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Abstract: Electricity generation is becoming increasingly flexible in Europe these days. Due to the
integration of new renewable energy sources like wind and photovoltaic, other conventional resources,
such as hydropower, operate within a brought range around their best efficiency point, thus leading
to higher dynamical loads at the water-bearing parts, especially at the runner and the guide vanes
(background). By scrutinizing the literature of the past years, one could summarize the outcome in
that way, that research projects focused either on model measurements with higher visual accessibility
or, less often, on prototype measurements in existing power plants. Today prototype measurements
are performed, if possible, to eliminate scaling effects. Moreover, increasing computing power allows
prototype simulations to be carried out within a reasonable time. At the acknowledged research
projects, prototype and model measurements and numerical simulations have been performed to
identify the main gaps in Francis turbines’ lifetime assessment (methods). One special outcome of
these investigations was the impracticality of numerical simulations and calculation time, respectively,
of start and stop events . Therefore, a prototype measurement with focus at this operating point
should be performed to provide more data and an insight into the unit’s behavior. The future goal is
a comprehensive machine unit lifetime assessment of the water-bearing parts in a Francis turbine
machine set (results). This complex task needs several steps, beginning from measurements through
simulations towards data processing. A particular challenge is posed, when the assessment methods
are applied to old machines.

Keywords: hydropower; hydraulic turbines; lifetime assessment; multilevel procedure

1. Introduction

In the latest report of Working Group 1, the Intergovernmental Panel on Climate
Change (IPCC) acknowledged the need for a temperature limit of 1.5◦ for future global
warming. Accordingly, worldwide measures must be taken to achieve these climate targets
by 2050. The individual national states are requested to implement these targets at the
national level.

There is a consensus among European nations that all member states set correspond-
ing programs to achieve these global climate targets. The leading western industrialized
countries have already ensured the revival of renewable energy sources by creating related
environmental laws. In particular, wind energy, photovoltaics, and biomass have been pro-
moted to the extent possible by the relevant legislation. Either feed-in tariffs or investment
subsidies are used. Through these tools, corresponding generation capacities have been
built up within Europe over the last two decades. Figure 1 shows Austria’s annual growth
rate in installed wind and solar power during the previous 20 years.
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ensured the revival of renewable energy sources by creating related environmental laws. In particular,27

wind energy, photovoltaics, and biomass have been promoted to the extent possible by the relevant28

legislation. Either feed-in tariffs or investment subsidies are used. Through these tools, corresponding29

generation capacities have been built up within Europe over the last two decades. Figure 1 shows30

Austria’s annual growth rate in installed wind and solar power during the previous 20 years.31
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Figure 1. Installation of Wind and PV over the past decades in Austria. Adapted from data of [1] and
[2].

The subsidies for renewable energy sources and primary feed-in regulations lead the electrical33

grid to new challenges. The volatile production of electrical energy has to be supplemented by other34

energy sources or stored on large base. Hydroelectric power plays an essential role in this process due35

to its rapid load change capabilities. The use of this energy source to stabilize the electrical grid within36

Europe has been progressively expanded in recent years.37
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Figure 2. Daily energy production of different sources at the same month but different years in
Germany. Data source [3]

The successive phase-out of primary energy sources, like coal, oil, or nuclear power, creates38

additional hurdles within the electrical grid. Especially the enormous output of those power plants39

with their synchronous generators was the backbone of grid stability in the past decades when feed-in40

from wind energy or PV was not possible. The gradual shutdown of thermal or nuclear power plants41

Figure 1. Installation of Wind and PV over the past decades in Austria. Adapted from data of [1,2].

The subsidies for renewable energy sources and primary feed-in regulations lead the
electrical grid to new challenges. The volatile production of electrical energy has to be
supplemented by other energy sources or stored on a large basis. Hydroelectric power
plays an essential role in this process due to its rapid load change capabilities. The use
of this energy source to stabilize the electrical grid within Europe has been progressively
expanded in recent years.

The successive phase-out of primary energy sources, like coal, oil, or nuclear power,
creates additional hurdles within the electrical grid. Especially, the enormous output of
those power plants, with their synchronous generators, was the backbone of grid stability
in the past decades when feed-in from wind energy or PV was not possible. The gradual
shutdown of thermal or nuclear power plants and the increasing demand for electricity due
to the electrification of new sectors (industry, transport) pose significant difficulties. The
missing grid load has to be compensated for and expanded by renewable energy sources.
Different national activity programs are used for this purpose. The additional expansion
of wind energy on a large scale or photovoltaics will drastically increase the fluctuation
range and, consequently, the grid’s need for primary control power. Figure 2 highlights
this hypothesis by showing an example from Germany where the change in renewable
energy production for several sources increases the activity of grid-stabilizing measures to
compensate for the overproduction for the same period at past different years.
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Figure 2. Daily energy production of different sources at the same month but different years in
Germany. Data source [3].

Figure 2 serves also as a global, representative example for restructuring the electrical
distribution system in the future. See also Kyushu (Japan) for a similar case, where
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increasing renewable energy source production leads to higher pumped-storage activity
(see Figure 4.16 on p.104 in [4]). The necessity of converting to a renewable energy system
is evident only the desired expansion of hydropower shows a particular discrepancy
worldwide. Although the demand for this energy source to cover basic supply and primary
control power will increase, the social acceptance for the construction of new plants seems
to be declining.

However, in Europe, legal framework conditions, such as the European Water Frame-
work Directive, can delay these expansion plans and make them more expensive. It requires
an improvement in water quality during the development of a hydropower plant. In the
future, retrofit projects will also be subject to those directives, and it will, therefore, be
challenging to implement the required and ecologically necessary expansion plans.

Another point of discussion in expanding new hydropower plants is the age structure
of existing plants. In most European countries, the hydropower fleet is already aging
and needs to be refurbished anyway. That issues new technical requests of the operation
and retrofitting of old plants. The first step in this process is to determine the technical
condition of all plant components, calculate the residual lifetime, and conduct a reasonable
techno-economic analysis. Retrofit potentials are then ranked and financed according to
their return on investment period.

Considering the recent changes in the energy system and forecasting for the future,
it becomes evident that grid regulation will become more critical due to the increasing
volatility. Accordingly, energy system analyses of the future have to consider the lifetime
of energy sources. Until now, one had the impression that the only link between the grid
operator and the power plant operator was the individual profit maximization.

Such complex systems have the objective of determining an overall optimum (lifetime
and profit) instead of finding singular optima, like profit maximization. For this purpose,
additional information, like the remaining lifetime or the availability of the energy source,
must be transferred to the energy vector side.

Figure 3 shows the newly installed hydropower digital twin to ensure data exchange
at the energy source/energy vector interface. For the first time, we get the opportunity
to exchange data among the system boundaries to pursue the energy transition towards
zero emissions in 2050 holistically. With the information of the lifetime prediction of the
energy resource (see the red branch-Lifetime assessment-on the right side of Figure 3) on
the energy system level, we can include the availability of the same in the long-term energy
analyses and thus develop better forecasting models. This enables better scientific support
for the societal transformation of energy production that will impact our future daily lives.
The following points need to be considered:

• Change in the energy mix
• Changes in the operation of hydropower plants due to the new realities
• Changes in the development and expansion of digitalisation

Figure 3. New installed Hydropower Digital Twin to interconnect energy source (machine unit) and
energy vector (electrical grid).
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1.1. Change in the Energy Mix

Today, some regions in Europe are already faced with over-capacities in electricity
production at certain times since wind or photovoltaic and any other installation of renew-
able energy sources is coupled either to storage possibilities [5] or increasing electric grid
development or both (see [6–12]). These two options are under discussion, but whereas
storage technologies at different power and capacity levels are researched into or devel-
oped, the extension of the electric grid at high and ultra-high voltage levels is made more
problematic by the resistance of the people concerned. Although the need for further grid
development was emphasized in several of the studies, only a few projects were realized.
Concerning storage technologies, diversification is one of the major tasks. Looking at
power and capacity levels from high to low, one can find well-known technologies, such as
pumped storage or compressed air, on the upper end, and batteries and supercapacitors on
the lower end. In between, there are also flywheels and other technologies. An overview
of current storage technologies can be found in [13]. One of the future challenges will
be developing appropriate storage technologies for all grid-level voltages with a useful
capacity. If this is solved, the future for new technologies and energy systems will become
tangible. Special road maps for single-storage technologies (for example [14] or [15]) are
available as are ideas for energy systems in terms of smart grids [16].

