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Abstract: Deployment of Electric Vehicles (EV) is increasing in recent years due to economic and
environmental advantages compared with fossil fuel-based vehicles. As the market of EVs grows,
new challenges to the electric grid are emerging to accommodate the EVs demand, especially in the
distribution networks. In this paper, we investigate the impact of EVs deployment on the electricity
demand and distributed network. We propose a model to generate EV demand profiles that consider
the EV users’ driving pattern such as daily energy consumption and charging schedule, in addition
to the EV’s charging characteristics. The EV demand model uses data we obtained from a survey
to evaluate the model’s parameters. We use the EV demand model to simulate and evaluate the
impact of EVs demand on the distribution network. We present a case study with an actual model for
a distribution network to evaluate the impact of EVs on the distribution network in Saudi Arabia.
We analyze the simulation results and show how EVs impact the demand and the distribution
network performance.

Keywords: Distribution Network Analysis; EV demand model; EV Demand Simulation

1. Introduction

Electric Vehicles (EV) deployment has been increasing in recent years. In an auspicious
scenario, a report from the International Energy Agency (IEA) predicts that EVs will
account for 7% of all road vehicles by 2030 [1]. In the first quarter of 2021, the sales of EVs
increased by 140% compared to the same period from 2020 [1]. This increase is derived
by the potential advantages of EVs such as ensuring energy security and reducing the
greenhouse gas emission [2]. Many countries around the world announce plans to eliminate
or reduce fossil fuel-based vehicles in the near future [1,3]. Norway for example has the
most ambitious plan for phasing out all fossil-fueled vehicles by 2025 [3]. The government
of the United Kingdom has decided to ban petrol and hybrid vehicle in 2035 forward in
attempt to reduce greenhouse gas emission, which allows for wide utilization of EV in the
country [3]. The government of United States announces a plan to increase the sales share of
net-zero emission vehicles to 50% by 2030 [4]. Most recently, the Saudi Arabia government
announce a target of 30% EVs in the Riyadh city by 2030 to reduce the greenhouse gas
emissions [5].

The accommodation of EVs will challenge the power systems in the future. High
EVs deployment rate increases electricity demand and leads to more power losses and
voltage fluctuation on the power systems.The demand profile with high EVs deployment
rate depends on many variables such as adoption rates of EVs, drivers’ working hours,
and daily travel distance. To understand the impact of EVs on power systems, we need to
model the EVs demand considering the uncertainties associated with these variables. The
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impact of high deployment rate of EVs can be studied at two levels: at the system’s level,
and at the distribution network (or feeder) level.

The change in the electricity demand impacts the planning and operation of the power
systems at the system level [6]. System operators need to understand the EVs demand to
ensure adequate generation [7]. High deployment rate of EV may cause significant changes
in the demand profiles at the system level and impact generation scheduling, especially
since the charging pattern of EVs’ users expected to have a high correlation. The high
correlation in the EV demand of different users is due to the similarities on the working
hours, school times, and vacations. The change in the demand profile will be critical for
the power system operation when the penetration the non-dispatchable generation such
as solar energy systems increases [8,9]. For the distribution network level, the increased
demand due to EVs can cause voltage drops and stress the distribution cables beyond the
allowable limits. On the positive side, knowing the driving pattern of EV can support the
power systems’ operation by utilizing the existing battery system. The utilization of the
EV batteries to support the grid can only be fulfill by knowing the the consumers charging
pattern [8,10].

Different methods are used in the literature to model the impact of EVs in the distri-
bution grid. In [11–14], the authors study the impact of EVs demand on the distribution
network using a deterministic EVs charging pattern based on reasonable assumptions. The
authors of [11] evaluate the EV demand assuming the charging will be performed during
off-peak hours and use three different charging patterns. While in [12], the authors use two
predefined charging periods with 85% EVs charge at off-peak hours and 40% at peak hours.
The authors of [14] assume the EVs charging times are overlapped with fixed starting time
to simulate the worst-case scenario. While in [13], the authors use two scenarios for the
charging time, i.e., regulated and unregulated, to study the impact of the EVs charging
both with constant charging time. Although using a fixed charging period for EVs provides
insight, the results might be misleading, especially when evaluating the impact on the
peak demand.

