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Abstract: Wellbore instability resulting from deep mudstone hydration severely restricts the develop-
ment of oil and gas resources from deep reservoir in western China. Accurate evaluation of drilling
fluid inhibition properties plays an important role in selecting drilling fluid that can control deep
mudstone hydration and then sustain wellbore stability. The previous evaluations are conducted
by qualitative analysis and cannot consider the influence of complex hydration conditions of deep
mudstone (high temperature, high pressure and flushing action). The study proposes a quantitative
method to evaluate drilling fluid’s inhibition property for deep mudstone under natural drilling con-
ditions. In this method, the cohesive strength of mudstone after hydration is adopted as the inhibition
index of the tested drilling fluid. An experimental platform containing a newly designed HPHT (High
pressure and high temperature) hydration experiment apparatus and mechanics characterization of
mudstone after hydration based on scratch test is proposed to obtain the current inhibition index
of tested drilling fluid under deep well drilling environments. Based on the mechanical–chemical
wellbore stability model considering strength weakening characteristics of deep mudstone after hy-
dration, a cross-correlation between drilling fluid density (collapse pressure) and required inhibition
index (cohesive strength) for deep mudstone is provided as the quantitative evaluation criterion.
Once the density of tested mud is known, one can confirm whether the inhibition property of tested
mud is sufficient. In this study, the JDK mudstone of a K block in western China is selected as
the application object of the proposed evaluation method. Firstly, the evaluation chart, which can
demonstrate the required inhibition indexes of the tested fluids quantitatively with various densities
for JDK mudstone, is constructed. Furthermore, the experimental evaluations of inhibition indexes of
drilling fluids taken from two wells in K block are conducted under ambient and deep-well drilling
conditions, respectively. In order to show the validity and advantage of the proposed method, a
comparison between the laboratory evaluation results and field data is made. Results show that
the laboratory evaluation results under deep-well drilling conditions are consistent with the field
data. However, the evaluation under ambient conditions overestimates the inhibition property of the
tested fluid and brings a risk of wellbore instability. The developed quantitative method can be a
new way to evaluate and optimize the inhibition property of drilling fluid for deep mudstone.

Keywords: wellbore stability; deep mudstone; quantitative evaluation method; drilling fluid
inhibition; HPHT

1. Introduction

The exploration and development of oil and gas resources from a deep reservoir in
western China is showing great potential. However, wellbore instability resulting from
deep mudstone hydration is still a troublesome problem to drilling engineers, which causes
tremendous economic losses. The capability of drilling fluid to inhibit deep mudstone
hydration is a key indicator of wellbore stability. To accurately evaluate drilling fluid
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inhibition property is a prerequisite for choosing the drilling fluid with good performance
and then sustaining wellbore stability.

In recent years, many evaluation methods of drilling fluid inhibition property are
proposed as summarized in Table 1. Based on the analysis of evaluation principles, these
evaluation methods can be clarified into two types. (1) Methods to evaluate the phys-
ical and mechanical properties of solid medium after hydration (swelling, dispersion
and strength): 1© hot rolling dispersion test [1–3]; 2© slake durability evaluation [2,4,5];
3© swelling test [5–8]; 4© bulk hardness test [4,9]; 5© water adsorption test [10]; 6© mud

ball immersing test [3,11]; 7© particle size distribution test [11,12]; 8© shale stability in-
dex test [8,13]; 9© cohesive strength test (Energy Sector Standard of the People’s Re-
public of China: NB/T 10121-2018) [14]. (2) Methods to evaluate the chemical and
rheological properties of liquid medium after hydration: 1© rheological evaluation [15];
2© high-speed centrifugation [16,17]; 3© flocculation experiment [18,19]; 4© water separat-

ing ratio test [16]; 5© specific surface area test with methylene blue solution [20,21]; 6©
capillary suction time test [22–24]; 7© accretion test [2,9]; 8© zeta potential test [8,25]; 9©
X-ray diffraction analysis [15,25].

