. “Interpreting Nature” involves several highly con-

ceptual steps: first, one must recognize that “similar shapes” exist in natural structures 

(branching of waterways, of tree twigs, of capillaries in biological tissues, etc.) that are 

Figure 10. The improved ultra-micro DSHE-C2.



Energies 2022, 15, 1250 12 of 13

Energies 2022, 15, 1250 12 of 14 
 

 

 

Figure 10. The improved ultra-micro DSHE-C2. 

 

 

Figure 11. Two 3–D renderings of the improved DSHE-C2. 

6. Conclusions 

A simple procedure for the design of a disc-shaped heat exchanger with internal bi-

furcated cooling channels is presented and discussed. The goal of this exercise is to show 

that, while the study of the onset and operation of bifurcated structures in nature requires 

accurate considerations of optimal energy (exergy) use ratios [5,13–15], when it comes to 

engineered devices it is not always necessary to “mimic Nature”, as many authors (in-

cluding the present one!) have repeatedly stated. As mentioned in the Introduction, it is 

necessary to consider the “Interpretation of Nature” and the “Design of a branched heat 

exchanger” as two quite different activities: the former is a reverse design problem, while 

the second is obviously a direct one. “Interpreting Nature” involves several highly con-

ceptual steps: first, one must recognize that “similar shapes” exist in natural structures 

(branching of waterways, of tree twigs, of capillaries in biological tissues, etc.) that are 

Figure 11. Two 3–D renderings of the improved DSHE-C2.

6. Conclusions

A simple procedure for the design of a disc-shaped heat exchanger with internal
bifurcated cooling channels is presented and discussed. The goal of this exercise is to
show that, while the study of the onset and operation of bifurcated structures in nature
requires accurate considerations of optimal energy (exergy) use ratios [5,13–15], when it
comes to engineered devices it is not always necessary to “mimic Nature”, as many authors
(including the present one!) have repeatedly stated. As mentioned in the Introduction,
it is necessary to consider the “Interpretation of Nature” and the “Design of a branched
heat exchanger” as two quite different activities: the former is a reverse design problem,
while the second is obviously a direct one. “Interpreting Nature” involves several highly
conceptual steps: first, one must recognize that “similar shapes” exist in natural structures
(branching of waterways, of tree twigs, of capillaries in biological tissues, etc.) that are
amenable to a common topological representation; then, a set of physical principles must
be identified that explains why a certain branched configuration has evolved instead of
a linearized one; finally, the conceptual explanation must be proven by extending its
generality to the highest possible number of experimentally identified structures. In this
sense, the inverse problem is completely falsifiable, because if it fails to explain even one
single instance it must be either extended/reformulated to include it or abandoned.

“Design of a branched heat exchanger” is a much simpler engineering exercise, based
on diligent scientific considerations, and a small number of prime principles in fluid- and
thermodynamics suffice to concoct a sufficiently accurate preliminary design that is as
“optimal” as needed. This happens by no chance: in the case of heat exchanger design,
examined in this work, the specifications are quite stringent, and if additional symmetries
are imposed by the selection of the device shape, the number of “design degrees of freedom”
drops to zero. This does not imply that a design activity is devoid of creativity: quite on
the contrary, as shown above, a certain degree of “creativity” is naturally embedded in
engineering choices that an expert designer would define “obviously proper”, and that are
instead the result of an engineering culture (“know-how) that is perceived as being implicit
in the designer’s reasoning.
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Nomenclature

A: m2 Disc area p, bar Pressure
cp, J/(kg × K) Specific Heat q, W/m2; Q, W Specific and total heat load
d, m Tube diameter R, m Disc radius
Gz = RePr/κGz Graetz number Re Reynolds number
k, W/(m × K) Thermal conductivity s, m Disc thickness
L Channel length T Temperature
m Mass flowrate U Equivalent heat transfer coefficient
n Number of levels (“splits”) z0 Number of initial branchings
Nu = hd/k Nusselt number zb Number of outlets at Rext
Greek Symbols
β Branching angle λ = Lj+1/Lj Channel length ratio
γ Central spanning angle µ, kg/(ms) Dynamic viscosity
δ = dj+1/dj Diameter ratio ν, m2/s Kinematic viscosity
η Disc efficiency p, kg/m3 density
κGz = L/d Graetz factor
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