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Abstract: The availability of smart meters and IoT technology has opened new opportunities, ranging
from monitoring electrical energy to extracting various types of information related to household
occupancy, and with the frequency of usage of different appliances. Non-intrusive load monitoring
(NILM) allows users to disaggregate the usage of each device in the house using the total aggregated
power signals collected from a smart meter that is typically installed in the household. It enables the
monitoring of domestic appliance use without the need to install individual sensors for each device,
thus minimizing electrical system complexities and associated costs. This paper proposes an NILM
framework based on low frequency power data using a convex hull data selection approach and
hybrid deep learning architecture. It employs a sliding window of aggregated active and reactive
powers sampled at 1 Hz. A randomized approximation convex hull data selection approach performs
the selection of the most informative vertices of the real convex hull. The hybrid deep learning
architecture is composed of two models: a classification model based on a convolutional neural network
trained with a regression model based on a bidirectional long-term memory neural network. The
results obtained on the test dataset demonstrate the effectiveness of the proposed approach, achieving
F1 values ranging from 0.95 to 0.99 for the four devices considered and estimation accuracy values
between 0.88 and 0.98. These results compare favorably with the performance of existing approaches.

Keywords: non-intrusive load monitoring; energy disaggregation; low frequency power data;
convex hull; bidirectional long short time memory; convolutional neural networks

1. Introduction

The world’s ever-increasing energy consumption and ongoing dependency on fossil
fuel-based energies have created significant environmental concerns, particularly in terms
of carbon dioxide (CO2) emissions [1]. Focusing on the European country hosting the
current case-study household, Portugal, greenhouse gas (GHG) emissions increased by 13%
from 2014 to 2018 as a result of increased economic activity and a high proportion of fossil
fuels in its energy supply [2]. In 2019, imported fossil fuels represented 76% of Portugal’s
primary energy (6% coal, 24% natural gas, and 43% oil) [2]. Low-carbon economies have
emerged as the focus of worldwide attention in order to minimize energy consumption and
greenhouse gas emissions [3]. The targets set by the EU for 2030 include a minimum 32%
share of renewable energy consumption in the energy mix, a minimum of 32.5% energy
savings, and a 40% reduction in greenhouse gas emissions compared to 1990 levels [4].
Portugal was among the first countries in the world to set carbon neutrality goals for the
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year 2050 [2]. The focus is on minimizing dependency on imported fossil fuels and effective
energy demand management.

At a global perspective, the building sector accounts for the largest worldwide elec-
tricity consumption, for roughly 32% of overall energy consumption, and for 19% of total
energy-related greenhouse gas emissions [5,6]. Residential energy consumption accounted
for 25.71% of the EU’s total final energy consumption, making it the second most energy-
intensive sector after transport [7]. There is an urgent need to counteract the upward trend
in building energy use. The European Union (EU) is making considerable efforts to prevent
global warming by enacting several key policies [8]. Therefore, to meet global and EU
carbon reduction targets, research efforts are required at the building sector to lower its
high contribution to global energy consumption. [9].

Since 2010, the amount of electricity consumed by household devices has risen by
about 3% per year. In 2019, household device electricity consumption exceeded 3000 TWh,
accounting for 15% of worldwide final electricity demand [10]. Energy awareness can help
to reduce energy consumption in the households [11]. Hence, occupant behaviors have a
significant role in increasing energy efficiency. Moreover, if end-users can be notified in real-
time and explicitly about the consumption of each appliance in their home, unnecessary
energy usage can be reduced [12–14].

The availability of smart meters and IoT technology has opened new opportuni-
ties, ranging from monitoring electrical energy to extracting various types of information
related to household occupancy, as well as the frequency of usage of different appli-
ances. Device monitoring can be performed by installing one or a set of sensors in each
device of interest [15], which is known as intrusive load monitoring (ILM). It allows for
accurate detection of the operating state of each appliance [16]. However, its deployment
requires complex installation and configuration of multiple sensors, especially when multi-
ple appliances are involved in the monitoring scenario [14]. It also entails a high cost, and
its intrusive nature leads to some privacy concerns [11]. All these disadvantages limit its
practical use.

On the other hand, non-intrusive load monitoring (NILM) is one of the most promising
options for energy disaggregation. It allows users to separate the usage of each device in
the house by using the total aggregated power signals collected from a smart meter that is
typically installed in a household, while protecting user privacy [11,17]. The goal of NILM
is to estimate the specific consumption of each appliance in the house based on aggregated
data collected by a smart meter. Moreover, it enables monitoring domestic appliance usage
without the need to install individual sensors for each device, thus minimizing electrical
system complexities and associated costs [18]. According to [19], basic appliances, such
as a washing machine, refrigerator, and oven, account for more than 30% of household
consumption. The identification of these types of devices in the aggregate data is, however,
challenging due to their complex feature patterns.

Four types of devices are categorized in the literature [14,20]. The first category (type I)
comprises two state (ON-OFF) appliances such as toasters and light bulbs. The finite state
machines (FSM) or multi-state appliances categorized as type II devices include appliances
such as washing machines and fridges. Type III includes continuously variable consumer
devices such as power tools and dimmers. Finally, permanent consumer appliances such
as smoke alarms are categorized as type IV. The challenge for NILM algorithms is the
identification of all types of devices with good performances. Type I devices are easier
to disaggregate due to their basic architecture. The disaggregation of the other types of
devices (Type II to Type IV) is still a challenging issue for NILM methods [11].

The NILM process was described for the first time in [21]. Hart proposed that, based
on the entire aggregate energy usage monitored using a sensor installed on the main power
panel, changes of the devices could be detected by applying an appropriate statistical test to
the collected data. Subsequently, the transitions were identified using a convenient features
vector, and finally, the identification of each device was performed using supervised or
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unsupervised approaches [14], with supervised techniques being typically more efficient
than unsupervised approaches [11,22].