The authors in [15] use actual data obtained from a trail [16]. The data in [16] is
collected through installing meters in-vehicle and charging station, and surveying the
44 EVs owners who participated in the trail. Installing meters in-vehicle provides an
accurate estimation of the actual pattern of EVs demand. However, due to the complexity
of the task, the high cost of installing the meters, and the willingness of people to participate
in a trail, the number of participants in the trail is low which makes it difficult generalize
the EVs demand pattern. Other papers such as [17–19] proposed using data published
by statistical organization and government statistical department to develop EV demand
model. The authors of [18–20] use Monte-Carlo Simulation (MCS) to generate multiple
scenarios through sampling over actual data and evaluate the impact of EVs charging on
the power system. However, the proposed model considers only one arrival and departure
times for each consumer every single day. Those assumptions are not a realistic and do
not reflect consumer driving pattern since a single consumer can have several charging
intervals which will impact the power demand differently.

In this paper, we propose a framework to study the impact of EVs deployment on
the power system at two levels: system’s level and distribution feeder’s level. In order to
build an accurate EV demand model, we surveyed the consumers to collect data about
the driving patterns in Saudi Arabia. Then, we propose a probabilistic EV demand model
based on the actual data to capture the consumers’ driving pattern and the EVs charging
characteristics. We use an agent-based model and sequential MCS to generate different
scenarios using the EV demand model. We then use the output of those scenarios to
determine the load profiles of different EVs deployment rates. After that, We evaluate the
output of the model for the system using a power flow analysis on an actual distribution
feeder. Finally, we use the proposed framework to study the impact of EVs deployment in
Saudi Arabia as a case study using actual distribution network with 72 nodes and show the
impact of EVs deployment.
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The main contribution of this paper is summarized as following: (1) propose a system-
atic framework to study the impact EVs deployment at the system level and distribution
network, (2) develop a probabilistic EV demand model that captures the main characteris-
tics of EV demand including the daily travel distance and the charging schedule considering
the possibility of having multiple daily trips, (3) distribute a survey to collect an actual data
about the driving pattern in Saudi Arabia and use it to evaluate the parameters of the EV
demand model, (4) evaluate the impact of different EVs deployment rate on the system
level and distribution network in Saudi Arabia. The results show the expected changes in
the system level demand profile and the impact of EVs charging on the feeder’s demand
profile, peak demand, power losses, and voltage profile.

2. Methodology

To study the impact of EVs on the electric power grid, we propose using a framework
consisting of four layers: (1) Data Layer, (2) Modeling Layer, (3) Simulation Layer, and (4)
Analysis Layer. The first layer is data collection, where we collect data required to evaluate
the parameters of the EV demand model. The second layer is the probabilistic demand
model that incorporates the variables that directly impact the EV demand. The third layer
is where we generate scenarios for different deployment rates of EVs and assign a location
for each EV on the distribution feeder. Finally, we assess the impact of EV’s demand using
historical demand and distribution network data. Figure 1 shows the methodology and the
interaction between the layers. In the following sections, we describe the proposed method
in detail.

Modeling LayerData Layer Simulation Layer

Travel Distance

Number of Vehicles

EV Model

Charging Station Level

Charging Schedule
Driving 

Behavior Data

EVs Data

Charging 
Stations Standard

Network Data

Agent Based 
Simulation

System Level
Impact Assessment

Analysis Layer

Location Assignment

Distribution Network 
Impact Assessment

Power System Model

Figure 1. Methodology Flowchart.

2.1. Data Layer

The data consists of EVs charging and charging station characteristics, users’ driving
patterns, and network data. This section describes the datasets we use in this study.
Although we use a specific dataset to illustrate the methodology and study the impact of
EVs on the Saudi Arabia context, other datasets can be used with the same methodology
that we propose to generalize the results to other systems.

