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Abstract: Several studies have reported the importance of optimally operating the absorption column
in a post-combustion CO2 capture (PCC) plant. It has been demonstrated in our previous work how
economic model predictive control (EMPC) has a great potential to improve the operation of the PCC
plant. However, the use of a general economic objective such as maximizing the absorption efficiency
of the column can cause EMPC to drive the state of the system close to the constraints. This may lead
to solvent overcirculation and flooding, which are undesirable. In this work, we present an EMPC
with zone tracking algorithm as an effective means to address this problem. The proposed control
algorithm incorporates a zone tracking objective and an economic objective to form a multi-objective
optimal control problem. To ensure that the zone tracking objective is achieved in the presence of
model uncertainties and time-varying flue gas flow rate, we propose a method to modify the original
target zone with a control invariant set. The zone modification method combines both ellipsoidal
control invariant set techniques and a back-off strategy. The use of ellipsoidal control invariant sets
ensure that the method is applicable to large scale systems such as the absorption column. We present
several simulation case studies that demonstrate the effectiveness and applicability of the proposed
control algorithm to the absorption column in a post-combustion CO2 capture plant.

Keywords: predictive control; robustness; zone tracking; post-combustion carbon capture; nonlinear
systems

1. Introduction

Climate change is a pressing global issue that needs immediate attention. A major
contributing factor to climate change is the presence of large quantities of anthropogenic
greenhouse gases, especially carbon dioxide (CO2), in the atmosphere. A major contributor
to the increase in anthropogenic CO2 in the atmosphere is due to the combustion of fossil
fuels such as coal for electricity generation [1]. Several studies have shown that switching to
low carbon energy sources such as renewable energy sources can help address the climate
change issues [2]; however, the pursuit for relatively cheaper and reliable energy sources in
response to the ever increasing demand for energy is making it difficult to switch to these
lower carbon energy sources. In 2020, fossil fuels contributed to about 61% of the global
electricity generation sources with coal taking up roughly 35% of the share [3]. Clearly, it
is impractical to completely eliminate fossil fuels from the energy generation sources in
one go; therefore, effective means of reducing the emissions from fossil fuel power plants
is the best approach to reduce CO2 emissions while allowing the low carbon electricity
generation technologies to reach maturity. Several approaches have been proposed to
reduce CO2 emissions from large point sources such as power plants. These approaches
include pre-combustion [4], oxy-fuel combustion [5] and post-combustion [6]; however,
amine-based post-combustion CO2 capture (PCC) is the most mature and viable technology
available today.

In amine-based PCC, the flue gas produced after combusting the fossil fuel is sent to a
gas processing unit (PCC plant) where the amount of CO2 in the gas is reduced using an
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amine solvent before being released into the atmosphere. This makes it easier to retrofit
it into existing power plants. However, amine-based PCC is not without downsides. It
has been shown that attaching a PCC plant to a power plant reduces the efficiency of the
power plant by about 10% for state-of-the-art monoethanolamine (MEA) solvent [7]. This
is because of the high energy requirements to regenerate the amine in the desorption unit.
Sakwattanapong and coworkers [8] demonstrated that maintaining the CO2 concentration
in the amine solvent within an optimal range during absorption is essential for efficient
operation of the regeneration unit. It is therefore critical that advanced model-based process
control techniques such as model predictive control (MPC) are employed in the control of
the PCC plant.

MPC is an advanced model-based optimal control method that has gained popularity
within the chemical process industry. This is because of its ability to handle complex
multivariable systems and constraints. Within the context of process control of PCC
plants, several control schemes have been developed using MPC. Panahi and Skogestad [9]
investigated different control schemes using a linear MPC. He et al. [10] also used a
combined scheduling and MPC scheme to achieve the desired carbon dioxide absorption
efficiency in the absorption column as well as the CO2 purity in the gas outlet of the
desorption unit. Bankole and coworkers [11] investigated the flexibility of operating a PCC
plant attached to a load following power plant using MPC. To address the presence of
uncertainties in the control system, Patron and Ricardez-Sandoval implemented a robust
MPC algorithm for the absorption column [12] as well as an integrated control and state
estimation scheme for the PCC plant [13]. More recently, a variant of model predictive
control (MPC) with a general objective known as economic MPC (EMPC) has received
significant attention [14,15]. The objective function in an EMPC scheme generally reflects
some economic performance criterion such as profit maximization or waste minimization.
This is in contrast to the standard MPC where the objective is a positive definite quadratic
function. The integration of process economics directly in the control layer makes EMPC of
interest in many areas especially in the process industry. Decardi-Nelson, Liu and Liu [16]
demonstrated the superiority of EMPC scheme over the standard MPC scheme in a full
cycle PCC plant.