The initial phase in every NILM algorithm is data gathering. Indeed, the frequency
with which the smart meter collects data determines the challenges and applications that
the NILM algorithm will encounter [23]. Data may be acquired at either a high frequency
sampling rate, in the range of kHz, or using a low frequency (1 Hz or less) sampling rate.
Features such as harmonics, transients, and V-I trajectory are used to detect the appliance
contribution in high frequency approaches [24–26]. On the other hand, methods based on
low frequency sampling rates generally employ power features such as active power (P),
reactive power (Q), or apparent power (S) [27–30]. High frequency approaches have the
disadvantage of making data transmission and storage difficult, as well as being costly in
terms of hardware and software complexity. Low frequency techniques, on the contrary,
are the effective choice in NILM applications since they allow the use of commercial smart
meter resources without the need for additional equipment [31].

The interest in NILM research has been diversified since its earliest days. The total
power series was first examined to find power changes that reflect device switching events,
and then these occurrences attributed to specific devices [21,32,33]. A later interest in
NILM research has given rise to different variants of hidden Markov models [34–38]. More
recently, the huge success of deep learning in the fields of vision and natural language
processing has led to a great interest in these approaches for NILM, which started with the
works [13,39]. A comprehensive review of NILM methods, including existing problems, can
be found in [11]. A discussion about current NILM methods will be detailed in Section 2.

Despite the numerous NILM research reported in literature, many problems persist.
These challenges include, for instance, poor detection performance, particularly for low
power and multistate devices, lesser scalability to detect newly added devices, and the need
to generate more datasets [14]. In order to tackle these challenges, deep learning algorithms
may be a suitable tool for improving the accuracy and efficiency of energy disaggregation
techniques [13]. This paper proposes an NILM framework based on low frequency power
data. The framework employs a convex hull data selection method and a hybrid deep
learning architecture. The main contributions of this research may be summarized as follows:

• An NILM framework based on private house data gathering in a real-life situation,
using low frequency sampling rate of 1 Hz.

• A randomized approximation convex hull data selection approach using sliding win-
dows of active and reactive power. It is based on the selection of the most informative
vertices of the real convex hull and has the advantage of reducing memory needs of
the learning algorithms.

• A hybrid deep learning architecture composed of two models. A classification model
based on a convolutional neural network trained with a regression model based on a
bidirectional long-term memory neural network.

• The results obtained with the proposed NILM framework on the test dataset demon-
strate the effectiveness of the proposed approach, as well as achieving better results
than existing approaches.

The rest of the paper is organized as follows: Section 2 provides a brief overview of
existing NILM algorithms. Section 3 describes the problem formulation, the convex hull
data selection approach used, the hybrid deep learning models, the case study employed,
and the evaluation metrics employed. Results and discussion are presented in Section 4.
Section 5 concludes the paper.

2. Related Works

Going back to the genesis of the NILM concept [21], the authors demonstrated that
the appliances exhibit distinct power consumption signatures. In their approach, on/off
events were utilized to identify the operating state of specific devices in the aggregate
active and reactive powers. Nonetheless, the method had difficulty identifying some types
of devices (type II, type III, and type IV). Following that, numerous alternative approaches
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were investigated in order to tackle the NILM problem. Hidden Markov Models and
its variants have been widely explored early on. Indeed, an additive Factorial Hidden
Markov Model for non-intrusive load monitoring was proposed in [37]. The authors
used an approach for exploiting the additive structure of the Factorial Hidden Markov
Model (FHMM) to construct an estimate inference approach that utilizes an efficient con-
vex quadratic programming relaxation. The proposed approach performed well while
maintaining a reasonable computing complexity. The authors of [40] examined several
Hidden Markov Models (HMM). In their study, Conditional FHMM (CFHMM), Hidden
Semi-Markovian Factorial Model (HSMM), and the FHSMM/CFHMM combination using
multi-dimensional characteristics were explored. These researchers used actual steady
state power signal in the low frequency data and demonstrated that unsupervised meth-
ods could be utilized to identify devices non-invasively. The authors of [36] proposed a
factorial hidden Markov Model for NILM. They concentrated on detecting the binary and
multistate operation of devices using appropriate feature sets. They showed how feature
concatenation can improve the accuracy of device identification. In [41], prior models of
generic device types are adjusted to device instances based only on fingerprints collected
from the aggregate load. The adjusted device models are then used to predict the load of
each device, which is then removed from the total load. This procedure is repeated until all
devices with known prior behavior models have been disaggregated. They showed that the
proposed approach performs as well as when using sub-metered training data. The authors
of [34] presented a sparse Viterbi approach that uses a super-state HMM to preserve load
correlations and detect multi-state loads while offering computationally efficient inference.
They evaluated their model using a low frequency sampling rate and showed that their
model could run in real-time on a low-cost embedded CPU. The authors of [35] developed
an Additive Factorial Approximate Maximum a Posteriori (AFAMAP) method. In their
approach, active and reactive powers are used at a low frequency sampling rate. It entails
modeling the value of each aggregated power sample as a combination of device operating
states and then recreating the time series of state evolution for each finite state machine
device. They demonstrated that the use of reactive power increases the performance of
the technique. In [42], a machine learning approach for on-line non-intrusive load moni-
toring that combines unsupervised event-based profiling and Markov chain device load
modeling is presented. In their approach, the event-based component detects events using
contiguous and transient segments and matching and event clustering. The specific device
model is created from a generic device model using the features obtained. The device
model parameters are then used to create an additive FHMM for online disaggregation.
They demonstrated that the suggested technique enables on-line detection while providing
comparable prediction performance to non-online methods.