Another future energy system could be the installation of a web-of-cells (WoC) concept [17]
where single cells are defined and connected with each other. The advantage of such a
concept is a lower power shifting at the high and highest voltage grid level and to overcome
a backup structure of the electrical grid, where a few big storage plants serve as backbone
for all. In the WoC concept, each single cell should assume its frequency control and power
balancing on its own. The foundation for such an innovative system is the availability
of large centralized storage plants as a backup and further storage technologies at all
cell levels, which could be small home batteries, at the distribution grid level, or swarm
batteries–utility-scale batteries–at the medium-voltage level. All storage technologies com-
bined with a further development of decentralized structures and digitalization will be
needed to install such a future WoC concept. Part of the future digitalization [18] is also the
whole area of blockchain and cryptocurrencies, such as Bitcoin or Ethereum, which will
boost the energy market in another way [19].

Although these future visions will need some time horizon, the increasing demand for
ancillary services to stabilize the electrical grid is already reality today. Transmission system
operators (TSO), such as TenneT, spent approximately 1 billion Euros for grid stabilization
and re-dispatch measures in 2017 (see [20]), which is an increase of 50% compared with 2016.
Facts like these show that grid expansion is urgently needed, but lags far behind forecasts
and is far from being realized. As a result, hydraulic machines are subject to extremely high
loads, since they have been mostly used for electric grid support. In the past, high-head
hydropower plant machine sets (Pelton or Francis turbines with attached storage pumps or
pump–turbines) were primarily used for this task, as they are more flexible in operation
than Kaplan turbines. Nevertheless, investigations have been made in the recent past to
modernize and upgrade existing low-head hydropower plants as a contribution to regulate
the power market. Successful examples show that this is possible, but the reduction of
machine lifetimes is obvious. Concentrating on high-head hydropower plants, different
publications [21–23] described, already, the higher dynamic load on the installed machine
sets. To understand where these dynamic loads result from, it is important to look at all
operational points of the machine set. As a result, the question about off-design operation,
and thus the resulting impact, becomes a major task for all hydraulic turbines participating
in frequency control and power balancing.

1.2. Changes in the Operation of Hydropower Plants Due to the New Realities

Due to the changes in the energy market over the last two decades, the requirements
for hydropower plants have also changed to some extent. In order to remain competitive in
the liberalised electricity market, some hydropower plant operators began to place their
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plants at the disposal of the grid operator to provide ancillary services. Especially the
quick response time to grid volatility plays an essential role, and this favours hydropower.
Further investigations will consider two different modes of operation, namely (I) base load
electricity production and (II) grid control operation.

1.2.1. Base Load Electricity Production

Base load electricity production is characterised by the fact that the so-called partial
load range is only passed through and most of the operating time occurs around the
optimum or design point. The machine is not used according to grid requirements, but
purely to produce electricity. This mode of operation was dominant for a long time, as
hydropower was the largest source of energy in Austria. Therefore, it was not necessary
to react that quickly to grid volatility, and respectively, this was achieved by selected
regulating power plants. Their machines were designed for this mode of operation from
the very beginning.

1.2.2. Grid Control Operation

The increased use of new renewable energy sources shifted the operation of hy-
dropower plants towards grid control. Volatile feed-in made it necessary to provide
corresponding control power (frequency containment reserve (FCR), automatic frequency
restoration reserves (aFRR) and manual frequency restoration reserves (mFRR)) as shown
in Figure 4.

30s 5 min 15 min 60 min
Time

BGM responsiblemFRRaFRRFCR

P
ow

er

IR

Figure 4. Activation of the different types of control energy (IR = Instantaneous reserve, BGM =
Balancing group manager).

Figure 4 shows the control energy types concerning their activation periods. Primary
control must be activated within the shortest possible time and guarantee the entire power
supply or consumption within a time frame of 30 s. Secondary control follows on from
primary control and must assure full power supply or consumption in a time frame between
30 s and 5 min. After 5 min, the minute reserve is activated, which has up to 15 min to
provide full power supply or consumption. After 60 min, the balancing group manager
regulates the electrical grid.

Based on Table 1, the following aspects arise concerning mechanical equipment and
the operation of hydropower plants:

1. Taking positive and negative balancing power into account, pumped storage plants
equipped with two machine-setup units or ternary units are preferable. Only those
units can deliver the needed services.

2. In terms of mFRR, hydropower plants are one possible resource among others. Start-
up of the machine within 5 min and supply of full power by 15 min is achievable for
all machine units regardless of age and condition. Even the auxiliary units do not
have to be ready for operation and start from a standstill. First, the oil–hydraulic unit
must be activated to provide the oil pressure for the auxiliary systems. After that, the
turbine shut-off valve is opened, which takes a considerable amount of time to start a
hydraulic machine. Only then can the guide vane or the nozzle needle be adjusted
and the runner set in rotation. The acceleration of the runner to synchronous speed
takes place very quickly. Standard start-up times for Francis turbines require 4–5 min.
Pelton turbines can start even faster.
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3. If pumped storage units are used for secondary control (aFRR), specific prerequisites
are already necessary. For example, it is no longer possible to start the machine unit
from a standstill in 30 s. Here, at least the turbine shut-off device must already be open
and the oil–hydraulic unit pressurized. Only the guide apparatus or the nozzle needle
have to be adjusted to synchronize the machine unit with the grid during this period.
Power consumption or supply within 5 min is no longer a significant challenge after
that. If the start-up time of 30 s is still not achievable under these circumstances, the
unit could also remain in standby mode. However, this causes more wear and tear.
For aFRR, both types, pump turbines and ternary machine sets, can be used.

4. In primary control (FCR), only ternary pumped storage units can be used due to
positive and negative power requirements. Conventional pump turbines take too
long to switch from the turbine to pump mode. Switchover times of 5–6 min are not
uncommon. To react to grid frequency at the crucial period, even the ternary machine
sets have to run synchronized on the grid and only shift the load. For the changeover
from supply to consumption mode, the machine set must be equipped additionally
with a hydraulic shortcut circuit, as otherwise, the changeover time would take too
long. Since the machine set must already be running to react in the required time, the
pure demand rate is probably not economically sufficient.

Table 1. The following table shows the different types of balancing energy and their characteristics.

Type of Control
Energy FCR aFRR mFRR

Provided by ENTSO-E TSO TSO

activation

frequency-controlled;
independent measure-
ment/intervention on
site by FCR provider

by control area
responsible
TSO-automatically
replaces FCR

by control area
responsible
TSO-manual request
by TSO

full power within 30 s within 5 min within 15 min

period to be
covered after
an incident

0–15 min from 30 s to 15 min from 15 min to 60 min

remuneration demand rate demand and energy
rate

demand and
energy rate

minimum
bid size

From +/− 1 MW
(symmetrical)

5 MW positive or
negative

5 MW positive or
negative

daily products positive and negative:
6 time slices over 4 h

positive and negative:
6 time slices over 4 h

positive and negative:
6 time slices over 4 h

These circumstances shift the operation of hydraulic machine units towards more
partial load operation, and faster load step changes. Results of these load shifts are higher
mechanical stresses and reduced lifetime, which are the main topics of this publication.

1.2.3. Comparison between Base Load Production and Grid Control Operation

The operating period of a machine set at different load steps is the best way to illustrate
the operating mode difference. Here, the base load electricity production is reflected with
an intensified mode of operation around the design point. The partial load regions are only
passed through, and lingering at these load levels is not envisaged. In grid-support mode,
the machine set is operated within all load ranges, depending on the needed power at the
regulatory market. This means that the mechanically unfavourable partial load regions are
also approached more often, and generally, a quicker load change is executed.

Figure 5 shows the different operating times of one typical machine set in one year
(basic data have been provided by the operator and standardized for one year of operation).
It becomes apparent that the hydraulic machine set is increasingly operated in the partial
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load range (25–60% of the design point) for grid service operation. In other words, volatile
fluctuations in the grid are compensated by a variable, additive share from hydropower.
Looking at the decades of operation in base load mode, it is noticeable that the machine
set is driven directly into the design point range from the start and remains there. Most of
the time, the machine is operated at full power output to generate the electricity market’s
corresponding income.

