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Abstract: Investigating the constructions of borehole heat exchangers with high efficiency (unit heat
transfer between the heat carrier and ground) is important. One of the means to improve efficiency
is the use of the most efficient construction of the borehole heat exchanger. The paper describes
research on borehole heat exchangers’ thermal efficiency, which is mainly characterized by parameters
obtained from a thermal response test: effective thermal conductivity and borehole thermal resistivity.
The borehole heat exchangers of the Laboratory of Geoenergetics in Poland were studied. Based on
thermal response test interpretation and empirical equations, one of which is proprietary, the heat
transfer is calculated independent of the duration of the thermal response test. Other conditions
for using borehole heat exchangers in downtowns are discussed. The research aims to determine
the best borehole heat exchanger design from five basic possibilities studied. A lack of unequivocal
statements regarding this matter in the literature was observed. The influence of the interpretation
method on the research results is determined. A single U-tube system filled with gravel is shown
to be the most advantageous design by a very small margin. The applied interpretation methods,
however, confirm the hitherto ambiguity in the selection of the best construction. The maximum heat
carrier temperature at the end of thermal response tests was 32 ◦C for a geological profile mostly
made up of clay (low thermal conductivity) and 23 ◦C for Carpathian flysch (sandstones and shales,
with a higher value of conductivity).

Keywords: borehole heat exchanger; geothermal heat; borehole thermal resistance; geoenergetics;
geothermal heat pump; thermal response test

1. Introduction

Heat exchangers are used to transfer heat between two or more fluids at different
temperatures or between a fluid and solid particulates. Many kinds of heat exchangers
are utilized globally, and they differ due to the requirements placed on them. Shell and
tube, plate and shell, double pipe, plate fin, and pillow plate are some examples of the
types of industrial-scale heat exchangers [1]. Factors such as fluid flow rate and type and
direction of the tube flow impact the performance of a heat exchanger [1]. Heat exchanger
performance factors, such as heat load, fluid temperature, effectiveness, and overall heat
transfer coefficient, have been examined for various factors and operating conditions [2,3].

Research on borehole heat exchanger (BHE) fields and heat storage in the ground is
progressing at numerous universities and research organizations. Some of the oldest inves-
tigations were performed in Sweden, including research at Luleå University of Technology,
which installed the first large-scale borehole thermal storage in 1982–83 [4].

Apart from the work at AGH University of Science and Technology (AGH UST) in
Krakow (Poland), research is ongoing in the Czech Republic at the Technical University of
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Ostrava (Vysoká škola báňská). Bujok et al. [5] describe the BHE system at this university
and its arrangement. A borehole thermal energy storage (BTES) system at Ontario Tech
University (formerly the University of Ontario Institute of Technology), Oshawa, Canada
is described by Koohi-Fayegh and Rosen [6]. Systems with geothermal heat pumps and
BHEs exist among others in the Karlsruhe Institute of Technology [7], Polytechnic Uni-
versity of Turin [8], University of Western Ontario [9], and Ball State University [10].
A deep BHE was drilled in RWTH Aachen University (Rheinisch-Westfälische Technische
Hochschule Aachen) [11].

Some of the first and most important scientific experiments and achievements in the
field of geothermal heat pumps were obtained with BHEs located in Europe (Sweden [12–14],
Switzerland [15,16], Germany [17,18], and Croatia [19]), in Canada [20,21], in the USA [22,23],
and in Japan [24]. Currently, much research regarding BHEs is conducted in China [25].

Present research on BHEs is delving into many detailed aspects, such as:

- Material research [26].
- Depth maximization for specific BHE construction [27], in terms of the type of pipe

material and rock stability.
- Utilizing old/abandoned/closed boreholes drilled for different reasons [28].
- Operational parameters optimization [29] such as the type of heat carrier, its flow rate

and velocity, inlet temperature, heating power (optimized for coefficient of perfor-
mance of geothermal heat pump).

- Construction type, such as single U-tube, multi-U-tube, coaxial [30,31], helical [32,33],
BHE in piles [34], geothermal baskets [35], and geothermal radial drilling (GRD) [36],
taking into consideration diameter and thickness of pipes [37].

- Borehole axis, noting BHEs can be drilled either vertically or directionally (obliquely)
using the BHE construction technology GRD, with such wells having been drilled
under buildings and town infrastructure in Pałecznica [38].

- Cementing materials [39,40].

Other factors are also being investigated. For example, W- and coil-type heat exchang-
ers [41]. A W-type heat exchanger is a double serial (not parallel) U-pipe in one borehole.

Ball State University, Indiana, USA has the largest BHE installation, with 3600 vertical
loops. The system replaced four old coal-fired boilers and cools and heats 47 buildings
by supplying 6 ◦C cold water for cooling and 66 ◦C hot water for heating. The BHE
system saves USD 2 million annually [42]. BHE depths in the installation range from
122 to 152 m [22,43]. Lee [44] describes that BTES and the procedures utilized in its design
and construction.

Numerous deep BHEs (DBHEs) have been developed. These include the following
(sorted in chronological order):

- USA, Hawaii, 876.5 m [45,46].
- Germany, Prenzlau, 2786 m [47], still in operation with a long break, and Aachen,

2500 m [12,48].
- Switzerland, Weggis, 2281 m [49,50], and Weissbad, 1213 m [51–54].
- Poland, Sucha Beskidzka, 2864.5 m, the deepest DBHE in the world, installed in

a well to a depth of 4281 m (the coaxial pipe was installed in a directional well,
with a maximum deviation from the vertical of 38◦ [55], for research in 1999 [56]).

- China, Xi’an, eight deep borehole heat exchanger constructions with a depth between
2–2.8 km and a temperature approximately 70–90 ◦C [57].

There is no definition of DBHE in the literature. Multiple criteria define it,
most importantly those related to drilling. Similarly, the definition of a deep borehole
does not exist in the oil and gas industry. Various depths are proposed for the classifi-
cation [58]. The authors propose a division based on BHE construction. Wells that are
a maximum of 100 m deep, where all typical constructions (mostly U-pipes) can be installed,
can be classified as shallow BHEs. The average BHE class could include BHE depths be-
tween 100 and 500 m, where the use of cement slurry as a stabilizer of diameter is required
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due to hard geological conditions (loose and plastic rocks). BHEs of depths over 500 m,
where only the coaxial construction is possible (for technical and economic reasons), could
be classified as DBHEs.