While EMPC is a promising control algorithm for the PCC process, the general eco-
nomic objective such as maximizing the absorption efficiency of the absorption column may
drive the system states to the constraints. This may lead to column flooding and/or solvent
overcirculation in the PCC plant. Column flooding can compromise the safety of both the
absorption column and the personnel that manage it while solvent overcirculation may
lead to high energy requirements for regeneration of the solvent in the desorption column.
In another direction, it is not well understood how the presence of uncertainties affect the
economic performance of EMPC in general. This is because of the integration of process
economics in the control layer. Uncertainties are unavoidable in the real world. They
are caused by the use of imperfect process models in the model-based control algorithms
and/or unmeasured disturbances. A typical disturbance in a load following PCC plant
attached to a power plant is large fluctuations in the flue gas flow rate [17]. The presence of
uncertainty in a control system can result in significant performance degradation and/or
loss of stability. This can ultimately compromise safety during operation. A common
technique to address uncertainties in a control system is through robust MPC; however,
as observed in a recent study by Patron and Ricardez-Sandoval [12], the online computa-
tional requirements of robust MPC techniques such as the multi-scenario approach can be
demanding as the number of uncertainties and scenarios increase. Moreover, for EMPC, it
was pointed out in the study by Bayer and coworkers [18] that simply transferring robust
MPC techniques to EMPC could result in poor performance. This is because economic
optimization and robustness are two objectives and often may conflict with each other. Ro-
bust MPC techniques have been designed to reject all disturbances to achieve their desired
goal, which may not be the case in EMPC as some disturbances can lead to better economic
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performance. It is therefore important to develop robust EMPC algorithms, which does not
involve complex online computations.

In this work, we present an economic MPC with zone tracking algorithm for the
control of the absorption column of the PCC process under additive state uncertainties
and time-varying flue gas flow rate. The proposed control algorithm only makes use
of the nominal process model without explicitly accounting for the uncertainties in the
process. This makes the online computations less demanding compared to the scenario-
based approach. The integration of zone tracking in EMPC allows for concurrent handling
of two objectives while enhancing the degree of robustness of the controller [19]. Zone
MPC has been reported in several process control application areas such as diabetes
management [20], control of building heating system [21], control of irrigation systems [22]
and control of coal-fired boiler–turbine generating systems [23]. This work builds on our
previous EMPC with zone tracking formulation—with [24] and without [25] uncertainty
consideration. In line with the work by Decardi-Nelson and Liu [24], we propose to track a
control invariant subset of the target zone contrary to tracking the target zone; however,
because of the large number of states in the process model of the absorption column, the
zone modification algorithm developed by Decardi-Nelson and Liu [24] is computationally
intractable. We therefore propose a target zone modification algorithm using ellipsoidal
control invariant set computation techniques and a back-off strategy. This has a potential to
extend the applicability of the robust EMPC with zone tracking algorithm to much wider
range of systems.

The remainder of this paper is organized as follows. Section 2 presents the prelimi-
naries, which includes a description of the process model of the absorption column and
the control problem to be solved. Section 3 describes the proposed robust economic MPC
framework and the computation of the modified zone. In Section 4, extensive simulations
are carried to demonstrate the efficacy of the proposed control algorithm. We summarize
the key findings in this paper and discuss possible future directions in Section 5.

2. Preliminaries
2.1. Notation

Throughout this work, the symbol ‖ · ‖n denotes the n-norm of a scalar or a vector, the
operator ‘\’ means set subtraction such that A\C = {x : x ∈ A, x /∈ C}, R+ denotes the set
of all real numbers greater than or equal to zero, the set B represents the unit ball.

2.2. Process Description

An absorption column in an amine-based post-combustion CO2 capture process is a
multistage gas processing unit in which an amine solvent selectively removes CO2 from the
flue gas. The amine solvent with low amount of CO2 (lean solvent) is introduced at the top
of the column while the flue gas enters the column from the bottom in a counter-current
manner as shown in Figure 1.