Since hydropower plants are not only operated in synchronised mode but also have to
be started and shut down, the following pattern occurs for these transient operating phases
in combination with the two previously mentioned scenarios:

• In base-load electricity production, the machine runs predominantly at its optimum.
Therefore, the number of starts and stops of the machine set per day is also lower. In
Figure 5, the number of starts and stops per day was set to one, which means that the
machine set is started up once a day and remains at the optimum operating point. If
the power demand from the grid is deficient, the machine set is left in a synchronized
state (SNL) and rotates in “idle mode” in order to be quickly brought back to the
optimum and to be able to deliver power when needed.

• In contrast, the machine unit in grid-control mode (aFRR, mFRR) is started and
stopped up to six times a day. This is also caused by the purchase of balancing energy
on the electricity market in quarter-hour cycles. The machine unit is increasingly
operated in the hydraulically unfavorable partial load range, and it is also started and
stopped more often than conventionally planned. This results in the high number of
start-ups (STU) and shut-downs (SHD) in Figure 5.

• Since the frequency containment reserve (FCR) is primarily intended to mitigate short-
term load changes, the entire capacity range has to be provided within a maximum
of 30 s and remain continuously available for at least 15 min. This operation means
synchronized machine unit and load shifting either from speed-no-load (SNL) point
to full load or part load to full load. Additionally, change over from supply to
consumption mode is part of this operational field. Start and stops of the machine are
less important than faster load shifts and part load operation.

• On the one hand, condenser-mode operation (CMO) only affects machines equipped
for such operation, and on the other hand, it is only required for reactive power com-
pensation in the grid. The new renewable energy sources are indeed steadily reducing
the reactive power in the grid. However, there are still enough large synchronous
generators of the grid’s primary energy suppliers to compensate for this. Hydropower
generators can take over this task to some extent. The number of condenser mode
operations (CMO) was set at the same low level for the remaining considerations.
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Figure 5. Operating time for different load regimes in 1 year. Adapted from [24].

These changes in the operation of hydraulic machines form the basis of many investi-
gations regarding the components’ lifetime. The latest scientific results in this context are
already being implemented in the design of turbines in new plants. However, the far more
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critical issue is the assessment of old runners and machines, especially when these plants
have been converted from base load generation to grid stabilization.

1.3. Changes in the Development and Expansion of Digitalisation

Energy suppliers are facing significant challenges due to the social changes in the
electricity market. Digitalisation is playing an increasingly important role in this context,
such as boosting efficiency in all areas of the company, energy production, maintaining
grid stability, billing customers for consumption, or the remote control of hydropower
plants. In electricity production, the trend towards a comprehensive rollout of sensors
and cameras in the power plants is particularly noticeable, enabling remote control and
predictive maintenance. Besides, operating procedures, drawings and work processes
are increasingly being digitalised. Examples of this are digital documentation and the
introduction of workforce management systems. Similar developments can be seen in the
area of electrical grids. The expansion of the grids towards a smart grid allows optimized
control of the grids and predictive maintenance.

In the future, the possibilities of networking, combined with a comprehensive rollout
of sensors in hydropower plants, will lead to a profound change in energy generation. This
influences the control and maintenance of the generation plants. The plant sensors provide
data to control energy generation intelligently or trigger demand-based maintenance and
servicing at an early stage (see also [25]). Today, sensors and other measuring equipment
already transmit data on the condition of plant components. However, fully automated
control of the assets would require a comprehensive database and the interconnection of
different data sources. Both prerequisites have not always been achieved so far.

1.3.1. Data Collection

To couple the energy system with the operation of a hydropower plant (see Figure 3),
a data exchange must take place concerning the lifetime and consequently the boundary
conditions on the side of the electrical grid. At the interface of this data exchange, harmo-
nization problems arise due to the different time scales. While the demand for electrical
energy from different sectors (industry, private consumption, commerce, tourism,. . . ) is
determined on a coarse scale of hours, days, or even weeks, the operation and load shift-
ing take place over intervals of seconds. The hydropower system essentially fulfills two
tasks: meeting the electrical demand of different sectors and, secondly, regulating the
electrical grid (see Section 1.2.2). These tasks, therefore, require a much tighter time scale
(seconds, milliseconds).

Closing this gap at the interface requires a multi-level approach. The starting point
is the turbine hill chart. This map reflects the possible operational limits of the hydraulic
machine. On the one hand, the minimum and maximum net head limit the operating
range. The flow through the turbine is restricted at the lower end by the cavitation limit
and at the upper end by the maximum discharge capacity of the machine. Many operators
restrict the operation below the cavitation limit by only passing through this area at
machine start-up. Permanent operational use of this deep, partial-load area is suspended
for mechanical reasons. Recently, however, the requirements of the load dispatcher (TSO,
DSO) for grid regulation can lead to an opening of this operating range. It seems clear that
this unfavorable operation reduces the component lifetime. The scientific challenge is to
permanently determine the remaining service life of hydraulic machines as a function of the
current machine operation. Digitalisation can help in this case to provide the needed data,
data handling and data visualisation. Critical points are the amount of data due to higher
sampling rates at the machine level and harmonization issues in terms of low data amount
at the system level side. Providing the remaining lifetime continually needs a permanent
correlation between operating hours, machine load and component damage.
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1.3.2. Real-Time Lifetime Prediction

All the influences described above change the boundary conditions for the safe op-
eration of a hydropower plant. With increasing digitalisation, there is a new possibility
to assess the continuous ageing process of a hydraulic component. Ultimately, methods
that are already common in other technical areas are finding their way into this area of
technology. It is just much more challenging to implement mass production methods on
prototypes. However, this is becoming necessary because hydropower requirements are
changing so rapidly that one can no longer continue without newer assessment methods
and sophisticated health management. Ultimately, the development is moving towards
real-time methods to determine the condition of a component at any moment, taking
into account as many factors as possible. Real-time methods are the only way to develop
forward-looking maintenance strategies and make the best possible use of the component’s
utilisation reserve.

This publication is the beginning of a series of different publications. It deals with the
essential prerequisites for developing a P.C. to determine the lifetime of hydraulic components.

State of the art, as a starting point and a necessary step to establish such a system, is
the content of this paper. Conventional numerical methods are listed and briefly described
to provide the background for further development. New computational methods and
applications are required to accomplish the task of a real-time assessment. The complexity
of the topic demands additional publications to present the whole scope. Thus, Part II of
the publication series deals with the numerical approaches and procedures, Part III with
the prototype measurements for validation purposes of the system, and Part IV with the
comparison of the results from Parts II and III and the uncertainty considerations of the
complete procedure.

This paper presents at Section 1 the basic idea, the procedure, the necessary tools and
upcoming research tasks. Section 2 deals with the state-of-the-art in lifetime prediction,
Section 3 with the new multilevel approach, Section 4 with the expected results of this
novel approach and Section 5 discusses future scientific investigations needed for the
subsequent publications.

2. Background and Theory
2.1. Stress–Time Correlation at the Runner

In the light of expected higher load changes for Francis and pump–turbines, investi-
gations started some time ago by using different methods. Some major results could be
briefly summarized on a time line over which [26] showed, already, the first investigations
on the dynamic behavior of Francis turbines in 2005 and published some dynamic stress
calculations in 2007 [27]. In 2012, the publication [28] showed a failure investigation of
a pump–turbine runner to understand the possible damage mechanism at this hydraulic
part. Questions of appropriate numerical assessment for the pressure field simulation
were answered by [29] in his PhD thesis. Since then, computational power is available to
simulate the entire machine set from spiral case to the draft tube and to extend the models
into the direction of coupled investigation–flow field and subsequent mechanical stress
simulation. To get an idea about the needed simulation tools, the impact on the runner
itself must be determined and was published by [30] based on prototype measurements.
Overlapping projects led to further ideas on the methods required for the calculation of
the mechanical impact on Francis runners and were published in [31,32] focusing on fluid–
structure interaction (FSI) as a basic element in this field of coupled numerical investigation.
One of the latest articles in this field was published by another group who investigated
model and prototype runners in the same manner. The background and results in [33] are
quite comparable to the findings mentioned by other research groups.