The complexity of HMM models and its variants grow exponentially as the number
of target appliances grows. Moreover, their generalization and scalability abilities are
problematic. Existing inference methods for state prediction are also extremely sensitive to
local optima, hence, limiting their application in the real world [15]. Consequently, deep
learning and machine learning techniques are suitable alternatives to address the NILM
challenges. These include support vector machine [43–45], Decision Tree [46,47], K-nearest
neighbors [48], K-means clustering [49], and graph signal processing [50,51] as worthwhile
mentioning approaches.

The authors of [13] introduced deep learning approach for NILM. In their paper, three
deep learning models were explored. These include denoising autoencoder, long short-
term memory combined with a convolutional neural network, and a regression model that
estimates the start time, end time, and the average power demand of each device. They
modeled NILM as a denoising task, in which the target device power load represents the
clean signal, and the aggregate load is the background ‘noise’ generated by the presence
of other devices. They showed that the denoising autoencoder outperforms the FHMM
and combinatorial optimization state of the art techniques. The authors of [52] presented a
sequence to point approach. They employed a convolutional neural network, with the input
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being a window of aggregate active power and the output being a single point of the target
appliance. They showed using the Reference Energy Disaggregation Data Set (REDD) [53]
and UK Domestic Appliance-Level Electricity (DALE) [54] datasets that the sequence-to-
point technique outperforms the sequence-to-sequence state of the art approaches. In [55],
a deep learning based on the convolutional neural network, long-term short-term memory
network, and random forest (RF) algorithm was presented. They investigated the con-
cept of label correlations and tested their model on the Pecan Street [56] and REDD [49]
datasets. A deep learning based on bidirectional long short-term memory model with a
convolutional layer is proposed in [57]. The authors used a variety of electrical features
to generate a multi-feature input. The model was validated using low frequency data
from the publicly available datasets Electricity Consumption & Occupancy (ECO) [58] and
UKDALE [54]. In the same paper, they proposed a post-processing algorithm to eliminate
superfluous predicted sequences. They proved that using the post-processing technique,
the model performs well. In [59], an NILM approach based on the deep convolutional
neural network model using data augmentation to produce synthetic data is proposed. In
their approach, the data augmentation method integrates on and off-durations of a target
appliance from three datasets (ECO, REDD, and UKDALE) using a low frequency sampling
rate. A unified and consistent synthetic aggregate and sub-meter profiles are then created.
They showed that training the model on the produced synthetic data enhances its general-
izability. The authors of [60] proposed a deep convolutional neural network based on data
augmentation for type II devices. A post-processing algorithm was suggested to classify the
activations estimated by the regression model. They demonstrated that using the suggested
post-processing technique greatly enhances the model’s performance. The authors of [61]
focused on improving NILM performance via a tailored attention mechanism. The ap-
proach is based on deep neural network architecture using the encoder-decoder framework.
The proposed architecture consists of a regression subnetwork model combined with a
classification subnetwork model. They suggested the use of convolutional and recurrent
layers in the regression subnetwork to increase feature extraction and create better device
models. They showed that the proposed approach improves model performances and gen-
eralization ability. Decision Tree and long short-term memory models are proposed in [46]
to perform an event detection approach using transient signal. The latter was extracted in
low frequency using active power signal. They showed that including the transient signal
into the input signals improves the model’s performance. The authors of [18] proposed
a multi-label classification approach based on a fully convolutional neural network. In
their approach, the appliance states are classified using a features space enhanced by a
temporal pooling module. The appliance power is estimated using the constant average
value when the appliance is active. They showed that the proposed technique achieved
good performance in recognizing the activation status of devices and estimating their
power consumptions.

3. Materials and Methods

The main objective of energy disaggregation is to break down the house’s global
aggregated data into specific contributions of each appliance. The purpose is to recognize
each appliance operating state and to estimate its energy consumption contribution within
the house’s total consumption. The problem can be stated as follows: given a sequence of
aggregated data Xt = {x1, · · · , xT}, the task of NILM is to determine the contribution of
each appliance I, y(i)t =

{
y(i)1 , · · · , y(i)T

}
, where I = {1, . . . , N} is the index of the appliance

(from a set of N appliances), and t = {1, · · · , T} is the time-index of the sequence with
length T. The aggregated data can be expressed as the sum of the contribution of individual
appliances plus an unknown part due to noise, represented by:

Xt = ∑N
1 y(i)t + ∂t (1)

where ∂t is the noise term.
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The contribution of an individual appliance y(i)t is given by:

y(i)t = ψ(Xt) (2)

where ψ is the operator that, when applied to the whole aggregated data, gives the best
estimate of the contribution of each individual appliance.

The task of obtaining an approximation of the operator ψ may be addressed as a su-
pervised learning problem [18]. This is the approach followed here, where the architecture
of the proposed algorithm includes a convex hull-based data selection algorithm called
ApproxHull, proposed in [62], and a hybrid deep neural network model.

The architecture of the hybrid network is made up of two subnetworks inspired in the
work proposed in [61,63]. The approach makes use of an independent classification subnet-
work that is trained jointly with the typical regression subnetwork. The network output is
given by the combination of outputs of the two subnetworks. These learning approaches
allow models to generalize efficiently for the original task by spreading parameters across
related tasks [63]. Besides, deep neural networks tend to detect irrelevant activations that
are not related to the target device activations [57,60]. The associated classifier enables
these irrelevant predictions to be eliminated and considers only predictions in which the
device is active.