2.1.1. Driving Pattern

For an ideal model of EV demand, we typically would use real measurements of
charging parameters for a large number of vehicles in different locations. However, such
data is not readily available. Therefore, we use other approaches to collect data to model the
EV demand. We distributed a survey with justified heuristic assumptions to develop the EV
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demand model. The dataset we use in this paper presents responses from 662 participants
to an online survey distributed in July 2019. We published and shared the survey through
emails and social media. The survey was open to all drivers in Saudi Arabia. We checked
and verified all responses and eliminate any responses with discrepancies. The survey
contains questions about the number and type of vehicles the participants own, when they
are at home, and the average daily travel distance they usually travel. The survey responses
and answers are summarized in the Appendix A. It is worth to note here that almost all the
survey participants do not drive EVs. However, we assume that the driving pattern of the
participants will not change dramatically from the current driving pattern when driving
an EV.

2.1.2. EV Energy Requirements

The charging energy of an EV depends on the vehicle’s specification and charging
station level. There are three main types of EVs: Battery EV, Plug-in EV, and Hybrid EV. The
former two EV types are charged using electricity and store the energy in a battery system,
while the hybrid type does not consume electricity from the grid [19]. The Battery EV uses
a battery system as the only source of electricity, while the Plug-in EV has two engines that
use electricity and gasoline. In this study, we focus on the Battery EV type since its single
source of energy is from the grid and has more impact on the electricity demand compared
to the Plug-in EV. Throughout the paper, we use EV to refer to the Battery EV.

The EV characteristics that impact energy consumption are battery capacity, driving
efficiency, and maximum charging power. We selected several commercially available EVs
in this study and obtain their specifications from [21]. The EVs type and their specifications
are shown in Table 1. We use data from the survey to estimate EV type probability of similar
vehicle as close as possible. we assume that 40% drive small sedan and small hatchback,
40% regular size sedan, and 10% drive large SUV.

Table 1. EV Types and Specifications.

EV Type Battery Capacity
(kWh)

Energy Consumption
(kWh/km)

Charging Power
(kW)

Volkswagen e-Up 32.3 0.158 2.3–30
Nissan Leaf 37 0.164 2.3–40
Hyundai IONIQ 38.3 0.163 3.6–34
Tesla 3 51 0.155 2.3–47
Tesla Y 70 0.177 2.3–50

2.1.3. Charging Station Characteristics

There are several standards govern the charging station characteristics. Although there
are no established charging station standards in Saudi Arabia yet, we use the European
charging station standard levels since the electricity plugs standards and voltage level in
Saudi Arabia is similar to the one in United Kingdom. The standards charging levels in
Europe is shown in Table 2. In this study, we use charging levels 1 and 2 since they are the
typical level used in homes [14]. We assume 70% of the EVs’ users use level 1 and 30% use
level 2 charging stations. We use this assumption based on the fact that level 2 chargers
require additional electrical installation, while level 1 is readily available option for the EV
users. Hence, we expect most of the user to utilize level 1 chargers.

Table 2. EV Charging Level (EU Standards) [14].

Charging Level Voltage Level Power Level

Level 1 230 Vac Up to 4.6 kW
Level 2 400 Vac Up to 44 kW
Level 3 and DC 480 Vdc 50–150 kW
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2.1.4. Network Data

To evaluate the impact of the EVs deployment on the distribution network, we use an
actual distribution feeder data. The feeder is supplied from Medium Voltage (MV) line to a
distribution transformer with 1 MVA rating. The Low Voltage (LV) side of the transformer
supplies 62 residential consumers. Figure 2 shows the single line diagram of the feeder.

Figure 2. Distribution network single line diagram.

We also use smart meters data of residential consumers in Riyadh, Saudi Arabia, to
represent the feeder consumers. The data consists of one-week hourly demand of the
consumers recorded between 25 June–1 July 2017. We intentionally selected a summer
week as the peak demand in Saudi Arabia occurs usually occurs every year between June
and September.

2.2. Modeling Layer

To model the EV demand, we use a probabilistic model to account for uncertainties
associated with the EVs demand. We use the data described in the previous section to tune
the proposed models. In this section, we describe the daily travel distance, the charging
schedule, and network models.

2.2.1. Daily Travel Distance

An important factor that impacts the EV demand is the daily travel distance. We
model the daily travel distance through fitting the travel distance data that we obtain from
the survey into a probability distribution function. We found that the travel distance data is
suitably fitted with the log-normal distribution. The log-normal distributed has been used
in the literature to describe the travel distance [9], which increases our confidence in the
validity of the dataset. We fit the daily travel distance dataset into a log-normal distribution
function with a density function shown in (1).