The present paper’s goal is less to provide yet another paper on dynamic load and
impact to Francis runners but rather a description of the measurement techniques and
hardware required for the raw data acquisition, simulation approaches and subsequent
post-processing, component analysis and lifetime prediction or health management.
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The complexity of this task becomes obvious when looking at the stress-versus-time
correlation (see Figure 6) of a Francis runner at all load steps. Stress was taken from a strain
gauge measurement mounted at the trailing edge close to the crown at the suction side of
the blade. The observation starts from the machine set start-up (STU), until synchronization,
followed by the speed–no-load (SNL) area. Next in line is the low-load (LL) area attached to
the part-load (PL) region heading up at the best-point (BP) area. Afterwards, the machine
set operates at full-load (FL) conditions.

Dynamical Stress
Static Stress

Time

STU

M
ec
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ni
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l S
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s

SNL LL PL BP FL

Figure 6. Stress-time correlation at the DMS position of a middle-head Francis runner (STU = Start-Up,
SNL = Speed-No-Load, LL = Low-Load, PL = Part-Load, BP = Best-Point, FL = Full-Load).

The transition between the single operational regions could be defined like following:
between STU and SNL, there is the unique point of grid synchronization, between SNL
and LL the first increase in power output of the machine, between LL and PL the approx-
imately 50% power limit of full machine load, between PL and BP the disappearance of
the dynamical stress and between BP and FL the increase in the reappearing dynamical
stress. As one can imagine, some of the limits are fixed and easy to find, whereas others
are gradual ones. Such an operational behavior is only to be attributed to the measure-
ment procedure, whereas in reality, some load points are only passed through, and others
are used regularly. The change in the past decade was to extend the operational region
into the direction of part-load or even low load operation where higher loads occur and
result in higher dynamical stresses. Especially for economic considerations, plant owners
would like to eliminate any machine set’s power restrictions to participate in the entire
power regulation market. New machine sets today can ensure such zero limitations, but
older power plants have never been designed for such an operation extension. If these
hydropower plants are used for power balancing and frequency control, their suitability
has to be checked on a case-by-case basis. Precise strain gauge measurements have been
used at the runner or neighboring parts to predict the hydraulic parts’ lifetime. As known,
strain gauge measurements are very useful but not suited for permanent installation. In
this context, helpful measurement techniques play a vital role. Correct correlations and
interpretations can only be performed if the underlying flow and fatigue phenomena are
understood correctly. The most feasible procedures and sensors are used.

2.2. Flow Phenomena

To visualize the above-mentioned flow patterns according to their position within the
turbine system, one can use Figure 7 by using the following nomenclature : À rotor–stator
interaction (RSI), Á vortex Shedding (VOS), Â inter-blade cavitation vortex (ICV), Ã draft-
tube-vortex (DTV), Ä stochastic-pressure pulsations, cavitation (SPP) and Å free-surface
oscillation (FSO).
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Figure 7. Possible phenomena at a Francis turbine. (À RSI, Á VOS, Â ICV, Ã DTV, Ä SPP, Å FSO),
Figure adapted from [34].

Looking at the position and possible phenomena, it becomes obvious that the inter-
action between stationary and rotating parts of a Francis turbine operated in off-design
regions is a complex matter. The flow entrance into the machine set system starts in station-
ary mode at the spiral case, followed by the stay and guide vanes before switching over to
the rotating domain of the runner and leaving towards the draft tube, which is, again, a
stationary domain. Although energy conversion by hydraulic turbines is a field that dates
back more than hundred years, the complexity of flow determination has risen due to this
new requirement. Therefore, both research options have been exploited to gain a better
understanding of the machine set behavior. On the one hand, measurements and visual-
ization techniques have been employed on model test rigs with the advantage of visual
accessibility for validation and, on the other hand, prototype measurements have been used
to investigate the impact on the structure without scaling effects. All insights gained are
necessary to get an overall impression about the mechanical effects and lifetime reduction.

As all these phenomena are not likely to coincide in time and position, performing
a correlation between the operating range according to Figure 6 and the flow pattern
generated in this region appears to make sense. Adding the class of deterministic or
stochastic load to the structure extends the classification significantly. This distinction is
vital for any subsequent signal interpretation in the frequency domain. Taking these three
assessment criteria into account, one can aggregate them, as shown in Table 2.

Table 2. Flow phenomena correlated to the operational region and resulting structure load (Phenom-
ena in brackets could appear but not necessarily).

Operational Region Deterministic Stochastic

start-up (STU) RSI, VOS SPP, VOS

speed–no-load (SNL) RSI, VOS SPP, VOS

low-load (LL) RSI, (VOS, DTV) ICV, SPP, VOS

part-load (PL) RSI, DTV (ICV, SPP), VOS

best point (BP) RSI

full-load (FL) RSI, DTV

condenser mode (CMO) FSO (DTV)

2.3. Frequencies of Flow Phenomena

Figure 7 and Table 2 show the relationship between flow phenomena, load step and
structural loading quite clearly. To perform a lifetime analysis of a component, it is necessary
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to know the frequency of the occurring dynamic stress amplitudes. A rough estimation of
the frequency ranges associated with the flow phenomena presented earlier shows Figure 8.
The diversity of the different flow phenomena can be recognized by the bandwidth of the
wavelength or the corresponding frequency spectra.

À Rotor-Stator-Interaction (RSI)

Â Inter-blade Cavitation Vortex (ICV)

Á Vortex shedding (VOS)

0.1Hz 1Hz 10Hz 100Hz 1kHz 10kHz 100kHz Frequency

Human hearing range

10km 1000m 100m 10m 1m 0.1m 0.01m Wave length

Ã Draft tube vortex (DTV)
Å Free-Surface-Oscillation (FSO)

Ä Stochastic-Pressure-Pulsations,
Cavitation (SPP)

Figure 8. Overview of the frequencies observed in a Francis turbine. Figure adapted from [35].

The change of flow phenomena at the crossover between the operating regions is not
a strict one but of a flowing nature. Moreover, it is also essential to know whether the unit
will be started or stopped due to possible hysteresis effects.

Explaining the theoretical background, possible flow phenomena and correlations
between each other, resulting in machine behavior, raises the question of measurement
techniques and methods of collecting sufficient data for a profound lifetime investigation
of the hydraulic parts involved. One possible approach is using strain gauges directly
applied at the inlet or trailing edge of the runner to measure the resulting strains from the
combination of deterministic and stochastic loads. The results obtained and transferred to
the frequency domain are shown in Figure 9.
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Figure 9. Frequency spectrum of strain gauge measurements over the entire field of operation of
two different Francis runners ( f0. . . Rotating frequency of the unit, PMax. . . Maximum Power Output of the
unit) [31].

Figure 9 shows the comparison of two frequency spectrum waterfall plots (normalized
frequency spectrum versus normalized power) for strain gauge applications at the same
runner location with different specific speeds nq = n ·

√
QRP

H3/4
RP

of the runner. The runner

on the left-hand side has a specific speed of nq = 25.4 min−1 and the one on the right
hand side has nq = 62.2 min−1. The most obvious difference is the frequency peak of the
normalized gate-passing frequency fGP,norm, which is fGP,norm = 20( fGP/ f0) for the left
runner and fGP,norm = 24( fGP/ f0) for the right runner. However, this signal’s amplitude
is much more pronounced on the left runner, while on the right, it is only slightly visible
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at the optimum load point [31]. This is probably because the rotor–stator interaction with
an nq of 25.4 min−1 is much stronger than that of a runner with nq = 62.2 min−1. Ref. [36]
came to the same findings. The vaneless space has a significant influence, here. However,
it has to be mentioned that the strain gauges, having been mounted on the impeller exit
side, and can, therefore, only weakly resolve the leading edge phenomenon, as it is very far
away from the trailing edge.

Concerning the draft tube vortex, the situation is different: this phenomenon appears
at both runners identically. At part load, around 30–50% of the rated point, the according
amplitudes are visible. Additionally, regions with several undefined frequencies and
amplitudes are for both runners in common. They belong to the stochastic phenomena at
low load ranges.

However, Figure 9 illustrates that an assessment of the lifetime of a hydraulic compo-
nent, which is affected by a wide range of flow phenomena, is only possible through strain
gauge measurements. Correlation with other sensors can eliminate the need for a strain
gauge measurement, though this requires an initial strain gauge measurement to calibrate
the transfer function.

2.4. Damage Regions

If we correlate now Table 2 with Figure 9, it becomes evident that the most damaging
flow phenomenon for these two impellers is the draft tube vortex. The significant stress
amplitudes at part load make the remaining phenomena look insignificant, at least in
terms of the dynamic stress signal. This draft tube vortex originates at the runner hub and
continues into the draft tube. There, it forms pressure fluctuations that in turn affect the
building. The turbine runner also sees part of this as a dynamic load.