Although these common evaluation methods of drilling fluid inhibition performance
have been widely used in the oil and gas industry, there are still many limitations to over-
come, especially for deep mudstone. (1) The complex hydration conditions in a deep well
cannot be provided (as shown in Table 1). However, numerous studies have demonstrated
that well drilling conditions have a significant impact on the property of drilling fluid and
the rock–fluid interaction [24,26–30]. As for deep mudstone in western China, a harsher and
more hostile hydration environment will be encountered such as high temperature (~20 ◦C),
high drilling differential pressure (~40 MPa) and flushing action of drilling fluid. Therefore,
it is necessary to consider the effect of complex drilling conditions on the evaluation of
drilling fluid inhibition property for deep mudstone. (2) Quantitative evaluation basis of
drilling fluid inhibition property is not proposed. Previous qualitative/empirical evalu-
ation methods are difficult to use to definitely identify the safe value of inhibition index.
(3) The coupling of mechanical and chemical actions of drilling fluid on sustaining wellbore
stability is not involved in the current estimation of drilling fluid inhibition property.

In this study, an experimental platform containing a newly designed HPHT hydration
experiment and mechanical characterization of mudstone based on a scratch test is adopted
to obtain the value of inhibition index of drilling fluid under deep-well drilling conditions.
In addition, a cross-correlation between drilling fluid density (collapse pressure) and
the matching inhibition index (cohesive strength) for deep mudstone, which is revealed
by the mechanical–chemical wellbore stability model, is provided as the quantitative
evaluation criterion. Based on the above works, a quantitative evaluation method for the
inhibition property of drilling fluid for deep mudstone is proposed. In order to validate
the proposed method, a comparison analysis of the laboratory evaluation results under
different conditions (deep-well drilling condition and ambient condition) and field data of
JDK mudstone (depth: about 5200–6800 m) of the K block in western China is conducted.
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Table 1. Review of inhibition property evaluation methods.

Order Method
Experimental

Apparatus
Evaluation Condition Tested Sample Applicability

Analysis Reference
Temperature Pressure Solid Medium Liquid Medium

1 Rheological
evaluation ZNN-D6 viscometer Ambient

temperature Ambient pressure Bentonite powder Inhibitor solution Qualitative
evaluation [15]

2 Hot rolling
dispersion test Roller oven ~160 ◦C Ambient pressure Shale cuttings Inhibitor solution

Qualitative
evaluation
(dispersion
tendency)

[1–3]

3 Slake durability
evaluation

Slake durability test
instrument

Ambient
temperature Ambient pressure Shale cuttings Inhibitor solution

Qualitative
evaluation

(dispersion test with
more abrasive

condition)

[2,4,5]

4 Swelling test NP-02A shale
expansion apparatus ~180 ◦C ~10 MPa Shale/bentonite

pellet Inhibitor solution
Qualitative

evaluation (swelling
tendency)

[5–8]

5 Bulk hardness test Bulk hardness tester Hot rolling Ambient pressure Shale cuttings Inhibitor solution

Qualitative
evaluation

(mechanical
property)

[4,9]

6 High-speed
centrifugation Centrifuge Ambient

temperature Ambient pressure Bentonite powder Inhibitor solution

Qualitative
evaluation (swelling

tendency);
Poor performance to

amine inhibitors

[16,17]

7 Flocculation
experiment - Ambient

temperature Ambient pressure Bentonite powder Inhibitor solution
Qualitative

evaluation (swelling
tendency)

[18,19]

8 Water separating
ratio test Roller oven Hot rolling Ambient pressure Bentonite powder Inhibitor solution

Qualitative
evaluation (swelling

tendency)
[16]

9 Water adsorption
test - Ambient

temperature Ambient pressure Modified bentonite
with inhibitors Deionized water

Qualitative
evaluation (swelling

tendency)
[10]

10
Specific surface area
test with methylene

blue

751
spectrophotometer

Ambient
temperature Ambient pressure Bentonite/cutting

powder Inhibitor solution
Qualitative

evaluation (swelling
tendency)

[20,21]



Energies 2022, 15, 1226 4 of 21

Table 1. Cont.

Order Method
Experimental

Apparatus
Evaluation Condition Tested Sample Applicability

Analysis Reference
Temperature Pressure Solid Medium Liquid Medium

11 Mud ball immersing
test - Ambient

temperature Ambient pressure Bentonite Inhibitor solution

Qualitative
evaluation
(dispersion
tendency)

[3,11]

12 Capillary suction
time test

Capillary suction
time tester

Ambient
temperature Ambient pressure Shale powder Inhibitor solution

Qualitative
evaluation; Simple

operation; Poor
repeatability.