P[D = x] =
1

xσ
√

2π
exp (− (ln x− µ)2

2σ2 ), (1)

where D is a random number represents the daily travel distance, and x is a dummy
variable to evaluate the probability density function P[D = x]. We denote the fitting
parameters of the log-normal distribution with µ and σ. We found that the parameters of
the distribution function of the travel distance for the dataset we use are µ = 3.9569 and
σ = 0.7734. Figure 3 shows the actual data and the probability density function of the daily
travel distance for consumers.
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Figure 3. Travel Distance Data and Probability Density Function.

2.2.2. Charging Schedule

We model the charging and discharging schedule using two states model shown
in Figure 4. State 1 (S1) represents the EV is connected to the grid, while state 2 (S2)
represents the EV is disconnected. Let S ∈ S1, S2 be a random variable with two states,
and P[S(t)] be the probability of the state S at time t. We define the transition probabilities
λτ

12(t) = P[S(t) = S2|S(τ) = S1] and λτ
21(t) = P[S(t) = S1|S(τ) = S2] as the probability

of transitioning from S1 at time τ to S2 after a time period of t and the probability of
transitioning from S2 at time τ to S1 after a time period of t, respectively. We note that the
transition probabilities λτ

12(t) and λτ
21(t) are time-dependent and different for each time of

the day denoted by τ.

State 2:
Disconnected

State 1:
Connected

𝜆!"(𝑡)

𝜆"!(𝑡)

Figure 4. Charging states diagram.

Using the dataset obtained from the survey, we estimate the transition probabilities
at each hour. Figures 5 and 6 show the transition probability λτ

12(t) and λτ
21(t) obtained

from the survey, respectively. The y-axis refers to the probability time τ, i.e., the hour of
the day the probability represent. The x-axis refers to the transition time t, i.e., after how
many hours the transition occurs. The dark blue cells indicate a higher probability of the
transition time. For example, the transition probability of an EV that is connected to the
grid at 2 a.m. (τ = 2) is depicted by the second row and the highest transition probability
is at the fifth hour (t = 5), meaning it is highly expected that the EV will be disconnected
from the grid after 5 h (7 a.m.).
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Figure 5. The transition probability from being connected to disconnected (λτ
12(t)).
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Figure 6. The transition probability from being disconnected to connected (λτ
21(t)).

We observe that the transition probabilities shown in Figures 5 and 6 identifies trends
relate to the typical commuting time of the users. For instance, the working hours are
depicted by the diagonal dark blue cells starting from τ = 1, t = 6 to τ = 6, t = 1 in Figure 5
and from τ = 6, t = 11 to τ = 16, t = 1 in Figure 6 indicating the daily work commute
starts at 7 a.m. until 5 p.m. for most of the survey participants. Although we use simple
scheduling model with two states, the model provides more information about the daily
commutes of the users compared to other driving pattern models presented in [18–20]. For
instance, the proposed model captures the possibility of having multiple trips by the same
user at single day.

2.2.3. Distribution Network Model

We use a typical single-phase AC power flow to model the power system [22]. We
model the upstream power system as an infinite slack bus with constant voltage magnitude
and zero voltage angle. We use a single impedance model for the transformer and distri-
bution cable, and model the loads as constant active and reactive power loads evaluated
using the smart meter data of the residential consumers.
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2.3. Simulation Layer

We use agent-based simulate to generate multiple scenarios using the EV demand
model described in the modeling layer. Since the simulation depends on the responses
from the survey and not on vehicles records or measurements, we assume each response
represents a driver for the same vehicle all day. We also assume that the charging starts
immediately when the vehicle is arrived at home and the EV charges at the rated power
until the it is fully charged or disconnected. Moreover, we assume that the EV’s battery
discharge at a constant rate when the EV is disconnected. In other words, the hourly
EV consumption from the battery when the EV is disconnected is equal to the total daily
consumption divided by the number of hours the EV is disconnected. This assumption is
justified since we care about the charging pattern of EV. However, it might be inaccurate
when the agent has more than one daily trips. The rest of this section describes the scenario
generation and the energy calculation methods.