In the speed–no-load and low-load ranges, cavitation is added as a damage mechanism.
This is, however, in the very high range in terms of frequency. Although this results in a
large number of weak pressure peaks, they, in turn, damage the runner in terms of stress.
Cavitation erosion is undoubtedly the more dominant factor.

Refs. [37,38] give a comprehensive review on transient and fatigue damage mecha-
nisms in Francis turbines. Within the scope of the two research projects GSG LowLoad and
MDREST, the same results were compiled and investigated by means of numerical as well
as measurement techniques. In the process, the damage-relevant flow phenomena were
investigated individually and then superimposed.

All operating ranges must be examined and included in the assessment to guarantee a
holistic approach in the lifetime assessment of a hydraulic component. Unique phenomena,
as well as their occurring frequency and amplitude, were previously presented. To date,
only the most significant damage mechanisms have been assessed individually according
to state-of-the-art procedures. Comprehensive assessment methods are lacking due to
their complexity and calculation time. Suppose a real-time lifetime analysis is desired
in the future to make this information available to the energy system. In that case, a
comprehensive determination of all simultaneously occurring damage mechanisms must
occur. Due to the different time scales between machine monitoring and the energy system,
a self-learning function accessible to both sides is needed at the interface.

The next chapter presents the primary methods available today as state-of-the-art.

3. State-of-the-Art in Lifetime Assessment

Based on the findings at the introduction, background and theory, one can determine
the state-of-the-art methods as shown in Figure 16 (green marked objects). The subsequent
sections give a brief overview about the needed steps for conventional dimensioning, as
suppliers also use it in a turbine’s design. Basically steady/unsteady CFD simulations,
determination of mechanical stresses in the runner by FE analysis and conventional damage
hypotheses are used at this stage. Transient simulations and subsequent stress computation,
respective to lifetime prediction , are not state-of-the-art at a standard design process in
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the industry (see Figure 16-red marked objects). Therefore, the following text passages
describe only methods needed for the standard design process.

3.1. Numerical Tools and Measurement Techniques

This chapter describes the data acquisition methods used, namely CFD, FE, and
measurement methods.

3.1.1. Steady/Unsteady CFD Simulations

Applying the findings of the introduction and the theory from Section 2 to different
load steps, it becomes evident that today’s standard methods will not suffice.

State-of-the-art in CFD is limited to steady (RANS) or unsteady (URANS) simulations.
Here, the boundary conditions are constant at each load step of the calculation but represent
realistic discharge and pressure levels. The corresponding turbulence model’s choice (two-
equation models, k-ω-SST or SAS) depends on the flow phenomena to be exposed. All
information regarding typical CFD belongings (for example: meshing, interfaces, Y+, wall
treatment, mesh independence study, turbulence model, boundary conditions,...) have
been published in [31].

As a result of the calculation, unsteady pressure fields are obtained, which can be:

(1) Time-averaged for the static FE analysis; however, in this case, only load steps with
constant speed (synchronisation speed) can be calculated (see Section 3.1.3).

(2) Fourier transformed and split-up in amplitude and phase parts, to be used for subse-
quent HRA investigations (see Section 3.3.2).

(3) used directly as a time signal for a transient FEM (see Section 4.2.2).

3.1.2. Fluid–Structure Interaction (FSI)

Fluid–structure interaction simulations are characterized by the coupling of compu-
tational fluid dynamics (CFD) and computational structure mechanics (CSM). Since the
meshes of those two Systems usually do not match (see also [39]), an interpolation method
is needed to exchange data (for example pressure or temperature). Two of the most common
methods, which are also implemented in ANSYS Mechanical, are further described.

1. Next-Neighbor Interpolation (Distance-Based Average)
This interpolation calculates the distance from one target-node to a specified number
of source-nodes (five nodes in Figure 10). Those Distances are used to calculate
weightings. Finally, the values of the source-nodes are proportionally added up for
the value of the target-node. If only one source-node is used, then the so-called
nearest-neighbor Interpolation is obtained.

2. Triangulation
The algorithm creates temporary elements with source-nodes in which the target-node
is projected. Those elements are of two types:

• Surface: the target-node is projected onto a plane of a triangle (three source-
points used)

• Volumetric: the target-node is projected into a tetrahedron (four source-points used)

For the creation of the elements, the nearest source-nodes are preferred. If the projected
target-point is located outside of the created element (Figure 11), the next nodes are
considered. The number of considered nodes is limited by a certain number (default
is 20). In case that every projection is located outside the elements, the distance-based
average method is used instead.
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Figure 10. Distance-based average.

Figure 11. Triangulation: surface option (left); surface option, projection point outside (middle);
volumetric option (right).

3.1.3. Static FEM Simulations

The time-averaged unsteady pressure field, pressure distribution at the runner side
chambers and additional initial forces are used to calculate the runner’s mean stresses σm.
These loads are essential for the general layout of the runner during the design process.
Mean stresses always have to be below the design rules, and since this has been a common
rule for decades, no further description is necessary. Nevertheless, for the subsequent
fatigue analysis, it is crucial to start at this point.

For base-load operation (see Figure 5), this method has been used for decades, now,
and has worked flawlessly. As there are no unsteady flow phenomena to observe, the used
way to determine the mechanical stresses and hot spots is valid. To speed up the design
process and minimize computational time, symmetry relations at the numerical model are
used and allowed. The obtained failure is acceptable and covered by risk supplement.

3.1.4. Modal Analysis (Natural Frequencies)

To obtain a dynamic analysis of a structure the knowledge of the natural frequencies
and mode shapes is of major importance. Therefore a modal analysis of the entire runner
has to be performed. It is common sense that the dynamic structure could be described by
the following equation:

[MS]{ü}+ [CS]{u̇}+ [KS]{u} = {FS} (1)
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where [MS] is the structural mass matrix, [CS] the structural damping matrix, [KS] the struc-
tural stiffness matrix, {FS} the applied load vector and {u} the nodal displacement vector.
As the runner operates in water, a coupled structure–water model has to be investigated.
For further mathematical description see [40]. The solution of the finite element modal anal-
ysis from the runner–water coupled model gives, as a result, the natural frequencies and
the modal shapes of the structure. For further literature of this topic see also [41,42]. Modes
from rotational symmetric parts can be categorized by their number of nodal-diameters
(ND) and nodal-circles (NC). In vibration theory nodes are points that are standing still
while the part is oscillating. Therefore nodal-diameters are radial running lines that are not
moving if the part oscillates with the appropriate frequency (see Figure 12 in the middle).
Analogous to that, nodal circles perform a circular, closed line, which stands still if the part
is oscillating (see Figure 12 right). A mode with nodal diameters shares its Eigenfrequency
with a nearly equal mode. Therefore they are called doublet modes. The only difference
between these two modes is a phase shift about the rotational axis.

Figure 12. Vibration modes of a membrane fixed at the rim (correlate [43]).

3.1.5. Harmonic Response Analysis

The HRA method was developed to determine the structural response to harmonic
excitation. A precise excitation frequency is decomposed into its amplitude plus phase
parts and applied to the structure as a boundary condition. Cyclic stresses of the compo-
nent are the response, which can be decomposed into static mean stress and a dynamic
fraction. The dynamic stress fraction then serves as the input parameter for the subsequent
fatigue calculation.

One of the most important harmonic excitation in this case is the RSI between GV and
RN. The application of the theory and procedure for an operational point of the investigated
runner within the PSP-LowLoad project has been published at [32]. Similar results were
obtained by [29,36,42].

The calculated stresses, according to this method, show a relatively good agreement
with the measured mechanical stresses in the PSP-LowLoad project. However, for this
validation process, the added mass effect, the pressure distribution at the runner-side
chamber of the turbine and the damping of the water had to be included in the numeri-
cal consideration.

3.1.6. Measurement Techniques

Two main factors are important in determining the remaining lifetime of a hydraulic
component. Firstly, the dynamic load at the respective load step and secondly, the operating
period at this load step. The actual damage can only be determined using strain gauges.
However, they are not suitable for permanent measurement because they cannot withstand
the flow in the long term. They are indispensable as a “calibration measurement”. The
operating period can be determined via machine diagnostic sensors and correlated with
the “calibration measurement” to support the service life determination metrologically.
Operation management values support the validation of the numerical model.