3.1. Approxhull Algorithm

An object in Euclidean space is convex if, for each couple of points inside the object,
each point on the straight-line segment joining them is also inside the object [62]. It is
assumed that a set C is convex if, for each pair (x, y) ∈ C and any k ∈ [0, 1], the point
(1 − k) x + ky is in C. Furthermore, if C is a convex set, for any x1, x2, . . . , xi ∈ C and any
nonnegative numbers {µ1, µ2, . . . , µi}\∑i

j=1 µi = 1, the vector ∑i
j=1 µixi is denoted as a

convex combination of x1, x2, . . . , xi.
Following the definitions above, the convex hull or convex envelope of the set Ω of

points in Euclidean space can be Described either in terms of convex sets or using convex
combinations. It can be given as the intersection of all convex sets containing Ω or as the
set of all convex combinations of points in Ω.

ApproxHull is a data selection algorithm based on a randomized approximation
convex hull technique, capable of handling large dimensions of data in a reasonable
amount of time and memory [62]. Indeed, data used to design a model must cover the
whole input range in which the model will be used to enhance the model’s performance.
ApproxHull is an incremental algorithm that starts with an initial convex hull and then
incrementally expands the current convex hull by adding new vertices. It assumes a user-
defined threshold, β, to obtain a subset of the most informative vertices of the real convex
hull. Figure 1 shows a flow chart summarizing the ApproxHull algorithm. For more details,
please refer to [62].

It should be noted that before applying ApproxHull, the original dataset is prepro-
cessed. For equal columns (identical features) and duplicated rows (equal samples), rows
with non-numerical values and rows with missing values are excluded to reduce the pos-
sibility of ApproxHull generating a singular matrix corresponding to a random invalid
facet. ApproxHull ensures that all convex hull points from the design data are included
in the training set, which is then augmented with samples randomly extracted from the
design data to obtain the user-specified number of samples for the training set. The remain-
ing design data are randomly split to the testing and validation sets, according to the user
specifications. As a result of this procedure, training, testing, and validation sets are generated.
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3.2. Convolutional Neural Network (CNN)

In recent years, convolutional networks have seen a series of successes in classifying
large-scale images [60]. Its effectiveness stems from its ability to model nonlinear local
dependencies [64,65]. A convolutional neural network architecture is typically made up of
three layers: convolutional layer, pooling layer, and fully connected layer. The convolu-
tional layer aims to extract features that represent the inputs. It is made up of many convo-
lution kernels that are used to compute distinct feature maps [66]. Equation (3) describes
the feature maps using several distinct kernels:

zl
i,j,k = W l

kxl
i,j + bl

k (3)

where xl
i,j denotes the inputs of the lth layer at location (I, j), W l

k and bl
k represent, respec-

tively, the weight vector and bias term of the lth layer and kth filter. Nonlinearities are
introduced into CNN via the activation function, which is useful for multi-layer networks
to capture nonlinear features. The activation function is given by:

ϕl
i,j,k = ϕ

(
zl

i,j,k

)
(4)

The ReLu activation function is used in this work [67].

ReLu(x) = max (0, x) (5)

The pooling layer enables to select and filter the features extracted by the convolutional
layer. It intends to achieve shift-invariance by lowering the resolution of the feature maps.
The pooling function for each feature map ϕl

:,:,k is as follows:

yl
i,j,k = pool

(
ϕl

m,n,k

)
, ∀ (m, n) ∈ Rij (6)
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where Rij denotes a local neighborhood around location (I, j). The max-pooling is used in
this work for pooling operation. Its output with stride l and size s is defined by:

y(i) = max x[i × l: i × l + s − 1] (7)

The fully connected layers seek to conduct high-level reasoning. They connect all
neurons of the previous layer to every neuron in the current layer to produce global
semantic information. The output is generated by nonlinearly combining the features that
have been selected with the fully connected layer.

Training a CNN involves minimizing a suitable loss function. Given a set of input
output {(x(k), y(k)), k = [1, . . . , K]}, where x(K) denotes the kth input data and y(k) is the
matching target label, assume that θ represents all the CNN parameters and o is the CNN
output. The loss function of CNN may be computed as follows:

Γ =
1
N ∑N

n=1 `(θ, y(n), o) (8)

The best fitting set of parameters may be found by minimizing the loss function.
Further information about CNN models can be found in [66]. The trial-and-error proce-
dure was used to tune the CNN hyperparameters. The classification subnetwork CNN
architecture proposed with the best hyperparameters values is as follows:

• Input shape (length defined by the appliance data).
• 1D convolutional layer (filters = 32, kernel size = 3, activation = ‘ReLu’).
• 1D convolutional layer (filters = 64, kernel size = 3, activation = ‘ReLu’).
• 1D convolutional layer (filters = 128, kernel size = 3, activation = ‘ReLu’).
• Maxpool layer.
• Fully connected dense layer (number of units = 1024, activation = ’ReLu’).
• Fully connected dense layer (number of units = 1).