2.3.1. Scenarios Generation

We use sequential MCS to generate multiple EV charging scheduling scenarios for
each agent. We sample over the probability density function of the EV type, charging
station, and daily travel distance for multiple agents to generate a single scenario. For
charging schedule simulation, we introduce a binary state variable for each agent. Then,
we initiate the first state by sampling over the probability of being at home at the first hour
of the day. Once the initial state is assigned, we sample through the transition probability
λij(0) to simulate the transition from state i to state j. Note that the transition probability is
time dependent and change over the day. The output of the sampling over the transition
probability is the duration that an agent takes to change the state. We repeats this process
until completing a full-day profile as illustrated in the flowchart shown in Figure 7.

In the flowchart, we denote the state variables with a(t) and the simulation time
horizon with T hours. Note that in the flowchart we initiate the value of the state a(1) by
sampling over the probability of being connected or disconnected at the first hour, and set
the value of state a(0) to be equal to the other state to make the illustration in the flowchart
correct, e.g., if state a(1) = 1, the state a(0) = 0 and the reverse is also true.

2.3.2. Energy Calculation

Once we identify the EV charging schedule, we calculate the energy consumption of
each agent. We use (2) and (3) to calculate the State of Charge (SoC) of each agent at each
time step.

SOCs(t) = SOCs(t− 1) + ((Ps − Esds(t− 1, t))/Cs), (2)

where SOCs(t) is the state of charge of agent s at time t. We denote the charging power
with Ps measured in kW, and set Ps = 0 kW when the vehicle is disconnected or when
the battery is fully charged. Es is the EV’s energy consumption in kWh/km. We denote
the travel distance with ds(t− 1, t) measured in km and the EV’s battery capacity with Cs
in kWh. We approximate the value of energy derived from the battery to be equal at all
timesteps when the EV is not connected as shown in (3).

ds(t− 1, t) = Ds/Ts, (3)

where Ds is the total travel distance of agent s, and Ts is the total time when agent s is not
connected to the grid. We then calculate the energy consumption using (4).

ECs(t) = (SOCs(t)− SOCs(t− 1)) ∗ Cs, (4)

where ECs(t) is the energy consumption of agent s at time t. The overall process of the
energy calculation is summarized in Algorithm 1. In Algorithm 1, we use the letters S to
denote the set of all EVs, and T as the simulation time horizon.
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Figure 7. Charging schedule simulation flowchart.

Algorithm 1 Charging pattern simulation

1: for s ∈ S do
2: Assign location
3: Assign EV type
4: Assign EV charging station type
5: Assign daily travel distance using (1)
6: Assign initial charging state (as(1))
7: Generate charging scenario (as(t), ∀t ∈ T)
8: t⇐ 1
9: while t ≤ T do

10: if as(t) = 1 then
11: Ps ⇐ Prating
12: else
13: Ps ⇐ 0
14: end if
15: Calculate SOCs(t) using (2) and (3)
16: Calculate ECs(t) using (4)
17: t⇐ t + 1
18: end while
19: end for

We observed that in few generated cases the EV stored energy is not adequate for
some travel distance. If the simulation generates such a case, we eliminate that case and
re-simulate another case with an agent that charges and discharges without violating the
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charging capacity limit. This reflects those people whom the charging capacity limit is not
adequate for their driving pattern will not purchase EV in the first place.

2.3.3. Location Assignment

The EV distribution on the distribution network impacts the power flow and hence the
voltage drop and the power losses. To identify the EV distribution on the power network,
we first estimate a probability mass function for the number of cars for each household
using the survey data. The probability mass function describes the maximum number of
cars at a single location. We use the probability mass function to assign a number of cars at
each location. In this case, each location will have a specific number of available cars that
represent a possible location for an EV. We then use a uniformly random distribution to
sample over all the available possible location to assign the location of the EVs based on
the EVs deployment rate.

3. Results and Discussion

In this section, we present the results of applying the proposed method on the Saudi
Arabia data. We first present and discuss the EVs deployment impact on the demand
profile of Saudi Arabia at the system level. Then, we present the simulation results of the
EVs deployment at the distribution network.