3.2. Damage Hypotheses

The actual lifetime calculation is made up of two multiplicands. To determine (1) the
damage factor, i.e., how harmful the operating point is due to the flow phenomena that
occur and (2) the operating time. Combinations can occur where the load point is very
destructive to the turbine, but since it is never used or only passed through, it is hardly
included in the turbine’s lifetime. This is mainly the case when the turbine is operated at



Energies 2022, 15, 1148 17 of 30

optimum, as the damaging load points are usually only passed through when the turbines
are run up to optimum. However, if the machine is used in grid-stabilisation mode, then
the partial load points are also used for a correspondingly long time (see Figure 5). As a
result, the damaging phenomena become more significant. In this case, the influence of
damage must be taken into account.

3.2.1. Palmgren–Miner on Fatigue Calculation before Crack

According to Palmgren [44] and Miner [45], the linear damage accumulation hypothe-
sis is the method with the greatest significance for determining component fatigue in the
case of complex vibration loading with variable amplitudes. For this purpose, the occurring
vibration cycles ni with amplitude σai are compared with the number of fracture vibrations
Ni from the material S-N-Curve. The required load spectrum is determined from the time
signal using a counting method such as the rainflow cycle count [46,47]. Figure 13 shows
the procedure as well as different modifications of the Miner original method [48,49].
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Figure 13. Palmgren–Miner Rule. Adapted from [48].

The vibration loading causes many partial damages ∆Di of the material, which accu-
mulate in the course of their action until a critical damage value is reached, where sequence
and interaction effects are not taken into account. The damage measure D is therefore
defined as the sum of the damage contributions ∆Di.

∆Di =
ni
Ni

(2)

D =
n

∑
i

∆Di = ∑
ni
Ni

(3)

In addition to these values, the mean stress or the stress ratio R also significantly
influences the damage. This relationship can be shown in the so-called Haigh diagram in
Figure 14 based on the mean stress sensitivity M. It is constructed from many S-N-curves
for different mean stresses and provides the tolerable load cycles Ni for each combination
of σa and σm. Detailed elaborations are given in [48,49] and similar literature.

R =
σm + σa

σm − σa
(4)
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Figure 14. Haigh diagram. Adapted from [48].

3.2.2. Fracture Mechanics of Crack Propagation

The topic of fracture mechanics for assessing the remaining lifetime of hydraulic
components should only be mentioned here for the sake of completeness. It is not the aim
of this publication series to research fracture mechanics and develop the method to this
extent. For the time being, only the elastic range of the material is considered in terms
of fatigue strength utilizing the S–N curve. The fracture mechanics approach must be
chosen if there is already an initial crack in the component, and one wants to determine
the remaining operating time. In this case, one has to deal with the stress intensity factor
∆K, the stress cycle range ∆σ, the crack length a and the stress intensity correction factor
for a given geometry Y(a). More and precise information relating to the fracture mechanic
background and application to turbines can be obtained from [50–58].

3.3. Lifetime Prediction
3.3.1. Stress Concentration Factor (k-Factor Concept) and Lifetime Assessment

The results of both the static mean stress evaluation and the HRA form the basis for
the subsequent lifetime analysis. To determine the lifetime of the component, it is necessary
to resolve the maximum stress intensity points (hotspots). Since the measurements only
provide strains at the locations where the strain gauges were applied, an extrapolation
must be made to those locations of the runner where the maximum stresses are expected.
This is done by utilizing so-called stress concentration factors k. The concept of stress
concentration factor assessment has been used in other areas of mechanical engineering for
decades. At the design point of a turbine, and thus the more or less static load, this method
yields relatively accurate values. However, the major problem arises when one tries to
apply this stress concentration factor method to the partial load steps. Here one can see that
the dynamic stresses have a more significant impact and, besides, the hotspot shifts over the
structure at the different operating steps. Although the HRA calculates the amplitude and
phase of the exciting frequency and introduces those as input parameters into the structure
analysis, this solution’s significance is only limited to the frequency under investigation.
However, since the RSI is decisive in the partial load range, as other flow phenomena
have a much more significant influence on the dynamic stresses, these influences must be
investigated separately. This results in the problem that the stress concentration factors k
for both the mean stress and the HRA are not meaningful. As a minimum, the calculation
of the stress concentration factors k under unsteady conditions should be investigated.

Ref. [59] has shown the influence of steady versus unsteady simulations on the stress
concentration factor k for the investigated runner. He used a mix of numerical simulations
validated with measurements to investigate the local stresses at the occurring hotspots.
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The entire stress concentration factor concept is only useful for calculating the maxi-
mum stresses under static load. Beyond that, local stresses should always be used. Lifetime
assessment for this procedure concentrates on fatigue strength which should be below the
nominal design stress.

3.3.2. HRA, Damage Factors and Lifetime Assessment

If we consider the lifetime calculation based on HRA, we need fatigue strength con-
cepts such as the linear damage accumulation hypothesis according to Palmgren–Miner.
This is the only way to integrate the cyclic loads of the exciting frequency into lifetime
determination. The dynamic stresses are used to obtain the damage factors according to
Section 3.2.1. Together with Figure 5, the lifetime for the component can then be calculated,
taking into account the precise, exciting frequency. However, the results are only valid
for this one, investigated frequency. If another flow phenomenon triggers significantly
higher dynamic loads but has a different frequency or even a frequency band, this can
only be investigated with separate calculations. Then one can decide which of the flow
phenomena has the more significant damage influence on the component. Suppose the
exciting frequencies of the negative flow phenomena are known. In that case, one can
determine the respective damage factor in each load step utilizing a separate HRA and
then combine them to total damage. It can be seen immediately that this procedure soon
becomes quite complex with several damage factors and frequencies.

3.4. Summary

For the state-of-the-art procedure, the following statements can be summarized:

(1) The state-of-the-art procedure is a fast method to determine the required data consid-
ering lower computer capacity.

(2) Although this state-of-the-art method is not sufficient, it cannot be omitted because the
mean stress σm and stress amplitude σa are needed for fatigue strength determinations.

(3) The HRA can close the gap between static and dynamic approach but only for one
precise frequency. One special flow phenomena with one particular frequency can
be observed. For this excitation frequency the remaining lifetime can be calculated.
HRA is in the middle between static investigation and totally unsteady/transient
simulations. The advantage is the lower simulation time and faster approach.

(4) Since this method can only represent load shifts with a synchronized machine, the
simulation of transient operating conditions (STU, CMO, LR) are not possible.

(5) In this case, the permanent machine diagnosis is seen more as a monitoring tool and
less suitable for determining the lifetime.

Table 3 summarizes in a comprehensive way the state-of-the-art procedures.

Table 3. Summary lifetime assessment.

Method Mean Stress RSI VOS ICV DTV SPP FSO

k-factor concept (Section 3.3.1) yes no no no no no no

HRA (Section 3.3.2) yes yes yes no yes no no

transient assessment (Section 4.2.3) yes yes yes yes yes yes yes

4. Multilevel Approach

Suppose the energy system is to be coupled with the operation of a hydropower
plant (see Figure 3). In that case, data exchange about the lifetime and thus the boundary
conditions on the part of the electrical grid must take place at the interface. The starting
point of a multi-level approach is the turbine’s hill chart. This characteristic diagram
reflects the hydraulic machine’s power output, performance, and possible operating limits.
Further information can be added by additional levels, thus giving the system expandability.
All other classes have to depend on the main hill chart. The recent publication shows a
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method for the fatigue assessment of a runner to create the first significant level of lifetime
prediction. Figure 15 shows a multi-level approach for this relationship.
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Figure 15. Multilevel approach.

Pairing the hill chart with the lifetime function by a new assessment tool should
consider specific boundary conditions:

(1) Due to the increased part-load operation of the machine set, a static stress analysis is
no longer permissible.

(2) In the method development, it is necessary to distinguish whether one is still in the
elastic stress range or already in the plastic one. Assuming that at least one crack
is already present, fracture mechanics methods have to be applied. Otherwise, the
fatigue analysis can suffice.

(3) All load steps must be included in consideration of the damage—the more refined the
gradation, the more accurate the method.

(4) Attention must be paid to the validation of the numerically calculated results. Numer-
ical methods contain many sources of error that must be handled with care.