For the current article, the primary objective was to critically review geological, con-
struction, and other factors that affect the BHE design, including the depth, number,
and distribution of the BHEs used in a system. The design of a BHE field must account for
numerous technical factors affecting heat exchange performance. The proper utilization of
appropriate design and analysis methods can lead to a lower number of BHEs in a field.
This can save costs and permit BHE fields to be constructed in areas where the area of the
field surface would otherwise be insufficient.

The research is based on thermal response test (TRT) data from BHE field A of the
Laboratory of Geoenergetics, at AGH UST in Krakow, and two other BHEs. TRT data
are interpreted using three methods: classical method (cm) [59], point method (pm) [60],
and constant borehole resistivity method (cbrm) [61].

The idea of a thermal response test was introduced by Mogensen in 1983. He suggested
studying the average temperature of a borehole supplied with heat with a constant heating
power. The first tests of borehole exchangers carried out in Poland and described in the
literature were presented by Czekalski and Obstawski [62]. However, the first commercial
test was performed and reported in 2007 [63]. Since then, newer and more accurate methods
of determining the most important parameters of the so-called bottom heat source, in the
form of a rock mass with BHEs, are sought after. These are:

- The effective thermal conductivity λeff of the BHE [64,65].
- The thermal resistance of the borehole Rb, [66].
- The temperature profile of the rock mass T = f(H) [67,68].

Among others, Spitler and Gehlin [58], Sliwa [57], and Gonet et al. [40] have proposed
methods of determining these parameters.

The thermal efficiency of a borehole heat exchanger is defined as the unitary (per one
meter) heat transfer in the BHE, between the surrounding ground and the heat carrier.
Therefore, the efficiency, which is the unitary BHE power, is independent of the heat flow
direction, which can be either from the heat carrier to the ground in cooling mode or from
the ground to the heat carrier in the heating mode of BHE operation.

Seven thermal response tests were conducted. The purpose of the research and the
interpretation of its results is to determine the best well design and the most advantageous
method of interpreting the test results.

The main purpose of the presented research is to compile the individual calculation
results, obtained using various methods, of the most important coefficients describing
borehole heat exchanger efficiency, to show the differences between them and, most im-
portantly, to demonstrate the applicability of the constant thermal resistance method by
showing slight deviations from the classical method while ignoring the impact of the
thermal response test duration on the entirety of the calculations.

2. Essence of the Thermal Response Test and Research Objectives

The conducted thermal response tests (TRTs) were developed at the Laboratory of
Geoenergetics, AGH University of Science and Technology in Krakow, Poland. The labora-
tory is equipped with its own borehole heat exchangers. Additionally, two wells are tested
as a part of commercial measurements.

2.1. Theoretical Foundation of the Thermal Response Test

The partial differential form of the Fourier equation for thermal conductivity forms
the basis of a TRT [69]. Such an equation allows for the determination of T = T(r,t), as it
describes the transient dependence of temperature T on the duration of the test t and the
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distance from the heat exchanger r. The partial differential form of the Fourier equation is
as follows:

∂2

∂r2 +
1
r

∂T
∂r

=
ρc
λ

∂T
∂t

(1)

Substitution is one technique for solving such a partial differential equation. This tech-
nique transforms the partial differential Equation (1) into an ordinary differential equation.
Perina [70] used this approach on the Theis equation of hydrogeology to determine the
pressure distribution p = p(r,t). In this technique, we let

u =
r2ρc
4tλ

(2)

and
ρc =

λ

α
(3)

Next, we can show that

u =
r2

4αt
(4)

Equation (1) then becomes:

∂2T
∂r2 +

1
r

∂T
∂r

=
1
α

∂T
∂t

(5)

With the substitution in Equation (4), we can write

T(r, t) = T0 +
q

kπλ

∞∫
r2

4αλ

e−x

x
dx (6)

Through substitution of the integral in Equation (6) with a suitable expression, while
recalling the substitution in Equation (4), the following is obtained:

T(r, t) = T0 +
q

4πλ

[
ln
(

4αt
r2

)
− γ

]
(7)

We now consider boundary and initial conditions. Note that the resulting solution is
analytical rather than numerical. As an infinite linear heat source forms the TRT mathemat-
ical foundation, the differential equation is not solved over a finite region. The length of
the linear source corresponds to the depth of the borehole. The duration of a TRT is set to
a maximum of 100 h. The natural temperature distribution is utilized as the initial temper-
ature distribution, following the approach of Sliwa et al. [71]. However, the temperature
distribution is normally approximated as uniform at an initial temperature of To. The
thermal response test measures the temperature of the fluid circulating in a closed circuit of
a borehole heat exchanger, through both the inlet and outlet of the exchanger. The apparatus
allows for the injection of fluid at varying heating powers, volumetric flow rates, and thus
at different temperatures. The entire installation is equipped with appropriate temperature
and flow sensors, to monitor the behavior of the heating medium in the borehole heat
exchanger at all times. The thermal response test technique is presented in Figure 1 [72].