3.1. Impact on System Load Profile

To study the impact on Saudi Arabia’s power system, we first estimate the EVs
demand. We generated 1000 scenarios and average the demand for each hour. The daily
demand profile of 1 million EVs deployed in the electricity system of Saudi Arabia is
shown in Figure 8. The results of this analysis are summarized in Table 3. The results
indicates the EVs demand peaks at 5 p.m. during the weekdays and at 1 a.m. on the
weekends. Further, the EVs demand during the weekdays is concentrated on the time
between 2 p.m. to 8 p.m. when users return to home after work hours. While at the
weekend, the demand is more dispersed over the whole days with a higher concentration
between 11 p.m. and 6 a.m. Comparing this result with previous studies that use a
deterministic demand model [11,13,14], the aggregate demand of EVs do not have sudden
changes between consecutive hours. Moreover, the resultant demand is more dispersed
over the day compared the results in [18,20], because the proposed model captures the
possibility of having multiple trips which is not considered in those studies.

6 a.m. 12 p.m. 6 p.m. 12 a.m.

Hour
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Figure 8. Electricity demand in GW for 1 million EVs.
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Table 3. Expected Power and Energy Addition of 1 million EVs.

Description Weekday Weekend

Peak demand (GW) 1.35 1.35
Peak time 5 p.m. 1 a.m.
Daily energy consumption (MWh) 430 447

To estimate the system level EVs demand, we scale the average demand considering
the total number of operated cars in Saudi Arabia. The total number of cars in Saudi Arabia
in 2016 is estimated to be around 9.99 millions cars [23] and expected to reach 25 millions
in 2030 [24]. To determine the peak change, we use a 10 millions active cars as a base
number for the calculation. Further, we use the 2017 power consumption data of Saudi
Arabia during the year’s peak. For the year 2017, the peak demand was on 22 August.
Note that we use a different time to evaluate the system-level impact than the residential
datasets. However, the evaluation of the system level and the distribution feeder impacts
are independent of each other.

Table 4 shows the expected demand and peak changes with different EVs deployment
rates. The results indicate for every 10% (1 million) increase in the EVs deployment rate, the
power demand will increase by 1%, and the peak demand will increase by 2%. The daily
demand profile with 10% (1 million) and 20% (2 millions) EVs deployment rates during the
weekends and weekdays are shown in Figure 9.

Table 4. Expected impact of EV’s on KSA system with 10 millions active car.

EV Deployment Rate (%) 10 20 40 60 80 100

Daily EV Demand (GWh) 9.62 19.25 38.49 57.74 76.99 96.23
Demand Increase (%) 0.97 1.94 3.87 5.81 7.74 9.68
EV Peak (GW) 1.35 2.70 5.40 8.10 10.81 13.51
Peak Increase (GW) 1.04 2.07 4.62 7.32 10.02 12.72
Peak Increase (%) 1.71 3.42 7.61 12.06 16.51 20.96
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Figure 9. Demand profile on weekdays (left) and weekends (right) of Saudi Arabia grid with 10 and
20% EVs.

Although the model estimates the EVs demand peaks at 5 p.m., the EVs demand
contributes heavily to the daily peak demand since the demand peaks one hour earlier. The
results also indicate that the EVs demand contributes to the peak demand more during the
weekdays than the weekends.

3.2. Impact on Distribution Networks

In this part, we conduct a power flow analysis for 168-h (one week) to study the impact
of EV’s on the distribution network. Using the survey data, the average number of cars in
Saudi Arabia is 2.4 per household. So, we use the average number of cars per household to
estimate the total number of cars in the feeder to be 149 cars. We generate 10,000 scenarios
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using the proposed models for the driving schedule, energy consumption, penetration
levels, and charging station locations. For each scenario, we add the load profile of a given
EV to the load profile of a base case (with zero EV deployment rate). Then, we run the
power flow and evaluate the resulting load profiles, peak load, power losses, and voltage
profiles. We use Matlab and MATPOWER library to solve the AC power flow [22].