(5) The lifetime calculation is based on real measurements, on the one hand, and certain
assumptions on the other hand. The result of such a lifetime assessment should
therefore be seen as an indicator and critically reviewed.

(6) When developing such an assessment tool, a mix of real prototype measurements and
numerical calculations will be the most cost-effective option. Most of the time, the
stress hotspot is unknown in the prototype measurement or a sensor application is
not possible there. Only the combination brings this option of component assessment.

The following illustration describes an evaluation tool that considers the mentioned
boundary conditions for the elastic range. If a crack has already appeared, it is not possible
to continue with this procedure.
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4.1. General Overview

To interpret the measured stresses (see Figure 6) at the runner correctly, information
of the derived frequency spectrum are beneficial. Figure 9 gives an impression about the
underlying excitations of the structure. From the literature [26,27,29,33,56] we know several
flow phenomena and their structural impact at different operation points. Table 2 should
give a brief classification of them correlated to the operational region and deterministic or
stochastic appearance. Different mathematical or numerical approaches are necessary to
correlate the appearing flow phenomena with their impact on runner fatigue. Up-to-date
calculation methods include mostly deterministic loads. A way to deal with the measured
data and calculate the deterministic parts of runner excitation is the measurement data
decomposition like shown for example at [30]. In case of super-positioned stochastic
excitations, a more sophisticated method has been developed. Figure 16 shows the different
pathways for different approaches. Green marks today’s state-of-the-art procedure, which
is also implemented in the industry, whereas red shows the way beyond the state-of-the-art
investigations performed by the authors.
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Figure 16. Assessment method.

4.2. Beyond the State-of-the-Art Investigations—The Transient Assessment Model

Based on the well-investigated introduction and the subsequent findings, one can
realize that a static analysis and the rotor–stator interaction’s consideration is too little to de-
termine the component’s lifetime. At the GSG-PSP LowLoad project (see acknowledgment)
the loads in the deep partial-load range were investigated, focusing on the calculation
method in the unsteady CFD domain and the transient FE. However, the machine is syn-
chronized, and there are only load changes within SNL and overload. The evaluation shows
that the transient machine operation produces even more severe damage to the runner.
These operation ranges were investigated in the MDREST project (see acknowledgment).
Here, the standard method was extended to include transient CFD to be able to consider
variable boundary conditions, such as the guide vane adjustment or increasing speed
during the machine’s start-up.
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4.2.1. Transient CFD Simulations

If transient operating conditions are to be included in the calculation, the state-of-the-
art simulation must be expanded. As one can recognize in Section 3.3.2, the methodology
of a singular assessment of flow phenomena is not sufficient. Since many of the flow
phenomena mentioned in Section 2.2 can be found over the entire application range, a tool
is needed that covers all exciting and natural frequencies. However, this means that the
CFD simulation must be extended in the direction of transient changes in the calculation
area. For example, during the machine’s start-up, the speed and guide vane adjustment are
kept variable. This, in turn, means that the calculation area must be re-meshed during the
simulation. The simulation must not be interrupted within the process. Since these transient
conditions require a change of the underlying mesh, it is advisable to think also about
the varying boundary conditions at the in- and outlet. Here, for example, the headwater
distribution system’s fluctuations result in additional varying BC of the calculation model.

Taking these changing boundary conditions into account, two options are possible: (a)
the averaging of these BC and application to the steady/unsteady simulation described
previously and (b) to use the time-resolved BC for the simulation of transient machine op-
eration. Option (a) leads directly to the already mentioned unsteady simulations resulting
in a time signal for the load shifting with the synchronized machine. Option (b) delivers
the time signal for the previously mentioned transient load steps. Both options (a) and
(b) together cover the entire machine behavior and result in the computational domain’s
pressure fields for each iteration. As we need several runner revolutions to resolve the
physics, the amount of generated data is enormous.

Nevertheless, using measurements at selected monitoring points to calibrate the
numerical solutions, the simulations can deliver a sophisticated pressure-time signal equiv-
alent to the measurements. This procedure’s advantage is then pressure-time information
at the entire calculation model and not only at selected points, serving as a base for any
subsequent structural analysis.

4.2.2. Transient FE Simulations

Based on the pressure fields obtained by transient CFD calculations, the runner’s
mechanical stresses are determined in this step. Pressure field by pressure field is uploaded
as an input file and solved in terms of the structure’s mechanical stresses. This proce-
dure transforms the pressure–time signal into a stress–time signal equivalent to that of
the measurement.

The further processing of this stress–time signal is conducted at two selected points.
Firstly, at the strain gauge positions of the measurement to enable validation of the stresses,
and secondly, at the hotspot of the corresponding load step. The respective stress-time
functions are time-averaged to determine the mean stress σm and the dynamic stress
amplitude σa. Afterwards, a rainflow cycle count algorithm (RFC) is applied to group
the dynamic amplitudes σa accordingly. A handicap is the relative short simulation time
in relation to the measurement time. This drawback was taken into account using the
statistical methods of [47]. For more information and application see [60].

4.2.3. Damage Factors and Lifetime Prediction

The last step in developing the method deals with lifetime prediction. As already
presented earlier for the state-of-the-art, this calculation is based on the damage accumu-
lation hypothesis presented in Section 3.2.1. The difference between the state-of-the-art
and the transient method is that not only one single, exciting frequency is investigated, but
all frequencies of the underlying flow phenomena are included. Therefore, the numerical
method is equivalent to the measurement. Accordingly, the evaluation of the calculated
results is done in the same way. The benefit is now the suspension in stress evaluation
to the position of the strain gauges. Lifetime prediction is evaluated at the hotspots of
the structure.
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An essential point of the procedure is the validation of the system. Here, corresponding
error estimation and propagation has to be carried out. This is discussed in Part IV of
the publication series and is based on evaluating the available validation and machine
diagnostic sensors. For more information regarding validation sensors, see Section 4.2.4;
regarding prototype measurement, see Section 3.1.6 and error estimation, see PART IV.

4.2.4. Validation Measurements

As part of the method development for predicting the lifetime of hydraulic components
in hydropower plants, prototype measurements were chosen. Plant operators made their
specific plants available for these measurements. This option was chosen to prevent scaling
effects from model size to actual size. The numerical calculations were also based on
prototype dimensions. The power plant selection was according to the specific speed of
the turbines installed. The planning of the measurements took several months, the local
execution 2–3 days. An exemplary list of the installed sensors in one of the measured power
plants, grouped according to operating variables, machine diagnostic sensors, temporary
strain gauge sensors and validation sensors, is presented in Part III of the publication series.

For this form of transient investigation, it is essential to perform an exact validation.
It makes sense to attach as many sensors as possible to the machine, namely sensors that
allow a time-resolved measurement of the parameter. Dynamic measurement variables at
selected monitor points are an immense advantage. These include flush-mounted pressure
sensors or appropriately positioned acceleration sensors. Especially the first ones allow a
comparison of the numerical flow calculation with absolute values. The validation of the
mechanical stresses proved helpful to measure pressure profiles, and leakage water flows
in the turbine’s runner-side chamber.

Another essential objective of validation sensors signifies measuring points at the inlet
and outlet of the machine. These include existing ring lines after the inlet’s shut-off valve
and a pressure measurement at the draft tube outlet. Hence, the boundary conditions of
the CFD can be adapted to natural conditions. An increasing number of validation sensors
installed as part of a prototype measurement results in more validation options for the
individual process steps. Part III of these publications shows a list of installed sensors
including validation ones.

5. Results

This chapter applies the presented procedure to a unique hydropower plant. Figure 17
shows the cross-section of the powerhouse (left) and the Francis turbine under investiga-
tion (right). More detailed information on the powerhouse (flow rate, head, machine set
description) can be found in Part II of the publication series. The condensed presentation
conveys the application of the actual test case.

Draft tube

Roller gates

TW level

Francis turbine

Penstock

Shut-Off valve

Synchronous generator

Assembling duct

Transmission linesPower house

Figure 17. Method application to Hydropower plant (left: Power plant cross-section; right: investi-
gated Francis runner with nq = 62.2 min−1).