[22–24]

13 Particle size
distribution test

Laser particle size
analyzer

Ambient
temperature Ambient pressure Bentonite Inhibitor solution

Qualitative
evaluation
(dispersion
tendency)

[11,12]

14 Accretion test Roller oven + steel
bar ~160 ◦C Ambient pressure Shale cuttings Inhibitor solution Qualitative

evaluation [2,9]

15 Zeta potential test
Zeta sizer 3000

electric potential and
granularity meter

Ambient
temperature Ambient pressure Bentonite/shale

powder Inhibitor solution

Qualitative
evaluation
(dispersion
tendency)

[8,25]

16 X-ray diffraction
analysis X-ray diffractometer Ambient

temperature Ambient pressure Bentonite/shale
powder Inhibitor solution

Qualitative
evaluation (swelling

tendency)
[15,25]

17 Shale stability index
test Penetrometer ~160 ◦C Ambient pressure Shale/bentonite

pellet Inhibitor solution

Qualitative
evaluation

(mechanical
property)

[8,13]

18 Cohesive strength
test

Triaxial compressive
test system

Ambient
temperature Ambient pressure Cylindrical

shale/mudstone Inhibitor solution

Qualitative
evaluation

(mechanical
property);

Complicated and
destructive test

[14]
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2. Methodology

The heart of the matter for the previous evaluation methods can be divided into two
points. 1© How to obtain inhibition property of drilling fluid under deep-well drilling
conditions, and 2© how to achieve the quantitative evaluation of drilling fluid inhibition
property for deep mudstone. In order to overcome the two difficult problems above,
the main work in this new proposed method are divided into two parts (as shown in
Figure 1). 1© The first part is to develop an experimental method of deep mudstone
hydration characterization. In the first part, a newly designed hydration experimental
apparatus is adopted to provide deep-well drilling conditions (high temperature, high
pressure and flushing action of drilling fluid). Furthermore, the continuous scratch test is
used to obtain the cohesive strength of mudstone after hydration, which can be regarded
as the inhibition index of drilling fluid. 2© The second part is to propose a method that can
determine the quantitative correlation between drilling fluid density (collapse pressure) and
required inhibition index (cohesive strength). Based on the mechanical–chemical wellbore
stability model, wellbore collapse pressure, which is the critical minimum mud density
for preventing wellbore collapse, is related to rock cohesive strength. In the second part,
considering the weakening characteristics of the strength property of deep mudstone at
different degrees of hydration, the correlation chart of drilling fluid density and matching
inhibition index (cohesive strength) for deep mudstone is constructed. Once the density
of tested drilling fluid is known, the required inhibition index for deep mudstone can
be confirmed.
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Figure 1. Framework of evaluation method of drilling fluid inhibition for deep mudstone.

2.1. Method of Hydration Characterization of Deep Mudstone

In our previous study [30], the new experimental platform containing a HPHT (high
temperature and high pressure) hydration experiment and rock mechanical characterization
based on scratch test is constructed to study the effect of hydration on rocks’ mechanical
properties. In this paper, because cohesive strength of mudstone after hydration can be
regarded as the inhibition index of the drilling fluid, the experimental platform is proposed
as a new experimental method to obtain inhibition performance of drilling fluid under
deep-well drilling conditions.

(1) HPHT hydration experimental apparatus

As shown in Figure 2, the new designed HPHT experimental apparatus consists of
hydration test section and core flow test section. A hydration test section, which can provide
the hydration of several samples with different shapes under complex environments
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(maximum surrounding temperature of 200 ◦C, maximum surrounding pressure of 60 MPa
and flushing action of fluid), is adopted in this study. The hydration test section is mainly
made up of hydration kettle, electrical heating system, stirring system, pressure pump,
monitoring system and data acquisition system.

(2) Estimation of rock mechanical properties based on continuous scratch test
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Figure 2. HPHT experimental apparatus for studying rock–fluid interaction (only use hydration
experiment section in this study).

After immersed in tested fluid, the mudstone sample is used to evaluate the perfor-
mance of tested fluid by strength test. Firstly, the uniaxial compressive strength (UCS) and
internal friction angle are estimated by continuous scratch test with a sharp cutter and blunt
cutter. The detailed principle and procedure are demonstrated by previous studies [30–33].
In addition, the Mohr–Coulomb criterion (as shown in Equation (1)), which reveals the
relation between UCS, internal friction angle and cohesive strength is adopted to obtain
the cohesive strength (inhibition index) in this study. The TerraTek continuous scratch test
system used in this study is shown in Figure 3.