3.2.1. Demand Profile

The demand profile of the single feeder with 20% of the cars are EVs (30 EVs) for the
weekday and weekend are shown in Figure 10. The blue line shows the base case demand
profile with no EVs, the bold black line is the average of all scenarios, and the shaded area
represents the possible scenario that has been generated by one or more of the scenarios.
The weekdays figure shows a clear pattern in the increase of the demand between 12 p.m.
until 12 a.m. with high variability during the weekday. The scenarios average at this period
of time is higher than the base case. The maximum difference is noticed at 5 p.m. with 6%
increase in the demand. That suggests that the peak demand is likely to occur around 4 to
5 p.m., and will be amplified as the EVs deployment rate increases. The demand for the
other period of time, between 12 a.m. to 12 p.m., is expected to be close to the base case
with lower variability. During the weekends, the EV demand is more dispersed over the
day with highest changes observed during the early morning hours between 12–6 a.m. The
difference in the average scenarios demand and base case and variability of the demand
are expected to increase as the EVs deployment rate increases.
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Figure 10. Demand profile on weekdays (left) and weekends (right) of the feeder with 20% EVs.

The total daily demand of the feeder without EVs is 14.2 MWh. When the deployment
rate of EVs increases by 1%, the the daily demand increase with rate of 0.1%. This implies
that the feeders’ daily demand is 14.5 MWh when the deployment rate of EVs is 20%.
Figure 11 shows the changes in the daily demand with respect to the EVs deployment rate.

3.2.2. Peak Change

One important characteristic of the demand profile for power system planning and
operation is the peak demand. Here we are concerned about the peak magnitude change
and peak time. Figure 12 shows the peak demand change with different EVs deployment
rate. The result indicates a linear relationship between the deployment rate of EV and the
mean peak demand of all scenarios. The variation of the peak demand between different
scenarios increases as the deployment rate increase. The model suggests that an increase of
10% of EVs (15 EVs) by the 62 consumers will cause an increase of 16 kW peak. In other
words, increasing the deployment rate of EV by 10% will increase the peak demand by
2.0% in average.
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Figure 11. Feeder’s daily demand with different EVs deployment rates.
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Figure 12. Feeder’s peak demand with different EVs deployment rates.

3.2.3. Power Losses

Another impact of EV deployment rate is on the power losses. The more EVs are
used the more is the power losses. The relationship between the power losses and the
deployment rate of EV is linear as Figure 13 shows. The results suggest that an increase
of 1% in EVs deployment rate increases the daily power losses by 0.82 kWh (0.18%).
Comparing this value with the base case we get a 10% increase in EVs deployment rate
(15 EVs) leads to a 2% increase in the daily power losses.

3.2.4. Voltage Profile

As the deployment rate of EVs increases, the voltage drop increases on the distributed
network. We calculate the minimum voltage magnitude values at each scenario as shown
in Figure 14. We observe a linear reduction in the expected minimum bus voltage as the
EVs deployment rate increases. This suggests that the impact of a high EVs deployment
rate will not impact the voltage profile severely. However, this result is not conclusive as
there might be clustering behavior in a specific location. To investigate this possibility, we
consider the minimum voltage possibility as an approximate of the worst-case scenarios.
The minimum bus voltage with 20% EVs deployment rate scenario is 0.937 p.u. compared
to 0.942 p.u. obtained from averaging all scenarios.
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Figure 13. Power losses with different EVs deployment rates.
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Figure 14. Daily minimum bus voltage with different EVs deployment rate.

The change in the distribution network performance metrics due to different EVs
deployment rates is summarised in Table 5. As the table shows, with an extreme scenario
of 100% EVs deployed, the daily demand will increase by 10%, while the peak demand and
power losses will increase by 20%. We also observe that the voltage drop for the system
under the study is not significant even when all the operating cars are EVs.

Table 5. Changes in Distribution Network Parameters.

Deployment Rate (%) 10 20 40 60 80 100

Daily Demand (%) 1.02 2.10 4.13 6.24 8.33 10.37
Peak Demand (%) 1.97 4.02 7.91 11.97 16.11 20.32
Power Losses (%) 1.72 3.58 7.18 11.04 15.02 19.03
Minimum Voltage (%) −0.05 −0.13 −0.29 −0.45 −0.60 −0.76

3.3. Sensitivity Analysis

For all the aforementioned results, we use 10,000 simulated scenarios. For each re-
ported metric, we report the average value of all scenarios. The histograms of all simulated
scenarios for the 20% EVs deployment rate of the daily demand, peak demand, power
losses, and minimum voltage are shown in Figure 15. For the daily demand, peak demand,
and power losses, the histogram of all scenarios follows a bell-curve shape. The variation
of the minimum voltage for all scenarios follows a bell-curve shape with a tail. Although
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we only show the histograms of the 20% EVs deployment rate scenario in Figure 15 as a
representative sample, the other scenarios have similar histograms.