Energies 2022, 15, 1152 5 of 29Energies 2022, 15, 1152 5 of 29 
 

 

T1

T2

          V = const
P = ρf cf Q (T2-T1) = const
       ρf = f(T),   cf = f(T)

1

1

2

3

4
5

6

7
7

7

8

 
Figure 1. Schematic of thermal response test device and operation. Legend: 1 = thermometers, 2 = 
flow rate meter, 3 = circulating pump, 4 = control computer, 5 = heaters, 6 = electric current source, 
7 = heater control signal, and 8 = BHE. In addition, the following terms are included: T = temperature, 
P = heat rate, 𝑉, Q = flow rate of heat carrier, cf = f(T) = temperature-dependent specific heat of heat 
carrier, and ρf = f(T) = temperature-dependent density of heat carrier. 
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The Geoenergetics Laboratory contains five borehole heat exchangers with varying 

constructions and sealing slurries, which were created between January and February 
2008. The lithological profile of the tested area is shown in Table 1. The profile begins from 
1.8 m because of the depth of the inspection pit (see Figure 2). The first drilled borehole 
heat exchanger (BHE number 3) was constructed to a depth of 84 m from the surface; 
however, due to the presence of underground water, a six-meter silt cork was applied. 
The other four boreholes (number 1–2 and 4–5) were drilled 78 m deep from the surface 
(76.2 m from the bottom of the inspection pit). The borehole heat exchangers (Table 2) are 
located in field A of the Geoenergetics Laboratory area. According to the geological pro-
ject, quaternary formations were drilled to a depth of 19.80 m with a 216 mm diameter 
drill bit (8 ½″) with a mud scrubber. Casing pipes of 177.8 mm (7″) in size were used to a 
depth of 18.80 m in the Miocene gray clays, thus isolating the quaternary from the surface. 
Afterwards, the Tertiary formations were drilled by a 143 mm drill bit. In June 2008, a 
connection between borehole heat exchangers and cold storages was constructed [73–75]. 
The technical specifications of BHEs 1–5 are described in Table 2. 

Figure 1. Schematic of thermal response test device and operation. Legend: 1 = thermometers,
2 = flow rate meter, 3 = circulating pump, 4 = control computer, 5 = heaters, 6 = electric current source,
7 = heater control signal, and 8 = BHE. In addition, the following terms are included: T = temperature,
P = heat rate,

.
V, Q = flow rate of heat carrier, cf = f(T) = temperature-dependent specific heat of heat

carrier, and ρf = f(T) = temperature-dependent density of heat carrier.

2.2. Test Subjects

The Geoenergetics Laboratory contains five borehole heat exchangers with varying
constructions and sealing slurries, which were created between January and February 2008.
The lithological profile of the tested area is shown in Table 1. The profile begins from 1.8 m
because of the depth of the inspection pit (see Figure 2). The first drilled borehole heat
exchanger (BHE number 3) was constructed to a depth of 84 m from the surface; however,
due to the presence of underground water, a six-meter silt cork was applied. The other
four boreholes (number 1–2 and 4–5) were drilled 78 m deep from the surface (76.2 m from
the bottom of the inspection pit). The borehole heat exchangers (Table 2) are located in field
A of the Geoenergetics Laboratory area. According to the geological project, quaternary
formations were drilled to a depth of 19.80 m with a 216 mm diameter drill bit (8 1

2 ”) with
a mud scrubber. Casing pipes of 177.8 mm (7”) in size were used to a depth of 18.80 m in the
Miocene gray clays, thus isolating the quaternary from the surface. Afterwards, the Tertiary
formations were drilled by a 143 mm drill bit. In June 2008, a connection between borehole
heat exchangers and cold storages was constructed [73–75]. The technical specifications of
BHEs 1–5 are described in Table 2.
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Table 1. Stratigraphic-lithological profile based on field A of the Geoenergetics Laboratory boreholes,
with selected thermal parameters of rocks, adapted from [60].

Number
The Depth of

the Layer’s
Top, m

The Depth of
the Layer’s
Bottom, m

Thickness, m Lithology Stratigraphy
Thermal

Conductivity,
λ, W·m−1·K−1

Specific
Volumetric

Heat, cv,
MJ·m−3·K−1

1 1.8 2.2 0.4
Anthropogenic land

(dark gray gully
with rubble)

Quaternary
(Pleistocene,

Holocene)

1.600 2.000

2 2.2 2.6 0.4 Silts (gray soil) 1.600 2.200

3 2.6 4.0 1.4 Fine and dusty sand
slightly muddied 1.000 2.000

4 4.0 6.0 2.0 Fine sand 1.200 2.500

5 6.0 15.0 9.0 Sandy gravel
and gravel 1.800 2.400

6 15.0 30.0 15.0 Gray clay Tertiary
(Miocene)

2.200 2.300

7 30.0 78.0 48.0 Gray shale 2.100 2.300

Weighted mean 2.039 2.309
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Table 2. Constructions of borehole heat exchangers (LG-1a to LG-5a).

Parameter LG-1a LG-2a LG-3a LG-4a LG-5a

Construction

Casing pipes PE
with diameter

90 mm and wall
thickness 5.4 mm,

inner pipe PE with
diameter 40 mm

and wall thickness
2.4 mm

Single U-pipe PE
with diameter

40 mm and wall
thickness 2.4 mm

Single U-pipe PE
with diameter

40 mm and wall
thickness 2.4 mm

Single U-pipe PE
with diameter

40 mm and wall
thickness 2.4 mm

Double U-pipe PE
with diameter

32 mm and wall
thickness 2.4 mm

BHE number 1 2 3 4 5

Construction
(Illustration)
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3. Interpretation Methods for Thermal Response Test Results 
There are three methods for determining parameters from thermal response tests. 

The parameters are effective thermal conductivity λeff and borehole thermal resistivity Rb. 
Each of the following methods was used on the same test material, i.e., the thermal 
response tests results, which were carried out on the wells described in Section 2.1. 
Knowledge of these parameters is necessary for the proper operation of geothermal heat 
pumps. The classic method is currently in use. 

3.1. Classic Method (cm) of Determining Parameters from Thermal Response Tests 
The slope methodology is the most basic and common methodology for the 

underground thermal conductivity from a TRT [57,76]. The mean temperature is plotted 
against the logarithm of time. The slope of the curve thus represents the thermal. This 
expression is derived from the common expression for infinite line supply. Under the 
assumption that the heat is discharged from the borehole, where it depends solely on 

Energies 2022, 15, 1152 7 of 29 
 

 

Construction 
(Illustration) 

 

 
 

 

 
 

   

Depth of BHE, 
m, 

76.2 

Sealing used 
with borehole 

Cement slurry seal Cement slurry seal 

Cement slurry seal 
(ThermoChem) 
with increased 

thermal conductivity 

Gravel on granulation 
between 8 and 16 mm 
and two clay corks—

Compactonit 

Cement slurry seal 

Heat 
conductivity of 

fill material 
(hardened 
grout), λ, 
W·m−1·K−1 

1.2 1.2 2.0 1.8 1.2 

Boreholes F1 and F2 are in Folusz (S-Poland), and their geological profiles are 
described in Table 3. Borehole heat exchanger F1 (BHE number 6) has a double PE U-tube 
design with a nominal diameter of 32 mm and a wall thickness of 2.4 mm. Borehole heat 
exchanger F2 (BHE number 7) has a single PE U-tube design with a nominal diameter of 
40 mm and a wall thickness of 2.4 mm. The depth of the BHEs from Folusz (number 6–7) 
is 100 m. In addition, these boreholes were sealed with cement slurry. The heat 
conductivity of the filling material is 1.2 W·m−1·K−1. 