C =
UCS × (1 − sin ϕ)

2 cos ϕ
(1)

where C is rock cohesive strength, MPa; ϕ is rock internal friction angle, ◦; UCS is rock
uniaxial compressive strength, MPa.

2.2. Method of Determining Correlation between Drilling Fluid Density and Matching
Inhibition Index

Preventing wellbore collapse relies not only on the chemical property of drilling fluid
(inhibition performance) but also on mechanical support from drilling fluid density. Poor
performance of drilling fluid in inhibiting mudstone hydration always requires adjust-
ment of drilling fluid density, which provides wellbore collapse pressure. Based on the
mechanical–chemical wellbore stability model, the relation between drilling fluid density
(collapse pressure) and matching inhibition index (cohesive strength) can be constructed
and then regarded as the quantitative criterion of estimating drilling fluid inhibition proper-
ties. The method of determining the quantitative relation consists of three parts as follows.
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(1) Framework of wellbore stability model

In this study, in order to ensure the popularization and application of the developed
evaluation method, the framework of mechanical wellbore stability model, which is simple
and widely used in drilling engineering, is selected to describe the relationship between
collapse pressure (drilling fluid density) and cohesive strength (matching inhibition index).

The equations for stress distribution around wellbore are shown in Equation (2) [34,35].

σr =
σxx+σyy
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2
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)
+
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r2

)
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1 + 3 Rw

4

r4 − 4 Rw
2

r2

)
sin 2θ + Rw
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r2 pm + δ
[
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2(1−ν)
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2
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[
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2

r2 )− φ
]
(pm − pp)

σz = σzz − 2ν
[
(σxx − σyy)

Rw
2
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2

r2 sin 2θ
]
+ δ
[

a(1−2ν)
2(1−ν)
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(pm − pp)
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4

r4

)
sin 2θ + τxy

(
1 + 2 Rw

2
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4
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(
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2
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(
1 + Rw
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)
sin θ

τrz = τxz

(
1 − Rw

2

r2

)
cos θ + τyz

(
1 − Rw

2

r2

)
sin θ

(2)

where σr is radial normal borehole stress, MPa; σθ is circumferential normal borehole stress,
MPa; σz is axial normal borehole stress, MPa; τrθ , τθz, τrz are three components of the
shear stress, MPa; σxx, σyy, σzz are in situ normal stresses rotated to the borehole coordinate
reference frame, MPa; τxy, τyz, τxz are in situ shear stresses rotated to the borehole coordinate
reference frame, MPa; Rw is the radius of the borehole, m; r is radial distance away from
wellbore, m; pm is the downhole pressure, MPa; pp is the formation pore pressure, MPa;
θ is the point location angle, ◦; ν is Poisson’s ratio of the formation, dimensionless; a is Biot
effective stress coefficient, dimensionless; φ is formation porosity, %.

The stress distribution around wellbore also can be expressed by in situ stresses (σH ,
maximum horizontal stress; σh, minimum horizontal stress; σv, vertical stress) through
a number of coordinate transformations. The detailed transformations can be found in
previous studies [36,37].

The shear failure of rock is described by Mohr–Coulomb strength criterion (as shown
in Equation (3)).

σ1 −
[

σ3 + 2(C + σ3 tan ϕ)

(√
(tan ϕ)2 + 1 + tan ϕ

)]
= 0 (3)

where σ1, σ3 are maximum principal stress and minimum principal stress, respectively,
MPa; C is cohesive strength of rock, MPa; ϕ is internal friction angle of rock, ◦.
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By coupling Equation (2) with Equation (3), we can obtain the minimum mud weight
required to prevent wellbore collapse for mudstone with a given strength. However, it
must be noted that chemical effect of hydration on deep mudstone strength properties and
wellbore stability is not considered in the above model and needs to be updated.

(2) Deterioration model of mudstone mechanical properties after hydration

Based on the developed experimental apparatus, the empirical model describing the
strength weakening characteristics of mudstone at various levels of hydration under well
drilling conditions can be constructed. As shown in Equation (4), the strength change of
mudstone after hydration is a function of its uptake water content w(r, t), which is related
to the radial distance from wellbore (r) and hydration time (t). The detailed descriptions
about w(r,t) in [38,39] are used in this study.