3.3. Long Short-Term Memory (LSTM)

LSTM has been introduced by [68] to address both long-term and short-term depen-
dency issues. It is a deep recurrent neural network that uses a feed-forward variation to
process sequential data and address vanishing gradient issues. The LSTM design replaces
the hidden layer of the conventional neural network units with combined memory cells. It
is made up of three gates: an input gate, a forget gate, and an output gate. The state of the
memory cell is referred to as a cell state. The LSTM network may add or delete information
to the memory cell state via the input gate, output gate, and forget gate. Each gate has a
specific purpose that is determined by the current external input and the previous cell’s
output. The input gate determines how much the block input will update the cell state. The
forget gate determines which information from the prior cell state should be erased and
which should be stored. It enables the cell to memorize or forget its prior state, as necessary.
The output gate determines which piece of the cell state should be propagated to the output.
The block output is then computed by multiplying the filtered current cell state by the
output gate. It can enable or prevent the cell state from affecting other neurons. Figure 2
presents the architecture of the LSTM cell. The terms it, ft, ot, ht, ct denote, respectively, the
input gate, forget gate, output gate, the output, and the cell state. The symbols σ and tanh
represent the sigmoid activation function and the tanh activation function, respectively.
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Figure 2. LSTM cell architecture. Adapted from reference [68]. 
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One of the approaches to improve the recurrent neural network models is the usage of
bidirectional layers [13]. Indeed, one recurrent neural network reads the input sequence
forward, while the other reads it backward. To merge the output from the network’s
forward and backward sides, an element-wise sum is employed. The bidirectional LSTM
network predicts actual value using both prior and future information, and in this way
is an ideal model for the NILM problem [57]. It is made up of three layers: input layer,
hidden layer, and output layer. The hidden layer is made up of two unidirectional LSTM
layers that have identical architecture and the same input but propagate the data in the
opposite direction. The following are the vector formulas defining the forward LSTM layer
for the propagation process [69].

ft = σ
(

W f .[ht−1, xt] + b f

)
(9)

it = σ (Wi.[ht−1, xt] + bi) (10)

ĉt = tanh(Wc.[ht−1, xt] + bc) (11)

ct = ft � ct−1+it� ĉt (12)

ot = σ (Wo.[ht−1, xt] + bo) (13)

ĥt = tanh(ct) (14)

ht = ot � ĥt (15)

where � denotes element-by-element multiplication. W f , Wi, Wc, Wo and b f , bi, bc, bo are
the weight matrices and bias vectors for forget gate, input gate, cell state, and output gate,
respectively, in the forward LSTM layer.

The information propagation mechanism in the backward LSTM layer is described as
follows:

f ′t = σ
(

W ′f .
[
h′t+1, xt

]
+ b′f

)
(16)

i′t = σ
(
W ′i .
[
h′t+1, xt

]
+ b′i

)
(17)

ĉ′t = tanh
(
W ′C.

[
h′t+1, xt

]
+ b′c

)
(18)

c′t = f ′t � c′t−1+i′t�ĉ′t (19)

o′t = σ
(
W ′o.
[
h′t+1, xt

]
+ b′o

)
(20)

ĥ′t = tanh
(
c′t
)

(21)

h′t = o′t � ĥ′t (22)
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where W ′f , W ′I , W ′C, W ′O and b′f , b′i , b′c, b′o are the weight matrices and bias vectors for the
forget gate, input gate, cell state, and output gate, respectively, in the backward LSTM layer.

The bidirectional LSTM output vector is defined by:

ŷb = Ws.
(
ht ⊕ h′t

)
+ bs (23)

where Ws and bs denote the weight matrix and bias vector of the output layer. The
symbol ⊕ denotes vector splicing.

The loss function used is the mean square error (MSE) defined by:

MSE =
1
N

N

∑
i=1

(
ŷb

i − yb
i

)2
(24)

The best fit of the model is obtained by minimizing the mean square error loss function.
For more details about the LSTM model, please refer to [68]. The subnetwork architecture
of the regression model with the optimal parameters used is as follows:

• Input shape (length defined by the appliance data).
• Bidirectional LSTM layer (number of hidden units = 32, activation = ‘ReLu’).
• Dropout layer with dropout = 0.3.
• Bidirectional LSTM layer (number of hidden units = 64, activation = ‘ReLu’).
• Dropout layer with dropout = 0.3.
• Bidirectional LSTM layer (number of hidden units = 128, activation = ‘ReLu’).
• Dropout layer with dropout = 0.3.
• Fully connected dense layer (number of units = 1024, activation = ’ReLu’).
• Fully connected dense layer (number of units = 1).

The general framework of the proposed disaggregation architecture is made up of
two subnetworks architecture. Each subnetwork is considered as a subtask of the energy
disaggregation task [63]. On the one hand, the classification is performed using the CNN
architecture. The goal is to detect if the device is ON or OFF. It is assumed that a device
is ON when its power consumption exceeds a certain threshold, and it is OFF elsewise.
The input of the network is the training data selected using ApproxHull algorithm. The
output of the classification subnetwork is the state of the device s(i)t = {s(i)1 , · · · , s(i)T }, where

s(i)t ∈ {0,1} represents the ON-OFF state of device i at time t. On the other hand, the power
sequence of the device is estimated using the bidirectional LSTM subnetwork architecture.
The usage of recurrent neural networks enables the model to have an accurate estimate of
every device’s energy usage while also ensuring the overall network architecture scalability.
Assume that ŝi

t = f i
c(Xt), where f i

c is the device state classification subnetwork model and
Xt is the input. Let p̂i

t = f i
r(Xt), where f i

r is the device power sequence estimate regression
model. The final disaggregation output is generated by multiplying the classification
subnetwork output by the regression subnetwork’s predicted power sequence, defined as:

ŷ(i)t = ŝi
t � p̂i

t (25)

where ŷ(i)t is the disaggregation output of appliance I at time t, and ŝi
t and p̂i

t denote,
respectively, the output of the classification and regression subnetworks. Figure 3 depicts
the full proposed disaggregation model architecture.