Table 3. Lithological profile of boreholes in Folusz, adapted from [60], Quaternary (Pleistocene, 
Holocene). 

Numb
er 

The Depth of 
the Layer’s 

Top, m 

The Depth of the 
Layer’s Bottom, 

m 

Thickness, 
m 

Lithology Thermal Conductivity, 
λ, W·m−1·K−1 

Specific Volumetric 
Heat, cv, MJ·m−3K−1 

1 0 2.0 2.0 Sandy clay and stone gravel 1.60 2.400 
2 2 7.0 5.0 Rubble stratified with clay 1.60 2.400 
3 7 12.5 5.5 Shales, claystones 2.10 2.300 

4 12.5 45.5 32.0 
Sandstone stratified with 
siltstones and claystones 

2.30 2.000 

5 45.5 100.0 54.5 Sandy gravel and gravel 2.30 2.000 
Weighted mean 2.24 2.045 

3. Interpretation Methods for Thermal Response Test Results 
There are three methods for determining parameters from thermal response tests. 

The parameters are effective thermal conductivity λeff and borehole thermal resistivity Rb. 
Each of the following methods was used on the same test material, i.e., the thermal 
response tests results, which were carried out on the wells described in Section 2.1. 
Knowledge of these parameters is necessary for the proper operation of geothermal heat 
pumps. The classic method is currently in use. 

3.1. Classic Method (cm) of Determining Parameters from Thermal Response Tests 
The slope methodology is the most basic and common methodology for the 

underground thermal conductivity from a TRT [57,76]. The mean temperature is plotted 
against the logarithm of time. The slope of the curve thus represents the thermal. This 
expression is derived from the common expression for infinite line supply. Under the 
assumption that the heat is discharged from the borehole, where it depends solely on 

Energies 2022, 15, 1152 7 of 29 
 

 

Construction 
(Illustration) 

 

 
 

 

 
 

   

Depth of BHE, 
m, 

76.2 

Sealing used 
with borehole 

Cement slurry seal Cement slurry seal 

Cement slurry seal 
(ThermoChem) 
with increased 

thermal conductivity 

Gravel on granulation 
between 8 and 16 mm 
and two clay corks—

Compactonit 

Cement slurry seal 

Heat 
conductivity of 

fill material 
(hardened 
grout), λ, 
W·m−1·K−1 

1.2 1.2 2.0 1.8 1.2 

Boreholes F1 and F2 are in Folusz (S-Poland), and their geological profiles are 
described in Table 3. Borehole heat exchanger F1 (BHE number 6) has a double PE U-tube 
design with a nominal diameter of 32 mm and a wall thickness of 2.4 mm. Borehole heat 
exchanger F2 (BHE number 7) has a single PE U-tube design with a nominal diameter of 
40 mm and a wall thickness of 2.4 mm. The depth of the BHEs from Folusz (number 6–7) 
is 100 m. In addition, these boreholes were sealed with cement slurry. The heat 
conductivity of the filling material is 1.2 W·m−1·K−1. 

Table 3. Lithological profile of boreholes in Folusz, adapted from [60], Quaternary (Pleistocene, 
Holocene). 

Numb
er 

The Depth of 
the Layer’s 

Top, m 

The Depth of the 
Layer’s Bottom, 

m 

Thickness, 
m 

Lithology Thermal Conductivity, 
λ, W·m−1·K−1 

Specific Volumetric 
Heat, cv, MJ·m−3K−1 

1 0 2.0 2.0 Sandy clay and stone gravel 1.60 2.400 
2 2 7.0 5.0 Rubble stratified with clay 1.60 2.400 
3 7 12.5 5.5 Shales, claystones 2.10 2.300 

4 12.5 45.5 32.0 
Sandstone stratified with 
siltstones and claystones 

2.30 2.000 

5 45.5 100.0 54.5 Sandy gravel and gravel 2.30 2.000 
Weighted mean 2.24 2.045 

3. Interpretation Methods for Thermal Response Test Results 
There are three methods for determining parameters from thermal response tests. 

The parameters are effective thermal conductivity λeff and borehole thermal resistivity Rb. 
Each of the following methods was used on the same test material, i.e., the thermal 
response tests results, which were carried out on the wells described in Section 2.1. 
Knowledge of these parameters is necessary for the proper operation of geothermal heat 
pumps. The classic method is currently in use. 

3.1. Classic Method (cm) of Determining Parameters from Thermal Response Tests 
The slope methodology is the most basic and common methodology for the 

underground thermal conductivity from a TRT [57,76]. The mean temperature is plotted 
against the logarithm of time. The slope of the curve thus represents the thermal. This 
expression is derived from the common expression for infinite line supply. Under the 
assumption that the heat is discharged from the borehole, where it depends solely on 

Depth of BHE, m, 76.2

Sealing used
with borehole Cement slurry seal Cement slurry seal

Cement slurry seal
(ThermoChem)

with increased ther-
mal conductivity

Gravel on
granulation between

8 and 16 mm and
two clay corks—

Compactonit

Cement slurry seal

Heat conductivity
of fill material

(hardened grout),
λ, W·m−1·K−1

1.2 1.2 2.0 1.8 1.2

Boreholes F1 and F2 are in Folusz (S-Poland), and their geological profiles are described
in Table 3. Borehole heat exchanger F1 (BHE number 6) has a double PE U-tube design with
a nominal diameter of 32 mm and a wall thickness of 2.4 mm. Borehole heat exchanger
F2 (BHE number 7) has a single PE U-tube design with a nominal diameter of 40 mm and
a wall thickness of 2.4 mm. The depth of the BHEs from Folusz (number 6–7) is 100 m.
In addition, these boreholes were sealed with cement slurry. The heat conductivity of the
filling material is 1.2 W·m−1·K−1.