C(w(r,t)) = Ci − A × (w(r, t)− wi)

ϕ(w(r,t)) = ϕi − B × (w(r, t)− wi)
(4)

where C(w(r,t)), Ci are cohesive strength of mudstone after and before hydration, respec-
tively, MPa; ϕ(w(r,t)), ϕi are internal friction angle of mudstone after and before hydration,
respectively, ◦; w(r, t), wi are uptake water content of mudstone after and before hydration,
respectively, %; A, B are the empirical coefficients determined by experimental data.

Therefore, Equation (3) can be updated as follows

σ1 −
[

σ3 + 2
(

C(w(r,t)) + σ3 tan ϕ(w(r,t))

)(√(
tan ϕ(w(r,t))

)2
+ 1 + tan ϕ(w(r,t))

)]
= 0 (5)

(3) Quantitative relation between drilling fluid density and matching inhibition index

According to the above wellbore stability model considering strength-weakening
characteristics of mudstone after hydration, the drilling fluid densities required to pre-
vent wellbore collapse for mudstones with different hydration levels (different cohesive
strengths) can be calculated. In addition, when a certain extent of failure regions around
the wellbore can be allowed (acceptable maximum borehole enlargement rate is generally
15% in well-drilling engineering), the relationship of the required drilling fluid density, the
matching inhibition index and the borehole enlargement rate (the ratio of the difference
between borehole diameter and drilling bit diameter to the drilling bit diameter) can also
be constructed.

2.3. Evaluation Procedure of Drilling Fluid Inhibition for Deep Mudstone

As shown in Figure 4, the detailed procedure of estimating drilling fluid inhibition
property for deep mudstone is divided into two steps.

(1) Obtaining the cross-correlation chart of drilling fluid density and inhibition index for
deep mudstone

On the basis of the method described in Section 2.2, the first stage is to develop the
strength-weakening model of deep mudstone at various levels of hydration, and the next is
to construct the correlation chart of the required drilling fluid density, matching inhibition
index and borehole enlargement rate.

1. Establishing the strength deterioration model of deep mudstone after hydration

The developed HPHT experimental apparatus is utilized to conduct the hydration of
deep mudstone for different times under deep-well drilling conditions. Furthermore, the
mechanical properties of deep mudstone after hydration are estimated based on scratch test.
At the same time, the uptake water content of mudstone is obtained by using a weighting
method. Therefore, the empirical model describing the chemical effect of hydration on
deep mudstone strength parameters is updated.
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2. Constructing the quantitative correlation chart

According to the chemical–mechanical wellbore stability model for deep mudstone,
the relationships between required drilling fluid density and matching inhibition index for
different extent of wellbore collapse (borehole enlargement rate) can be constructed and
are regarded as the quantitative evaluation criterion for drilling fluid inhibition property.

(2) Evaluating inhibition property of drilling fluid

1. Obtaining the required inhibition index of the tested drilling fluid based on the above
correlation chart

According to the requirement of borehole enlargement rate in drilling engineering
and the density of the tested drilling fluid, the required inhibition index for sustaining the
wellbore stability in deep mudstone can be confirmed from the above correlation chart.

2. Estimating the current inhibition index of the tested drilling fluid for deep mudstone

The mudstone sample is immersed in the tested drilling fluid under the well drilling
conditions for a constant time, which can provide fully hydration. Additionally, the
cohesive strength of mudstone after hydration is then estimated as the current inhibition
index of the tested drilling fluid. All of the above works is conducted on the developed
experimental platform.

3. Judging the inhibition property of the tested drilling fluid

By comparing the above two kinds of inhibition indexes, it can be changed whether the
tested drilling fluid have a good performance in terms of the inhibition property. As shown
in Figure 4, if the current tested drilling fluid has a risk of causing wellbore instability,
adjustments of drilling fluid density and inhibition property are both available choices.

3. Application and Analysis

The problem of downhole fall-blocks (as shown in Figure 5) and pipe-stuck accidents
are frequent in the JDK mudstone formation of the K block (depth: about 5200–6800 m).
Therefore, the application of the proposed evaluation method in this study is focused on
the JDK mudstone in the K block.
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3.1. Detailed Design and Preparation for Evaluation

According to the above evaluation procedure, the main work consists of three parts:
experiment on the hydration characterization of the JDK mudstone, establishment of the
evaluation chart for JDK mudstone in K block and inhibition property evaluations of
drilling fluids taken from the engineering field. The detailed plan and preparation of the
above work are described as follows.