3.4. Dataset

This study makes use of data collected from a detached household, a typical residential
house located in Algarve, Portugal. It is equipped with a multitude of electrical appliances.
The electric board includes 17 circuits breakers, 16 monophasic and 1 triphasic. A Circutor
Wibee [70] measures each circuit breaker, with a sample interval of 1 s. The total aggregate
consumption that will be used for the proposed NILM algorithm is measured by a three-
phase energy meter from Carlo Gavazzi (EM340) [71]. It measures 45 distinct electric
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variables in the house sampled at 1 Hz. Table 1 presents the most important devices
attached in each phase. Additional electric variables are monitored for each circuit breaker
to obtain an approximation of ground truth for each appliance. A total of 198 variables
are measured by the Circutor Wibee, including current, voltage, active power, reactive
power, apparent power, frequency, power factor, capacitive reactive energy, and inductive
reactive energy. Additionally, smart plugs enable the measurement of individual sockets
from the same circuit breaker. Currently, three smart plugs are used, allowing monitoring
of six additional variables every second, for each smart plug. It should be noted that the
measuring equipment are not synchronized, and thus, the acquisition time instants for
each meter differ. The house includes a PV installation made up of twenty Sharp NU-AK
panels [72]. A Kostal Plenticore Plus inverter [73] is used, controlling also a BYD Battery Box
HVH 11.5 [74] with a storage capacity of 11.5 kWh. From the inverter, 47 electrical variables
are sampled each minute. An intelligent weather station (IWS) [75], measuring global solar
radiation, atmospheric air temperature, and relative humidity, and a few self-powered
wireless sensors (SPWS) [76] are employed for monitoring climate variables inside the
house. The climate variables include relative humidity, air temperature, wall temperature,
and movement. The transfer of data from/to the measurement appliances is handled by
gateways and a technical network. The data is accessed through a wireless IP network
using the Modbus IP protocol. An IoT platform was set up. For further details about the
whole data acquisition system please refer to [77].
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Table 1. Description of the devices in the house. LFL: linear fluorescent lamp, CFL: compact
fluorescent lamp, LL: LED lamp, AC: air conditioner, TV: television, IL: incandescent lamp.

Phase Devices

1

Security alarm, LFL_1, CFL_1, CFL_2, LL_1, LL_2, CFL_3, CFL_4, running machine,
clothes iron, electric air heater_1, hair dryer_1, AC_1, AC_2, AC_3, CFL_5, CFL_6, LL_3,

CFL_24, CFL_7, broadband router_1, electric air heater_2, electric air heater_3,
immersion heater, aquarium pump, CFL_8, desktop computer, laptop computer_1,
laptop computer_2, TV_1, audio system_1, printer, broadband router_2, and burner

stove_1.

2

Swimming pool pump, IL_1, IL_2, LFL_2, LL_4, LL_5, LFL_4, hair dryer_2, LL_6,
motor_1, motor_2, washing machine, electric water heating, broadband router_3, dryer,
fridge freezer_1, coffee maker, toaster, food processor, small cooking appliance, TV_2,

fridge freezer_3, freezer, LL_13, CFL_9, CFL_10, CFL_11, CFL_12, LFL_3, CFL_13,
CFL_14, LL_7, and oven.

3
LL_8, CFL_15, CFL_16, LL_9, LL_10, LL_11, LL_12, CFL_17, CFL_18, CFL_19, CFL_20,

CFL_21, CFL_22, AC_4, dish washer, microwave, fryer, kettle, CFL_23, TV_3, audio
system_2, set top box, AC_5, and burner stove_2.
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3.5. Evaluation Metrics

The proposed approach is based on both the detection of the state of appliances and
power estimations. Therefore, it requires the use of both classification and estimation
accuracy metrics. The most pertinent evaluation metrics were considered with the objective
of reflecting the methodology’s efficiency in both recognizing the activation state and
predicting the energy use.

The classification metrics used are defined as follows [78,79]:

Recall =
TP

TP + FN
(26)

Precision =
TP

TP + FP
(27)

F1 = 2 × Precision× Recall
Precision + Recall

(28)

where TP, FP, and FN denote, respectively, the number of true positives (actual = ON,
predicted = ON), false positives (actual = OFF, predicted = ON), and false negatives
(actual = ON, predicted = OFF).

The energy estimation metrics used are mean absolute error (MAE), signal aggregate
error (SAE), and estimation accuracy (EA). They are described as follows [18,57]:

MAE(i) =
∑N

t=1

∣∣∣y(i)t − ŷ(i)t

∣∣∣
N

(29)

SAE(i) =

∣∣∣Ê
·
(i) − E(i)

∣∣∣
E(i)

(30)

EA(i) = 1−
∑N

1

∣∣∣y(i)t − ŷ(i)t

∣∣∣
2×∑N

t=1 y(i)t

(31)

where N denotes the number of load data values, y(i)t is the ground truth power values of

appliance i at time t, ŷ(i)t is the predicted power values of appliance i at time t, Ê
·
(i) is the

total predicted energy, and E(i) is total ground truth energy for appliance i.

4. Results and Discussion
4.1. Data Pre-Processing

The data were collected for several months from the house described in Section 3.4.
In this study, only four weeks of data are considered representing, however, around 1.5
million samples for each device. The aggregated active and reactive powers measured by
EM340 for phase 2 are extracted. For each instant of time, a sliding window of 20 variables
(10 active and 10 reactive lagged power values) is constructed. These data, together with
the label (appliance on/off) if a classification is sought, or the current active power, if
a prediction is desired, are fed to the ApproxHull algorithm. To evaluate the proposed
approach, four popular appliances for evaluating NILM algorithms are considered. These
four devices are within the range of the major consumers in the case study house. They
are the washing machine, fridge, swimming pool pump, and electric water heater. The
ground truth active power sequence for each appliance is determined manually using the
Circutor Wibee measurements and smart plugs data. The ON-OFF status of each appliance
is determined using a similar approach to that used in NILMTK [80]. The appliance is
considered ON when its consumed power exceeds a defined threshold value for a minimum
time threshold. Indeed, for certain multistate appliances where energy consumption can fall
below the threshold value for brief periods of time without being switched off, a minimum
time threshold is defined during which the power supply is kept below the threshold. The
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appliance is assumed to be OFF if the time duration where the power is below the power
threshold is higher than the minimum time threshold defined. Furthermore, the ON state
is obtained from samples that are strictly consecutive above a predefined threshold, where
sequences of data smaller than the predefined minimum time threshold are eliminated.
Table 2 summarizes the parameters used to generate the device labels.