Table 3. Lithological profile of boreholes in Folusz, adapted from [60], Quaternary (Pleistocene,
Holocene).

Number The Depth of the
Layer’s Top, m

The Depth of the
Layer’s Bottom, m Thickness, m Lithology

Thermal
Conductivity, λ,

W·m−1·K−1

Specific
Volumetric Heat,
cv, MJ·m−3·K−1

1 0 2.0 2.0 Sandy clay and stone gravel 1.60 2.400

2 2 7.0 5.0 Rubble stratified with clay 1.60 2.400

3 7 12.5 5.5 Shales, claystones 2.10 2.300

4 12.5 45.5 32.0 Sandstone stratified with
siltstones and claystones 2.30 2.000

5 45.5 100.0 54.5 Sandy gravel and gravel 2.30 2.000

Weighted mean 2.24 2.045

3. Interpretation Methods for Thermal Response Test Results

There are three methods for determining parameters from thermal response tests. The
parameters are effective thermal conductivity λeff and borehole thermal resistivity Rb. Each
of the following methods was used on the same test material, i.e., the thermal response
tests results, which were carried out on the wells described in Section 2.1. Knowledge of
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these parameters is necessary for the proper operation of geothermal heat pumps. The
classic method is currently in use.

3.1. Classic Method (cm) of Determining Parameters from Thermal Response Tests

The slope methodology is the most basic and common methodology for the under-
ground thermal conductivity from a TRT [57,76]. The mean temperature is plotted against
the logarithm of time. The slope of the curve thus represents the thermal. This expression
is derived from the common expression for infinite line supply. Under the assumption that
the heat is discharged from the borehole, where it depends solely on radial conduction,
which for the time scale of a TRT is a valid approximation, the mean fluid temperature can
be written as Equation (7) [60] and the heat losses per unit depth q as:

q =
P
H

(8)

The time of the test and the time assumed as the beginning of interpretation of the
above function in the semilogarithmic system are important in each TRT. It was determined
that, according to Equation (10), the calculation error is 2.5% when the time is longer
or equal to 20·r2

b ·α
−1 and 10% when t ≥ 5·r2

b ·α
−1. In many TRT interpretations, the

temperature is determined at the inlet and outlet of the heat carrier as a function of the test
duration time [39].

Pursuant to the measurement of the supply and return temperature of the heat carrier,
it is possible to determine the relationship between the average temperature Tf and the test
duration t [77]. Creating a chart of interdependence between the average temperature of
the fluid Tf and the logarithm of the test duration ln(t) is a good method of evaluation of
thermal response test data.

The chart has a linear character with regards to ln(t). The slope of the k curve allows
for the assessment of effective thermal conductivity λeff equations, as follows:

λe f f =
P

4·π·H·k (9)

where

P =
∑n

i=1 Pchi
n

(10)

Pchi =
.

Vi·ci·ρi·∆Ti (11)

Another important BHE parameter is its thermal resistivity Rb, defined as:

Rb =
1
q
(Tav − T0)−

1
4·π·λ

[
ln

(
4αt
r2

b

)
+

r2
b

4αt
− γ

]
(12)

where

Tav =
Tf + Tr

2
(13)

With the proper parameters, it is possible to achieve a good characteristic of the ground
source heat pump, that is, a high coefficient of performance (COP) value.

3.2. Point Method (pm) of Determining Parameters from Thermal Response Tests

The effective thermal conductivity coefficient of the borehole Rb can also be
calculated as [60]:

λe f f =

q
4π

[
ln
(

t2
t1

)
+

r2
b(t2−t1)
4·α·t1·t2

]
T(t2)− T(t1)

(14)
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Times t1 and t2 refer to the beginning and the end of the range for which the λeff
coefficient is calculated. The temperatures T(t1) and T(t2) are read from the linear regression
function for the average temperature of the heat carrier, calculated as:

Tav =
Tin + Tout

2
(15)

The temperatures T(t1) and T(t2) are determined as follows:

- Having the following data: ln(t1) or ln(t2) and Tav, the slope coefficient k and the
intersection point of the line with the vertical axis (point b) are determined for a given
time range. The intersection point is the point where the regression line, taken through
known values ln(t1) or ln(t2) and Tav, intersects the vertical axis. That is,

b = Tav − k· ln (t1) or b = Tav − k· ln (t2) (16)

- Then, the following equation can be written:

Tav(reg) = k· ln(t1) + b or Tav(reg) = k· ln(t2) + b (17)

With this approach, the influence of possible disturbances on the registration of
temperatures during the thermal response test at the boundaries of the tested period (t1
and t2) in Equation (17) is avoided. Then, the borehole thermal resistance Rb is calculated
with Equation (15).

3.3. Constant Borehole Resistivity Method (cbrm) of Determining Parameters from Thermal
Response Tests

Unfortunately, the fact is that an almost ideal thermal response test run does not
always guarantee similar results for the effective thermal conductivity λeff and thermal
resistivity of the borehole, as demonstrated with the data evaluated by Sliwa [61] and
checked by Sapińska-Śliwa [78]. This is due to differences between analyzed data. In many
cases, it is possible to observe that the thermal conductivity value varies with the TRT
duration. Therefore, a new method of determining parameters from a thermal response
test, where data are not significantly affected by the test duration, is proposed. Figure 3
illustrates the relationship between thermal resistivity Rb and the duration of thermal
response test t. The only difference between the graphs is the thermal conductivity λ
in Equation (12) [60].
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The new solution, proposed by Sliwa (2012), is to determine the value of λeff such that
the linear regression based on experimental relation Rb = f(t) takes the form of the function
Rb = kt + b, where the slope coefficient of the straight trend line, representing the heat carrier
temperature graph as a function of the natural logarithm of the TRT heating time k, is equal
(or close) to zero [61]. Determining the values of λeff and Rb comes down to finding λeff,
where k = 0. Then, we evaluate Rb = b [60]. This can be described based on (15) as:

Rb(t) = kt + b (18)

Rb(t) =
1
q
(Tav − T0)−

1
4·π·λe f f

[
ln

(
4αt
r2

b

)
+

r2
b

4αt
− γ

]
= b (19)

b =
1
q
(Tav − T0) (20)

− k
H
P

[
ln

(
4αt
r2

b

)
+

r2
b

4αt
− γ

]
= 0 (21)

k = 0 when λ = λe f f (22)

4. Test Results

The results from the thermal response test are as follows:

• The time from the onset of heating, s.
• The fluid temperature inlet to the exchanger, ◦C.
• The fluid temperature returning from the exchanger, ◦C.
• The outside (atmospheric) temperature, ◦C.
• The temporary flow rate, dm3/min.

The borehole diameter is d = 0.143 m for all heat exchangers. Note that the set
temperature of the profile can be determined by recording the temperature of the medium
circulating inside the borehole heat exchanger before the heating process. The value
of this temperature can be determined by temperature profiling. In the case of heat
exchangers at the AGH University of Science and Technology (1, 2, 3, 4, 5) and Folusz (6, 7),
the established temperature of the profile T0 was previously designated by the NIMO-T
probe. If heat power P and depth of exchanger H are known, it is possible to calculate the
unit heat power q. The obtained results of temperature, depth, and unit heating power (the
heating power for every BHE was 4 kW) of each exchanger are presented in Table 4.

Table 4. Values of the set average temperature of the profile T0, depth of exchangers H, and unit
heating power q.

BHE Number 1 2 3 4 5 6 7

T0, ◦C 12.68 12.73 12.72 13.18 12.71 10.17 10.33
H, m 76.2 100.0

q, W·m−1 52.36 40.00

Graphs of the relationship between the fluid’s initial and return temperatures, as well
as its heating time, were created from the results of the thermal response test carried out on
each borehole heat exchanger. This method shows how the temperature of the medium
flowing through the heat exchanger varies over time. Based on studies of Grygieńcza in
2009 [79], a comparison was made, as shown in Figures 4–10. The duration of the heating
phase of each thermal response test was not strictly identical; however, it did not affect
further calculations (it was always over 70 h).
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Figure 4. Relationship between heat carrier temperature and heating time in BHE LG-1a (coaxial
construction).
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Figure 5. Relationship between heat carrier temperature and heating time in BHE LG-2a (single
U-pipe with cement slurry seal).
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Figure 6. Relationship between heat carrier temperature and heating time in BHE LG-3a (single
U-pipe with slurry seal with increased thermal conductivity).
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Figure 7. Relationship between heat carrier temperature and heating time in BHE LG-4a (single
U-pipe with gravel).
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Figure 8. Relationship between heat carrier temperature and heating time in BHE LG-5a
(double U-pipe).
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Figure 9. Relationship between heat carrier temperature and heating time in BHE F1 (double U-pipe).
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2 LG-2a 30.848 27.941 29.395 19.99 2.907 
3 LG-3a 28.336 25.462 26.899 20.00 2.874 
4 LG-4a 28.044 25.168 26.606 19.89 2.876 
5 LG-5a 28.704 25.824 27.264 20.00 2.880 
6 F1 23.392 19.749 21.571 20.00 3.643 
7 F2 22.486 18.899 20.693 20.00 3.587 

Figures 11–17 illustrate a relationship between the average heat carrier temperature 
and the logarithm of the TRT time (curve) and simple regression (thin dashed line). The 
need for creating these charts is explained in detail in Section 3.1 (classic method). 

The results shown in Figures 11–17 demonstrate the quality of the tests. Good fits are 
obtained using a regression line. The weakest in terms of quality was the test of the LG-
1a well, where a comparatively high correlation coefficient of 0.9642 was obtained.  

Note that each data set in Figures 11–17 includes values recorded every 60 s. Thus, 
for the 100 h test, 6000 measurement points are registered. 
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Figure 10. Relationship between heat carrier temperature and heating time in BHE F2 (single U-pipe).

The heat carrier temperature values in Figures 4–10 during the 70th hour of each
test are listed and compared in Table 5. The highest temperature was achieved in the
centric design well (LG-1a), while a slightly lower temperature was observed in well LG-2s.
Very similar temperatures were exhibited in wells 3–5. As presented in the last column,
the temperature difference values are similar for all wells in the Laboratory of Geoenergetics.
This is due to the almost identical value of the heat carrier flux. However, the values for the
wells in Folusz are different. Despite the identical heat carrier flux, the carrier temperature
is lower and the temperature difference is higher. This is reflected in the fact that the
heat-dissipating medium, i.e., the rock mass, has a higher thermal conductivity. Due to the
greater conductivity of the rocks and the faster heat dissipation, the inflow and outflow
temperatures are lower in the Folusz wells.

Table 5. Summary of heat carrier temperature values in the 70th hour of the thermal response test.

BHE NUMBER BHE NAME INFLOW
TEMPERATURE, ◦C

OUTFLOW
TEMPERATURE, ◦C

AVERAGE FLOW
TEMPERATURE, ◦C

HEAT CARRIER
VOLUMETRIC FLOW

RATE, DM3/MIN

TEMPERATURE
DIFFERENCE (INFLOW

TO OUTFLOW), ◦C

1 LG-1a 31.261 28.394 29.828 20.00 2.867
2 LG-2a 30.848 27.941 29.395 19.99 2.907
3 LG-3a 28.336 25.462 26.899 20.00 2.874
4 LG-4a 28.044 25.168 26.606 19.89 2.876
5 LG-5a 28.704 25.824 27.264 20.00 2.880
6 F1 23.392 19.749 21.571 20.00 3.643
7 F2 22.486 18.899 20.693 20.00 3.587

The atmospheric air temperatures measured during the tests allow for the evaluation
of their influence on the tests. It is seen that increases in air temperature during the day
have a minimal effect on the behavior of the two measured temperatures of the heat carrier.
Therefore, this influence was ignored in calculations.