(1) Hydration characterization of JDK mudstone

In order to more accurately describe the weakening characteristics of mechanical
properties of JDK mudstone after hydration (strength deterioration model), two samples
of JDK mudstone outcrops were prepared. The hydration times of mudstones were 0, 2,
4, 8, 12, 24 and 48 h, respectively. Based on the geological information of JDK mudstone
formation in K block, the temperature and pressure of immersing mudstones in poly-
potassium mud were 130 ◦C and 23 MPa, respectively. In addition, for the mechanical test,
the sharp cutter with scratching depth of 0.16 mm and blunt cutter with scratching depth
of 0.06–0.12 mm were used in this study.

(2) Establishment of the evaluation chart for JDK mudstone formation in the K block

The establishment of evaluation chart of drilling fluid inhibition property for JDK
mudstone in K block is based on the calculation of the wellbore stability model considering
the strength weakening characteristics of the JDK mudstone. Basic input parameters of
the mechanical–chemical model are listed in Table 2. The mathematical calculations in this
paper are conducted in MATLAB (The MathWorks, Inc., Natick, MA, USA).

(3) Case study: Inhibition evaluations of drilling fluids taken from engineering field

In this study, the inhibition performance of drilling fluids of well K 8-13 and well
K 9-3 were estimated using the proposed method. In order to study the influence of the
surrounding environments on evaluation results, the evaluation of the inhibition property
of drilling fluids under both deep-well drilling conditions (130 ◦C and 23 MPa) and ambient
conditions (50 ◦C and normal pressure) are conducted. In addition, the comparisons
between laboratory evaluation results and field data are designed to confirm whether the
developed method is feasible and valid.
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Table 2. Input parameters for calculation.

Parameters Unit Value Parameters Unit Value

Mudstone porosity - 6% Drilling fluid
density g/cm3 Variable

Overburden stress MPa 132 Azimuth angle of
borehole

◦ N150E

Maximum horizontal
principle stress MPa 180 Inclination angle of

borehole
◦ 2

Minimum horizontal
principle stress MPa 108

Azimuth angle of
minimum

horizontal stress

◦ N100E

Initial cohesive strength MPa 13 Initial Poisson’s
ratio - 0.23

Initial internal friction angle ◦ 31 Effective stress
coefficient - 0.8

3.2. Evaluation Chart of Drilling Fluid Inhibition Index for JDK Mudstone Formation
3.2.1. Hydration Characterization of Mudstone in JDK Formation

Two samples of JDK mudstones with different hydration levels under deep-well
drilling conditions are shown in Figure 6. Because continuous scratch test is a kind of
nondestructive method, the mechanical parameters of mudstone after hydration can be
estimated using the same sample. Compared to the traditional compressive test (destructive
test), it can avoid the interference of experimental sample and reveal the real hydration
characteristics of deep mudstone.
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The hydration characteristics of JDK mudstones under deep-well drilling conditions
are presented in Figure 7. The uptake water contents of JDK mudstones after hydration
increase with soaking time and reach the maximum value (0.045–0.06) when the soaking
time is greater than 24 h. The changes in strength parameters of JDK mudstones after
hydration have similar trends, which include a decrease in the soaking time until fully
hydration, including uniaxial compressive strength (UCS), internal friction angle and
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cohesive strength. Therefore, the hydration time of 24 h is adopted in the following
inhibition evaluation experiments of tested fluids.
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Based on the above experimental results, the relationships between the shear strength
properties and uptake water contents of JDK mudstones are described in Figure 8. The
deterioration models of mechanical properties of JDK mudstones after hydration can be
concluded as per Equation (6).

Cc = Ci − 154.67 × (wc − wi)
ϕc = ϕi − 178.92 × (wc − wi)

(6)

where Cc, ϕc are current cohesive strength and internal friction angle of mudstone with a
certain uptake water content, respectively, MPa; wc is the current uptake water content of
mudstone after hydration.
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Figure 8. The weakening equations of mechanical properties of JDK mudstones after hydration.
(a) Internal friction angle, (b) Cohesive strength.