Table 2. Parameters used to generate appliance status.

Appliances Max Power (W) Power Threshold (W) Time Threshold (s)

Washing machine 2500 20 3
Electric water heating 1700 1500 3
Swimming pool pump 1200 500 3600

Fridge 200 50 60

Table 3 presents some statistics about the number of activations, the maximum and
the average ON duration, and the total active energy consumed for each device over the
considered data period.

Table 3. Appliance statistics.

Appliances ON Duration (s) Activations Energy (kWh)

Max Average
Washing machine 8696 2550 17 9.5

Electric water heating 10,169 561 663 122.9
Swimming pool pump 25,202 24,985 28 159.1

Fridge 7045 2100 708 36.1

The ApproxHull algorithm described in Section 3.1 is applied to the overall dataset
(four weeks of data sampled every second, consisting of 2,419,200 samples), to generate
training, testing, and validation sets for each appliance. One dataset is created for each
appliance. First, the convex points representing the whole input range in which the model
is supposed to be employed are generated. Then, all the convex points found are included
in the training set for each appliance dataset. Following that, the remaining samples are
randomly distributed throughout the balance of the training, testing, and validation sets,
in the ratios of 60%, 20%, and 20%, respectively. Table 4 presents the average number of
vertices and the size of the training, testing, and validation datasets for each appliance.

Table 4. Size of training, testing, and validation sets.

Appliances CH Vertices Training Set Testing Set Validation Set

Washing machine 170 1,451,513 483,839 483,837
Electric water heating 118 1,375,956 458,652 458,652
Swimming pool pump 109 1,375,956 458,652 458,652

Fridge 106 1,375,956 458,652 458,652

4.2. Training and Testing

One model is trained for each appliance. The experiments were conducted using data
from 1 March 2021 to 28 March 2021 for the washing machine and from 2 June 2021 to
30 June 2021 for the other appliances. A hyperparameter tweaking was conducted to obtain
the optimum hyperparameter settings. The network parameters are obtained using Adam
optimization method [81] utilizing a learning rate of 5 × 10−5 and a batch size of 512. The
binary cross entropy loss function was used for the classification subnetwork and the mean
square error loss function for the regression subnetwork. The full architecture loss function
is the result of combining the loss functions of the two subnetworks. Early stopping was
used to avoid overfitting [82]. It is also called implicit regularization since it interrupts the
training when the error on the validation set increases. Tables 5 and 6 present the summary
of results obtained in the test dataset in terms of state identification and estimation of
energy of each appliance without ApproxHull and with ApproxHull, respectively.
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Table 5. Performance’s evaluation results without ApproxHull: mean absolute error (MAE), signal
aggregate error (SAE), and estimation accuracy (EA).

Appliance TP TN FP FN Recall Precision F1 MAE (W) SAE EA

Washing machine 9872 469,495 3959 511 0.95 0.71 0.81 8.90 0.46 0.66
Electric water heating 74,424 380,307 3107 814 0.98 0.95 0.97 18.5 0.007 0.96

Swimming pool
pump 126,772 331,301 379 200 0.99 0.99 0.99 6.6 0.016 0.98

Fridge 291,218 105,227 28,595 33612 0.89 0.91 0.90 17.5 0.17 0.83

Table 6. Performance’s evaluation results with ApproxHull: mean absolute error (MAE), signal
aggregate error (SAE), and estimation accuracy (EA).

Appliance TP TN FP FN Recall Precision F1 MAE (W) SAE EA

Washing machine 13,034 469,737 547 519 0.96 0.96 0.96 1.64 0.05 0.93
Electric water heating 55,157 403,053 158 284 0.99 0.99 0.99 5.0 0.007 0.98

Swimming pool
pump 134,803 323,699 64 86 0.99 0.99 0.99 4.92 0.002 0.98

Fridge 326,212 99,553 25,862 7025 0.97 0.92 0.95 12.72 0.09 0.88

The results demonstrate the model’s effectiveness in recognizing and estimating the
energy of each device. The proposed ApproxHull data selection approach has significantly
improved the model’s performance when compared to the model without ApproxHull,
particularly for multistate devices (washing machine and fridge) that have a complex
signature behavior and, therefore, are difficult to identify (worse F1 value).

Indeed, the mean absolute error for the washing machine and fridge have been
lowered, respectively, by 81% and 27% with the ApproxHull data selection. For the electric
water heater and swimming pool pump, the mean absolute error was reduced by 73% and
25%, respectively. The F1 score of the washing machine and fridge were improved by 18%
and 5% using ApproxHull data selection.

Regarding the estimation accuracy (EA), there is an improvement of 40% for the
washing machine and 6% for the fridge using ApproxHull data selection. Due to their basic
architecture, the electric water heater and swimming pool pump could be disaggregated
with good performance. Nevertheless, by employing ApproxHull, performance presented
slightly higher values both in terms of estimation accuracy and F1. Figures 4 and 5 depict
the comparison of both F1 score and estimation accuracy without ApproxHull and when
ApproxHull data selection is employed for all the devices considered in the experiment.