Figures 11–17 illustrate a relationship between the average heat carrier temperature
and the logarithm of the TRT time (curve) and simple regression (thin dashed line). The
need for creating these charts is explained in detail in Section 3.1 (classic method).
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Figure 11. Relationship between average heat carrier temperature and the logarithm of heating time
in BHE LG-1a (coaxial).
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Figure 12. Relationship between average heating medium temperature and the logarithm of heating
time in BHE LG-2a (single U-pipe with cement slurry seal).
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Figure 13. Relationship between average heating medium temperature and the logarithm of heating
time in BHE LG-3a (single U-pipe with slurry seal with increased thermal conductivity).
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Figure 14. Relationship between average heating medium temperature and the logarithm of heating
time in BHE LG-4a (single U-pipe with gravel).
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Figure 15. Relationship between average heating medium temperature and the logarithm of heating
time in BHE LG-5a (double U-pipe).
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Figure 16. Relationship between average heating medium temperature and the logarithm of heating
time in BHE F1 (double U-pipe).

The results shown in Figures 11–17 demonstrate the quality of the tests. Good fits are
obtained using a regression line. The weakest in terms of quality was the test of the LG-1a
well, where a comparatively high correlation coefficient of 0.9642 was obtained.

Note that each data set in Figures 11–17 includes values recorded every 60 s. Thus,
for the 100 h test, 6000 measurement points are registered.
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Figure 17. Relationship between average heating medium temperature and the logarithm of heating
time in BHE F2 (single U-pipe).

Analysis of the TRT Results

Figures 18–25 plot the relationship between the thermal resistance Rb and test duration
for the borehole heat exchangers. Note that the linear regression curve is almost horizontal
to the x-axis. This is the characteristic curve appearance for the new method of analyzing
data from thermal response tests, where k is close to zero. In such a case, the value of the
correlation coefficient R2 is also close to zero.
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Figure 18. Relationship between thermal resistance of BHE and duration of the TRT in BHE LG-1a (coaxial).
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Figure 19. Relationship between thermal resistance of BHE and duration of the TRT in BHE LG-2a
(single U-pipe with cement slurry seal).
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Figure 20. Relationship between thermal resistance of BHE and duration of the TRT in BHE LG-3a
(single U-pipe with slurry seal with increased thermal conductivity).
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Figure 21. Relationship between thermal resistance of BHE and duration of the TRT in BHE LG-4a
(single U-pipe with gravel).
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Figure 22. Relationship between thermal resistance of BHE and duration of the TRT in BHE LG-5a
(double U-pipe).
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Figure 23. Relationship between thermal resistance of BHE and duration of the TRT in BHE F1
(double U-pipe).
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Figure 24. Relationship between thermal resistance of BHE and duration of the TRT in BHE F2
(single U-pipe).
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Science and Technology, Poland.

The graphs in Figures 18–25 all have very small correlation coefficients. This indicates
a lack of correlation and corresponds to a linear constant function. There are clear differ-
ences in the values indicated on the vertical axes representing the thermal resistance value
of the borehole heat exchangers for the different cases considered.

The tests were performed using measuring and recording equipment. The measuring
equipment is from the Laboratory of Geoenergetics, AGH University of Science and Tech-
nology, and is shown in Figure 25. The apparatus is very accurate and sensitive to many
variables affecting the research. For example, the constant heating power stabilization
algorithm takes into account the relationship between the density and specific heat of the
heat carrier and its temperature, which is variable during BHE testing.

5. Data Interpretation and Results

The values obtained using the old (classic) method of analysis were compared with
the values obtained using the new method in Table 6. The value calculated with the classic
method indicates a very low thermal resistance coefficient, and the discrepancies may be
due to the imperfection of the measurement method itself and errors in the temperature
reading during the thermal response test. The most important factor is the BHE construction.
There are various possibilities for problems in construction, such as quality of grout filling
and distance between pipes forming a U-pipe. Measuring them is not possible. One way to
determine the necessary values is to carry out testing of a large number of different BHEs
in the same geology and using statistical approaches.

The standard deviation for thermal conductivity (λ) was calculated to illustrate the
extent to which the results differ for the thermal conductivity calculated by each of the
three methods.

The standard deviation for the thermal resistance (Rb) was calculated in the same
way as for the thermal conductivity. The results of using each of the three methods were
compared to check the deviation of the results.
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The values calculated using the old method are marked with the subscript cm (classic
method), and the values calculated using new methods are marked with the subscript cbrm
(constant borehole resistance method) and pm (point method).

In Table 6, the worst results for each method are marked in italics and the best results
in bold. As can be seen from the values of standard deviations, the results are to varying
degrees spread out. Symbol ↑ denotes the highest value of λeff for a given well amongst
the three methods and symbol ↓ the lowest value of Rb. Note that the development of
methods and models for calculating the values of λeff and Rb based on the interpretation
of numerically modelled thermal response tests is the subject of planned future work by
the authors.

The best borehole is seen to be a system with a single U-tube, according to the highest
effective thermal conductivity λeff criterion and the lowest thermal resistance Rb criterion.
The weakest BHE case according to the λeff criterion is the double U-pipe, while according
to the Rb criterion it is a coaxial design. This last result is surprising but possible, e.g., when
the space between the outer pipe and the borehole wall is poorly filled.

When analyzing the research in terms of the interpretative method used, no entirely
unambiguous evaluations were obtained. For λeff, the highest number of maximum values
(3) was obtained for the point method. For Rb, the highest number of minimum values was
obtained (3) for the constant borehole resistivity method. The use of the three interpretation
methods for the evaluation of the quality of the TRT results will be further investigated in
the future. Further tests on new wells (BHEs) will be performed. The TRT results obtained
from the mathematical modeling of the tests will also be interpreted. In subsequent reports
by the authors about the effectiveness of the three-method interpretation for the evaluation
of test quality, the results of new studies will be described. The aim of the new interpretation
for new TRTs will be the key focus for this work rather than BHE comparisons.