3.2.2. Quantitative Correlation Chart of Drilling Fluid Density and Required Inhibition
Index for JDK Mudstone Formation

According to the wellbore stability model updated by the strength deterioration model
of JDK mudstone after hydration (as described in Equation (6)) and basic parameters listed
in Table 2, the wellbore collapse regions of JDK mudstones with different hydration levels
(the poorer the inhibition performance of the drilling fluid is, the higher hydration level
of mudstone is and the more serious the deterioration of the mudstone cohesive strength
is) can be displayed visually. For instance, the borehole enlargement distributions of JDK
mudstones at different hydration levels with a given drilling fluid density (1.80 g/cm3) are
shown in Figure 9. In the case of constant drilling fluid density, the wellbore collapse region
(red area) enlarges gradually with the aggravation of JDK mudstone hydration caused
by the poorer mud inhibition property. Based on the wellbore collapse contour map, the
maximum borehole enlargement rates of JDK mudstones for different types of drilling fluid
(i.e., drilling fluid density and inhibition property) can be directly revealed.
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Figure 9. Wellbore collapse regions of JDK mudstones at different hydration levels with drilling fluid
density of 1.80 g/cm3 (a–f), the hydration level of mudstone continues to gradually increase; graph
(a) represents the mudstone without hydration; red areas denote wellbore collapse region.

Figure 10 gives the quantitative cross-correlation of drilling fluid density and required
inhibition index (cohesive strength of mudstone after immersed in tested drilling fluid) for
sustaining different borehole enlargement rates in JDK mudstone. In this chart, only the
data of five borehole enlargement rates, which are 0%, 5%, 10%, 15% and 20%, respectively,
are presented. Based on the correlation chart, once the permissible borehole enlargement
rates and tested drilling fluid densities are known, the required inhibition index of tested
drilling fluid can be obtained.

3.3. Case 1: Evaluation of Drilling Fluid in Well K 8-13 for JDK Mudstone

The density of drilling fluid sample which is taken from well K 8-13 is 1.84 g/cm3. As
shown in Figure 10, the blue dashed line, which represents the mud density of well K 8-13,
is marked and intersects with the solid lines with asterisk markers, which represent the
data of different borehole enlargement rates. Because the permissible borehole enlargement
rate in drilling engineering is 15%, the required inhibition index of the current drilling fluid
sample for JDK mudstone is 4.76 MPa, as indicated by the blue solid line in Figure 10.
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mudstone.

3.3.1. Inhibition Evaluations under Deep-Well Drilling Conditions and
Ambient Conditions

Figures 11 and 12 show the JDK mudstone samples used in inhibition-property eval-
uations of drilling fluid under real well drilling conditions and ambient conditions, re-
spectively. From the qualitative comparison between the surface flatness of mudstones
immersed in same drilling fluid under different conditions, it can be found that the damage
to mudstone immersed in mud under deep-well drilling conditions is more serious. In
other words, the inhibition property of drilling fluid under deep-well drilling conditions
is worse.

Figure 13 illustrates the quantitative evaluation results regarding the inhibition prop-
erty of drilling fluid under different conditions. The blue column denotes the initial
cohesive strength of mudstone and the red column denotes cohesive strength of mudstone
after hydration, which represents the inhibition index of the tested drilling fluid. The
data of 1#, 2# and 3# show that the inhibition property of the tested drilling fluid under
deep-well drilling conditions cannot meet the required inhibition index as marked by the
pink dashed line (i.e., the average value of the current inhibition index is about 3.88 MPa
and less than 4.76 MPa). However, the results of 4# and 5# indicate that the current inhi-
bition performance of the drilling fluid under ambient conditions is sufficient. Based on
the contradictory results above, it can be inferred that considering the natural surrounding
environments in inhibition evaluation of drilling fluid is very meaningful and necessary.
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3.3.2. Field Validation

As shown in Figure 14, when the JDK mudstone formation is drilled by using lower
mud density (1.84–1.90 g/cm3), the complex accidents such as stuck pipe and caving are
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frequent and the borehole enlargement rate always stays at a high level. This indicates
that the property of the current drilling fluid (e.g., mud density and inhibition index)
cannot sustain wellbore stability of the JDK mudstone. In order to control the further
wellbore collapse of the JDK mudstone and prevent more serious and complex accidents,
the drilling engineers adopt the widely effective method of increasing mud density. When
the mud density increases to 1.92 g/cm3, the borehole enlargement rate of JDK mudstone
is under 15%.
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Figure 14. Drilling history of well K 8-13 (the orange area denotes the JDK mudstone formation).