The absorption column is usually filled with packing materials to increase the contact
area for mass transfer between the liquid and the gas phases. Following the transfer of
CO2 from the gas phase to the liquid phase, the liquid with increased amount of CO2 (rich
solvent) exits the column at the bottom while the treated gas exits the column at the top.

Owing to the reactive nature of the mass transfer process occurring in the absorption
column, the rate-based approach is used to model the process. The rate-based model has
been found to be superior to the equilibrium-based approach to modeling reactive mass
transfer processes [26]. The following assumptions were used in modeling the absorp-
tion column:

• The liquid and the gas phases are well mixed with no spatial variations in properties.
• The reactions are described using enhancement factor and occur only in the liq-

uid phase.
• The heat and mass transfer occurring at the gas–liquid interface is described by the

two film theory.
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• The pressure drop along the axial direction of the column is linear.
• The velocities of the liquid and gas phases in the column remain constant.
• The absorption column is well insulated.

Flue gas

Rich solvent

Lean solvent

Treated gas

Figure 1. A schematic diagram of a packed absorption column.

The simultaneous heat and mass transfer process occurring in the column is described
by the partial differential equations in Equations (1)–(4).

∂cLi
∂t

=
4FL

πD2
c

∂cLi
∂z

+ NiaI (1)

∂cGi
∂t

= − 4FG

πD2
c

∂cGi
∂z
− NiaI (2)

∂TL
∂t

=
4FL

πD2
c

∂TL
∂z

+
QLaI

∑n
i=1 cLicpi

(3)

∂TG
∂t

= − 4FG
πD2

c

∂TG
∂z

+
QGaI

∑n
i=1 cGicpi

(4)

In Equations (1)–(4), ci represents the phase concentration of component i in kmol/m3,
F is the phase volumetric flow rate in m3/s, Dc is the diameter of the column in m, Ni is
the mass transfer rate of component i in kmol/m2s, z is the height of the column in m, T
denotes the phase temperature in K, Q denotes the heat transfer rate in kJ/m2s, cp is the
heat capacity in kJ/kmol, aI is the interfacial area in m2/m3. Moreover, subscripts L and G
represent the liquid and gas phase, respectively, and subscript i denotes the components in
the system namely CO2, N2, H2O and MEA.

In the mathematical model above, the enhancement factor approach together with the
Chilton–Colburn analogy [27] is used to determine the influence of the reactions on the
rate of heat and mass transfer of CO2 from the gas phase to the liquid phase. Details of the
physical and chemical properties of the components in the system can be found in the work
by Decardi-Nelson et al. [16].
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2.3. Model Discretization and State Space Representation

To avoid having to formulate and solve infinite dimensional optimal control problems
online, the partial differential equations are converted to ordinary differential equations
using the method of lines (MOL). The method of lines involves spatially discretizing the
partial derivatives with the length of the column to obtain only differential equations with
respect to time. In this work, the derivatives with respect to the length of the column
were discretized into five stages to obtain 50 ordinary differential equations as shown in
Equations (5)–(8).

dcj
Li

dt
=

4FL

πD2
c

cj
Li − cj−1

Li
zj − zj−1 + N j

i aI,j (5)

dcj
Gi

dt
= − 4FG

πD2
c

cj
Gi − cj−1

Gi
zj − zj−1 − N j

i aI,j (6)

dT j
L

dt
=

4FL

πD2
c

T j
L − T j−1

L
zj − zj−1 +

Qj
LaI,j

∑n
i=1 cj

Lic
j
pi

(7)

dT j
G

dt
= − 4FG

πD2
c

T j
G − T j−1

G
zj − zj−1 +

Qj
GaI,j

∑n
i=1 cj

Gic
j
pi

(8)

where j = 1, 2, · · · , 5 denotes the index of the respective variable at height zj of the column.
The variables at indices j = 0 and j = 5 represent the inlet and outlet boundary conditions,
respectively.

Considering the presence of uncertainties in the system, the dynamics of the CO2
absorption column can be written in a nonlinear state space model of the form:

ẋ(t) = f (x(t), u(t)) + w(t) (9)

where ẋ ∈ R50 is the time derivative of the state, x ∈ R50 is the state of the system at
time t ∈ R+, u = FL ∈ R is the manipulated input and w ∈ R50 represents the additive
uncertainties that may be present in the system. The definition of the state variable x is
shown in Table 1.