6. Conclusions

In the present research, results are obtained using various methods of the most impor-
tant coefficients describing borehole heat exchanger efficiency, illustrating differences and
demonstrating the applicability of the constant thermal resistance method relative to the
classical method. Several conclusions can be drawn from the results of the research:
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• The measurements were conducted for two locations, i.e., for two different geological
profiles, and thus are limited. For a more robust and broad analysis, more tests should
be performed, both on the already tested wells (with different test parameters) and
in other locations. The matter of selecting the most advantageous BHE design and
construction in terms of test results has not been determined conclusively.

• The best effective thermal conductivity λeff result is observed for the BHE with a sin-
gle U-pipe with gravel as the grout, for the classic method, and its value equals
2802 W·K−1·m−1. For the constant borehole resistivity method, the F1 exchanger
(double U-pipe) has the best result (2.724 W·K−1·m−1). However, according to
the point-based method, the F2 exchanger (single U-pipe) turns out to be the best
borehole heat exchanger. These values are considered to be very high, which sug-
gests the potential for very efficient results of the heat pump operation for the given
geological structure.

• The LG-4a borehole (BHE with a single U-pipe with gravel as the grout) has the best
thermal resistance, at 0.045 K·m·W−1 for the classic method. For the point-based and
the constant borehole resistivity methods, the results indicate that the LG-3a borehole
heat exchanger has the lowest thermal resistance.

• To compare the influence of the BHE construction on the thermal conductivity and
resistance coefficient characteristics, one can use the Folusz boreholes, where one of
the designs is a single U-tube and the other a double U-tube. In this case, it is clear
that a single U-tube achieves better thermal resistance values, while a double U-tube
achieves better conductivity. In industrial practice, a double U-tube is considered
a better, albeit more expensive, design. However, many parameters can influence
TRT results. One of the important factors for the borehole thermal resistance Rb is
the sealing effectiveness (even and precise distribution of the grout). With a double
U-tube, sealing/filling the borehole is more difficult than with a single U-tube.

• The new method for determining the characteristic coefficients from the thermal
response test gives different results compared to the old (classic) method. The largest
standard deviation for thermal conductivity can be observed in the LG-4a well, where
it was as high as 0.397 W·m−1·K−1. The values of the remaining standard deviations
are much lower, which may indicate a good relationship between thermal conductivity
calculations for both methods. Thermal resistance is also characterized by small
standard deviations. However, with the LG-4a well it can be seen that there may
be significant differences in individual cases, most likely depending on the thermal
response test duration.

• The constant thermal resistivity method provides outcomes that do not depend in
any way on the test duration. Therefore, it can be theorized that it may be a more
reliable and accurate method, yielding better borehole heat exchanger coefficients
from the thermal response test (λeff and Rb). However, this is speculative and it must
be supported by a greater number of measurements than currently are available to
be conclusive. This is the subject of future work being carried out in borehole heat
exchanger fields B and C of the AGH UST Geoenergetics Laboratory.

• Further research on the centric design of the BHE is merited. Theoretically, the centric
design should be the most advantageous (the lowest Rb value), but simultaneously it
is the most difficult to properly seal with filling material. Hence, practical problems
may indicate that this type of design should not be used. It is, however, the most
advantageous in terms of heat carrier hydraulics and must be used in deep BHEs.

The research has two key aspects. First, it compares various BHE constructions and
identifies the best in terms of efficiency for the same geological conditions. Second, the qual-
ity of thermal response test results is checked. Both of these topics require further research
using the methodology presented in the paper, and such research is being undertaken
currently by the present authors.
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Nomenclature

∆Ti Difference between feed temperature and return temperature for record i (K).
α Ground thermal diffusivity (m2·s−1).
γ Euler constant (γ = 0.5772156).
λ Ground thermal conductivity (W·m−1·K−1).
λcm Ground thermal conductivity (classic method) (W·K−1·m−1).
λpm Ground thermal conductivity (point method) (W·K−1·m−1).
λcbrm Ground thermal conductivity (constant borehole resistivity method) (W·K−1·m−1).
ρ Density of rocks (kg·m−3).
ρi Density of heat carrier for record i, which is dependent on temperature ρi = f(T) (kg·m−3).
H Borehole heat exchanger depth (m).
P Thermal power (W).
Pchi Temporary heating power for record i (W).
Rb.cm Borehole thermal resistance (classic method) (K·m·W−1).
Rb.pm Borehole thermal resistance (point-based method) (K·m·W−1).
Rb.cbrm Borehole thermal resistance (constant borehole resistivity method) (K·m·W−1).
T0 Average natural temperature of geological profile of the borehole (K).
Tf Feed temperature (K).
Tr Return temperature (K).
T(t1) Average heat carrier temperature at time t1 (K).
T(t2) Average heat carrier temperature at time t2 (K).
Tz Inlet temperature (at the inflow to the borehole heat exchanger) (K).
Tp Return temperature (at the outflow of the borehole heat exchanger) (K).
Tśr(reg) Temperature from the linear regression function (T(t1) or T(t2)) (K).
.

V, Q Heat carrier flow rate (m3·s−1).
.

Vi Heat carrier flow rate for record i (m3·s−1).
ci Specific heat of heat carrier for record i, which is dependent on temperature ci = f(T)

(J·kg−1·K−1).
cv Volumetric specific heat (J·m−3·K−1).
k Coefficient of inclination of (straight) lines of trends, representing the function of the heat

carrier temperature vs. the natural logarithm of time of TRT.
kcm Slope of regression line (classic method).
kpm Slope of regression line (point-based method).
kcbrm Slope of regression line (constant borehole resistivity method).
n Number of records registered during the heating phase of the TRT.
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q Unit heat loss rate for borehole heat exchanger (W·m−1).
r Radius (m).
rb Borehole radius (m).
u Auxiliary variable.
t Time (s).
t1 Starting time (s).
t2 Ending time (s).
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72. Sapińska-Sliwa, A.; Rosen, M.A.; Gonet, A.; Kowalczyk, J.; Sliwa, T. A New Method Based on Thermal Response Tests

for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers. Energies 2019,
12, 1072. [CrossRef]
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