In reality, this adopted solution in the engineering field is consistent with the guidance
implied by the quantitative cross-correlation chart above. As described in Figure 4, except
for increasing inhibition performance of the drilling fluid, adjustment of drilling fluid
density is also an available option for controlling wellbore collapse. From Figure 10, it can
be inferred that the density of drilling fluid needs to be increased to about 1.92–1.93 g/cm3

if the current inhibition index of drilling fluid is not altered. Therefore, in some ways, the
proposed inhibition evaluation method of drilling fluid in this paper is validated.

3.4. Case 2: Evaluation of Drilling Fluid in Well K 9-3 for JDK Mudstone

The density of the drilling fluid sample taken from well K 9-3 was 1.90 g/cm3. As
presented in Figure 10, the yellow dashed line means the mud density of well K 9-3 has
an intersection point with the blue solid line marked by asterisks (the data of borehole
enlargement rate = 15%). The value of abscissa of the intersection point is 4.23 MPa (i.e.,
the required inhibition index of drilling fluid sample) as marked by the yellow solid line in
Figure 10.

3.4.1. Inhibition Evaluation under Deep-Well Drilling Conditions

Figure 15 is the JDK mudstone sample used in inhibition evaluation of drilling fluid in
well K 9-3 under deep-well drilling conditions. The tested drilling fluid of well K 9-3 may
have a good performance in the inhibition property from the point of view of integrity of
the mudstone after hydration. Additionally, the quantitative result presented in Figure 16
validates this. The current inhibition index of the tested drilling fluid taken from well K 9-3
is about 5.86 MPa and exceeds the required inhibition index.
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3.4.2. Field Validation

From Figure 17, it can be seen that the mud density used in drilling JDK mudstone
formation is 1.88–1.90 g/cm3 and the average borehole enlargement rate is less than 10%.
Especially for the well drilling process with mud density of 1.90 g/cm3, the borehole
enlargement rate of JDK mudstone decreases gradually and stays within 5%. The above
field data illustrate that the current inhibition index of the tested drilling fluid sample in
well K 9-3 can meet the requirement of sustaining wellbore stability of JDK mudstone. This
is consistent with our inhibition evaluation results provided by the proposed method.
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4. Conclusions

(1) In order to achieve the quantitative evaluation of the inhibition property of drilling
fluid under deep-well drilling conditions, a new evaluation method that adopts
cohesive strength of mudstone after hydration as the inhibition index of drilling
fluid is proposed in this study. In this method, a newly designed HPHT hydration
experiment apparatus (maximum surrounding temperature of 200 ◦C, maximum
surrounding pressure of 60 MPa and flushing action of fluid) is developed to provide
the real hydration environments in the process of drilling deep well. Additionally,
a method of estimating cohesive strength of mudstone after hydration based on a
scratch test is established to obtain the inhibition index of the tested drilling fluid. In
addition, a cross-correlation between drilling fluid density and the matching inhibition
index for deep mudstone, which is revealed by the mechanical–chemical wellbore
stability model considering hydration characteristic of deep mudstone, is constructed
as the quantitative evaluation criterion.

(2) The comparison of inhibition evaluation results of drilling fluids under ambient
conditions and natural well-drilling conditions illustrates that ignoring the natural
surrounding environments in the process of inhibition evaluation of drilling fluid
may cause overestimation of inhibition properties. Therefore, it is very necessary and
meaningful to propose a new inhibition evaluation method of drilling fluid under
real well-drilling conditions for wellbore stability in deep mudstone.

(3) The evaluation results of drilling fluids taken from the well K 8-13 and well K 9-3,
which are provided by the proposed evaluation method, are in line with the field data.
In some ways, the developed quantitative evaluation method of inhibition property
of drilling fluid for deep mudstone is validated.

(4) The developed quantitative method can consider the coupling actions of mechanical
and chemical actions of drilling fluid and provide strong support for field engineers to
sustain wellbore stability through adjustments of drilling fluid density and inhibition
properties.

(5) In order to achieve the widespread application of the proposed method in drilling
engineering field, our research group is trying to make a miniaturized experimental
evaluation platform and standardize the evaluation procedure.
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