Figure 15. The histograms of the change in daily demand (top-left), peak demand (top-right) power
losses (bottom-left), and minimum voltage (bottom-right) of all simulated scenario with 20% EVs
deployment rates.

To check the robustness of the model, we simulate 100,000 scenarios and check the
difference with the 10,000 scenario results. We used the 20% EVs deployment rate in this
comparison. The results show a difference lower than 0.9% on all the performance metrics
we use to evaluate the impact on the distribution network as shown in Table 6. The largest
error we found is the peak demand change with 0.89% error. These results support the
robustness of using 10,000 scenarios in the simulation.

Table 6. Sensitivity Analysis Results.

Number of Scenarios 10,000 100,000 Error (%)

Daily EV Demand (MWh) 14.5003 14.5001 0.8920
Peak Demand (MW) 0.8323 0.8322 0.0139
Average Daily Power Losses (kWh) 445.7936 445.7958 0.0005
Minimum Voltage (p.u.) 0.9415 0.9415 0.0013

4. Conclusions

The impact of EVs on the power grid is inevitable. The large number of EVs signifi-
cantly increases the demand for electricity and challenges the power system operation. In
this paper, we developed a framework to study the impact of EVs demand on the power
system. We use a probabilistic model and agent-based simulation to evaluate the EVs
demand. The results indicate the peak demand increases by 3.4% when the deployment
rate of EVs reaches 20% of the operating cars. We also show the impact of EVs on the
distribution network using actual feeder data. The model shows that an increase of EVs
deployment of 1% increases the daily demand of the distribution feeder by 0.1% and the
peak demand and the power losses by 0.2%.
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The proposed EVs demand model allows investigating the impact of EVs demand
on different levels. Although we predicted a static EVs demand and run a steady-state
analysis to evaluate the impact of EVs, we can utilize the model to evaluate the feasibility
of smart charging schemes and optimization methods to schedule the EVs charging. In this
study, we focus on evaluating the EVs demand impact at the system level and a residential
feeder on the distribution network. We plan to extend the model to include the impact
of EVs deployment on the transmission network by generalizing the impact of the feeder
model and incorporating public charging stations on the power grid.
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Appendix A. Survey Data

The survey had 13 questions in Arabic language and covers question including anony-
mous driver basic information, type of accommodation, number of active cars per house-
hold, average daily distance, and daily travel pattern. The survey collected 662 responses.
We checked and validate the primary dataset. Some responses were incomplete. Others
had conflicting answers, for example, marking the same hours of the day as “at home” and
“away”. We consider the response after cleaning the primary dataset. Out of the responses:

• 38% were private sector employees, 32% were government civil workers and 9%
were students

• 45% were from Riyadh region, 25% from Makkah region and 15% from The Eastern re-
gion.

• 49% live in an apartment, 32% in a multi-story villa, 10% single-story villa
• The average monthly electricity bill was 100–500 SAR (26.7–133.3 $ US) for 43%

of the participants, 500–1000 SAR (133.3-266.7 $ US) for 34% and 1000–2000 SAR
(266.7–533.3 $ US) for 13%.

• 35.65% own a single car, 23.41% own two cars, 18.43% own 3 cars, 10.27% own 4 cars,
and 12.23 own 5 or more cars in single household.

• 43.2% own small sedans, 40.63% own mid-size sedans 55.14% own mid-size SUVs,
and 32.93% own large SUVs.

• Figure A1 presents the percentage of survey participants who stay at home on week-
days and weekends for each hour.

• Average daily travel distance is shown in Table A1.

Table A1. Responses to Travel Distance Question.

Distance (km) <20 20–50 50–100 100–200 >200

Number of Responses 64 260 234 85 19
Percentage (%) 9.67 39.27 35.35 12.84 2.87
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