Despite the complex architecture of multi-state devices, the proposed data selection ap-
proach enables a more accurate identification and estimation of each device’s consumption.
Some examples of disaggregation outputs are presented in Figures 6–9. Figure 6 shows the
estimated active power consumption versus the ground truth active power of the washing
machine as well as the aggregated active power. Figure 7 presents the estimated active
power of the fridge compared to its ground truth. The aggregated power can be seen in
Figures 8 and 9. Figures 8 and 9 depict the aggregate active power, the ground truth, and the
estimated active power for the electric water heater and swimming pool pump, respectively.

As it can be seen in Figures 6–9, there is a very good agreement between the estimated
active power and the ground truth active for all four appliances considered in the experiment.
The estimated power consumption signals are very close to the ground truth. It should also
be mentioned that each of these devices presented very satisfactory performances.

To validate the reproducibility of the experiment, a five-fold cross validation was
used. As in the original experiment, 80% of the data was used for training and 20% for
testing; the design data was partitioned into five mutually exclusive subsets of equal size,
with one subset being utilized for testing and the remaining four being used to estimate
the parameters and compute the model’s accuracy. This process is performed k times by
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circularly alternating the test subset. Table 7 presents the results of the five-cross-validation
for the washing machine and fridge in term of F1 score.
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4.3. Comparison with Other State-of-the-Art Techniques

As highlighted in [14,31] the direct comparison of NILM methods is not easy because
of the ambiguity on the evaluation metrics which depends on data and on the context of
experiments. The approach proposed in this paper is based on a private house data sampled
at a low frequency of 1 Hz. It employs past active and reactive powers as inputs. However,
in most of the existing low frequency public dataset only active power measurements
are available [53,54]. Thus, an accurate qualitative comparison of methods with different
datasets is not possible. However, as an illustration, a comparison was conducted. Table 8
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presents the comparison of the proposed NILM approach to state of art NILM methods for
washing machine.
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The results presented in Tables 8 and 9 show that the proposed approach is very
effective in identifying the states of the devices and in estimating the energy consumed
by each device. Fridge and washing machine are very common multi-state appliances for
testing NILM algorithms. For the washing machine, the proposed approach achieves the
best results in terms of precision (96%), F1 score (96%), mean absolute error (1.64 W), and
estimation accuracy (93%). However, it obtained a slightly worse recall (96%) than CNN
(98%) presented in [60] and Online-NILM (100%) proposed in [42].

For the fridge, the proposed approach consistently outperforms state-of-the-art meth-
ods in terms of recall (97%), precision (92%), F1 score (95%), and estimation accuracy
(88%). Conversely, it had a slightly worse mean absolute error of 12.72 W compared to
the Online-NILM 4.34 W presented in [42]. The overall results demonstrate that, when
compared to state-of-the-art algorithms, the proposed approach effectively disaggregates
target devices with higher power estimation accuracy and a superior F1 score.
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Table 7. F1 score using cross validation.

Washing Machine 0.963 0.961 0.959 0.958 0.959

Fridge 0.944 0.938 0.950 0.934 0.947

Table 8. Comparison results with existing non-intrusive load monitoring methods for washing machine.

Method Recall Precision F1 MAE (W) SAE EA

Online-NILM [42] 1 0.60 0.70 118.11 - -
MFS-LSTM [57] - - 0.76 14.42 0.51 0.74

CNN [83] 0.78 0.20 0.32 18.38 - -
LDwA [61] - - 0.69 11.17 - -
CNN [60] 0.98 0.87 0.92 - - 0.92

TP-NILM [18] 0.86 0.87 0.86 8.31 0.01 -
Proposed 0.96 0.96 0.96 1.64 0.05 0.93
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The performances comparison of the fridge to the state-of-the-art methods is presented
in Table 9.

Table 9. Comparison results with existing non-intrusive load monitoring methods for the fridge.

Method Recall Precision F1 MAE (W) SAE EA

Online-NILM [42] 0.73 0.87 0.79 4.34 - -
MFS-LSTM [57] - - 0.87 19.60 0.46 0.76

CNN [83] 0.97 0.80 0.88 7.90 - -
LDwA [61] - - 0.86 19.81 - -

TP-NILM [18] 0.89 0.85 0.87 17.03 −0.05 -
Proposed 0.97 0.92 0.95 12.72 0.09 0.88

5. Conclusions

This paper proposes an NILM framework based on low frequency power data using a
convex hull data selection approach and a hybrid deep learning architecture. Data were
collected in a private house in Algarve, Portugal. The input of the model is a sliding
window of active and reactive power values sampled at 1 Hz.

As a primary step, data selection using a randomized approximation convex hull
is conducted. It is based on the selection of the most informative vertices from the real
convex hull. Then, a hybrid deep learning model is designed by combining two sub-
network models. It is built by combining a classification subnetwork model based on
convolutional neural networks with a regression subnetwork model based on bidirectional
long short-term memory neural networks.

The output of the classification subnetwork is the sequence of states of the devices,
whereas the output of the regression subnetwork is the power sequence of the target device
at each time instant. In fact, the regression subnetwork tends to predict irrelevant powers
that do not belong to the target device. The use of a classification subnetwork enables the
detection of the device’s ON/OFF state and, therefore, the elimination of any prediction
that does not belong to the target device under analysis. The model’s output is generated
by merging the results of two subnetworks.

The obtained results demonstrated that the use of the ApproxHull data selection
approach significantly enhances the performance of the designed model particularly for
multi-state devices. Moreover, the results of the test showed that the proposed approach
accurately disaggregates target devices with higher power estimation accuracy and a
superior F1 score than state-of-the-art approaches.

ApproxHull data selection may be used for both offline training and online modeling.
Future work will focus on the implementation of the proposed approach for online non-
intrusive load monitoring application in home energy management systems.
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