The primary question is to determine the lifetime of a Francis turbine under different
load assumptions, as shown in Figure 5. The new method incorporates aspects of turbine
measurement and numerical calculation methods. This combination is chosen for two
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reasons: (1) the determination of the location with the maximum stresses at the runner
is not possible by a pure plant measurement, and (2) the numerical calculation of the
runner hotspot is much cheaper than expensive plant measurements. The optimal, most
cost-effective option is to use the plant measurements to validate the computed values.
Only where the limits of numerics were exceeded, a hybrid approach was proposed for
evaluation. Especially STU, CMO, LR are operating modes that require a too-complex
simulation and many resources. Some of these have already been carried out within the
research group.

Supposing that operating points in the low load region (LL) are more damaging than
those in the optimal operating area (BP), it can be expected that the lifetime of the runner
will be reduced. The locations with the maximum stresses (hotspots of the runner) are used
as a basis for further considerations. As derived in Part II, there are two hotspots for the
runner under analysis, specifically one on the pressure side (HS1) and one on the suction
side (HS2) of the runner blade. These computed values are calibrated with the measured
values of the nearest strain gauges and the damage factors (according to Equation (3)) per
operating point are determined. The corrected damage factors for HS1γ and HS2γ are
significantly higher than the values for HS1 and HS2. Almost all operating points are thus
classified as far more critical for both hotspots.

With the damage factors at the hotspots derived at Part II and the known load spectrum
from Figure 5, the lifetime of the Francis runner can be qualitatively estimated. For this
purpose, the damage factors determined are multiplied by the operating time for the
respective operating point. Table 4 summarizes the analyzed lifetime of the two load
scenarios, base load and grid control, as discussed in Section 1.2.3.

Table 4. Numerically estimated runner lifetime at different positions for scenarios base load and
grid control.

Position Base Load Grid Stabilization
[Years] [Years]

computed HS1 13,517 363
validated HS1γ 219 83
computed HS2 22,676 47
validated HS2γ 761 22

Considering the pure computed results at the hotspots HS1 and HS2, the critical one for
both scenarios is HS1. However, it should be mentioned that this results in unrealistic high
lifetime values, especially for the base load case. The validated simulation results utilizing
the strain gauge measurements show different values. In the case of base load operation,
HS1 would collapse first, but when the system changes to grid control, HS2 pivots to be the
point with the lowest expected lifetime. Furthermore, the enormous validation influence
becomes apparent. The correction results in a theoretical lifetime reduction for pure base
load operation by approximately 61.7 (=13517/219) and for pure grid control by a factor
of 16.5 (=363/22). Furthermore, the change of the operating regime from base load to
grid control means a reduction of the lifetime by a factor of 10 (=219/22). Comparing
these values with those of the measurement from PART III, it can be seen that they are of
approximately the same order of magnitude, at least for the case of grid stabilization.

Table 4 shows how important it is to validate the computed values properly. The
calibration of the simulation results using measured data gives a more natural dimension of
the runner’s lifetime. This calibration was carried out utilizing unidirectional strain gauges
in the range of one-dimensional stress gradients on the turbine runner. A more detailed
description of the method is given in Part IV.

However, since strain gauges do not withstand the flow permanently, they can only be
used for load-increasing tests. These tests then serve as a valid basis for the FE calculation.
In the course of these load-increasing tests, as shown in Figure 7 in Part II and at Figure 18
(right side below), other machine diagnostic parameters are also obtained. The motivation
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for this is the subsequent correlation of the individual measured variables with each other
in order to identify those sensor signals that exhibit synchronous behavior and can thus
also represent the flow conditions in the turbine.

Figure 18 shows a data correlation of selected sensor signals obtained during the
prototype measurement. Red boxes show a positive Pearson correlation, i.e., both signals
show the same tendency, while dark blue boxes show a reciprocal tendency of the signals.
The advantage is the possibility to determine which signals interpret the machine behavior
in the same way and could be replaced vice versa.

Figure 18. Data Cross Correlation for different machine diagnosis sensors.

By verifying the numerical simulations with prototype measurements, the potential
of the extended measurement techniques for maintenance strategies was recognized. The
acquired time series have a time axis resolution that allows a detailed analysis of the harmful
mechanisms. However, this high time-axis resolution of the data requires more memory
and a faster and more efficient data handling and analysis method. Conventional, human
interpretation of the data has to be replaced by integrated machine learning algorithms,
which allow a large amount of data to be processed automatically and linked to other
parameters beyond the plant itself. The upcoming digitization is rewriting the future of
hydropower. Optimized machine operations and better maintenance strategies will follow.

6. Conclusions/Outlook

The future goal is an in situ data acquisition tool as a basis for an internet of things
(IoT), also known as the industrial internet approach. Therefore, it is of great importance
to study the possible techniques and their outcome. A key role will be the amount of
data gained through the applied sensors and their fast processing in the direction of key
performance indicators (KPI) for a sophisticated maintenance strategy. These kinds of
prototype investigations are different from model measurements on a laboratory test rig
because there are no visual inspection possibilities during run-time. Machine access for
sensor application might be limited. Numerical simulations can help overcome some
limits of prototype measurements, and the most powerful method is a combination of both:
simulation and measurements. The paper series provides a list of technologies and a related
method of lifetime evaluation. As the entire topic would not fit into one paper, a splitting
and division of contents were made. The following structure and content were decided:

(1) Part I—model development and general overview
(2) Part II—application and numerical lifetime calculation
(3) Part III—measurements and lifetime investigation
(4) Part IV–failure investigation, uncertainties, validation of lifetime calculation
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Abbreviations
The following abbreviations are used in this manuscript:

a crack length (m)
BC boundary conditions
BP best point
[Cs] structural damping matrix (kg/s)
CFD computational fluid dynamics
CMO condenser mode
CSM computational structural mechanics
δ characteristic length (m)
δ′ characteristic length factor (m)
d trailing-edge thickness (m)
∆Di partial damages (-)
D damage factor (-)
DTV draft-tube vortex
DSO distribution system operator
ENTSO-E European Network of Transmission System Operators
{Fs} load vector (N)
FEM finite element
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f0 rotating frequency of the machine unit (Hz)
fDTV draft-tube vortex precession frequency (Hz)
fDTV,press draft-tube vortex pressure field frequency (Hz)
fGP gate-passing frequency (Hz)
fVOS vortex-shedding frequency (Hz)
FSI fluid–structure interaction
FSO free-surface oscillation
GV guide vane
H head at the turbine (m)
HRP head at the turbine at the rated point (m)
HPC high-performance computing
ICV interblade cavitation vortex
IoT internet of things
k stress concentration factors (-)
kd diametrical node number (-)
∆K stress intensity factor (-)
[Ks] structural stiffness matrix (N/m)
KPI key performance indicators
LL low-load
LR load rejection
md harmonic order of the number of runner blades Zr (-)
M mean stress sensitivity (min−7)
[Ms] structural mass matrix (kg)
ν kinematic viscosity (m2/s)
n turbine speed (min−1)
nd harmonic order of the number of guide vanes Zg (-)
nED speed factor according to IEC definition (-)
ni number of load cycles at amplitude σai (1)
Ni tolerable load cycles (1)
nq specific speed (min−1)
NC nodal circles
ND nodal diameters
O and M operation and maintenance
P power output (W)
PL part-load -
PMax Maximum Power Output of the Unit (W)
PRP, P0 Power Output at Rated Point (W)
Q Discharge at the turbine [m3/s]
QED Discharge factor according to IEC definition (-)
QRP Discharge at the turbine at the rated point (m3/s)
QnD Dimensionless discharge coefficient (-)
QnD,opt Dimensionless discharge coefficient at best efficiency point (-)
R Stress ratio (-)
RANS Reynolds averaged Navier-Stokes equations
RFC Rainflow Cylce Count
RN Runner
RSI Rotor-Stator-Interaction
σa Dynamic stress (amplitude stress) (N/mm2)
σa1 Vibration amplitude at category i (N/mm2)
σm Mean stress (N/mm2)
∆σ Stress cycle range (N/mm2)
SHD Shut-Down
SNL Speed-No-Load
SPP Stochastic-Pressure-Pulsations
St Strouhal number (-)
STU Start-Up
TSO Transmission System Operator
{u} Nodal displacement vector (m)
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URANS Unsteady RANS
V Velocity of approach (m/s)
Vx Velocity of approach in x-direction (m/s)
VOS Vortex Shedding
x Blade length (m)
Y(a) Stress intensity correction factor (-)
Zg Number of guide vanes (-)
Zr Number of runner blades (-)
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