Table 1. Definition of the state variables at the jth discrete point (j = 1, 2, · · · , 5). N2 = 1, CO2 = 2,
MEA = 3, H2O = 4.

State Variable Definition

x1–5 cj
L,1

x6–10 cj
L,2

x11–15 cj
L,3

x16–20 cj
L,4

x21–25 T j
L

x26–30 cj
G,1

x31–35 cj
G,2

x36–40 cj
G,3

x41–45 cj
G,4

x46–50 T j
G

The controlled output y of the system is the CO2 absorption efficiency and is given by

y(t) = h(x(t)) =
Molar flow rate of CO2 in−Molar flow rate of CO2 out

Molar flow rate of CO2 in
× 100% (10)
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For practical reasons, we assume that the system state, input, output and uncertainty
are restricted to be in the compact sets X, U, Y and W, respectively.

2.4. Control Problem Formulation

In a post combustion carbon dioxide capture plant, the primary objective of the
absorption column is to reduce the amount of carbon dioxide in the flue gas emanating
from the power plant. This can be achieved by controlling the efficiency y of the absorption
column. The absorption efficiency can be controlled by manipulating the lean solvent
flow rate FL and the concentration of CO2 in the lean solvent entering the top of the
column. In this work, the concentration of CO2 in the lean solvent is kept constant since the
desorption column is not considered; therefore, only the lean solvent flow rate is used as
the manipulated variable. Under these conditions, a very high CO2 absorption efficiency,
which translates to high removal of CO2 from the inlet flue gas may be achieved by using a
high lean solvent flow rate; however, using a high amount of solvent to reduce the amount
of CO2 in the flue gas can have negative effects on the operation of the absorption column
and the PCC plant as a whole. First, a high amount of solvent may cause flooding in the
column. Column flooding is usually followed by a dramatic increase in column pressure
and prevent the flue gas from flowing out of the column. This may result in inefficient
operation of the column and/or equipment damage. Second, a high solvent flow rate may
often than not lead to overcirculation of the solvent in the PCC plant. This usually results
in the solvent leaving the absorption column (rich solvent) having a low CO2 concentration.
This makes it difficult to operate the desorption column efficiently; therefore, the desire is
usually to keep the absorption efficiency y within a target zone Yt which ensures a balance
between high absorption efficiency, column flooding and overcirculation.

The primary control objective of this work is therefore to design a feedback controller
that drives the system state to a predetermined target zone Yt if the initial absorption
efficiency of the system is outside the target zone and subsequently maintain the state of
the system within the target zone Yt thereafter. A secondary objective is to minimize the
average economic cost `e over an infinite horizon T which is given by

lim sup
T→∞

1
T

T−1

∑
t=0

`e(y(t)) (11)

where
`e(y) = −y (12)

denotes the economic objective to be minimized. To achieve the above control objectives,
we resort to EMPC with zone tracking [24,25] and implicitly take into account the presence
of process disturbance w in the design of the EMPC.

3. Economic Model Predictive Control with Zone Tracking

In this section, we present the economic model predictive control with zone tracking
(ZEMPC) algorithm. Specifically, two variations of the ZEMPC algorithm are presented.
The first control algorithm denoted as nominal ZEMPC (NZEMPC) is the economic model
predictive control with target zone tracking. In this formulation, the disturbances are
not considered in the design. This serves as a basis to compare the second variation
of ZEMPC. In the second control algorithm denoted as robust ZEMPC (RZEMPC), the
original target zone Yt is modified to implicitly consider the effects of the uncertainty in
the process system.

We begin this section by presenting the NZEMPC formulation. Thereafter, an algo-
rithm to modify the original target zone Yt is presented. Finally, we present the RZEMPC
formulation.
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3.1. Economic MPC with Target Zone Tracking

Given information about the current state x(tk) at sampling time tk, the ZEMPC uses
the nominal model of System (9):

˙̃x(t) = f (x̃(t), v(t)) (13)

with the initial condition x̃(tk) = x(tk) to find a control sequence v = {v(tk), . . . , v(tk +
N∆)} and the associated state sequence x̃ = {x̃(tk), . . . , x̃(tk + ∆N)} over the entire predic-
tion horizon N at a sampling time ∆ to minimize the cost functional:

VN(x(tk), v) =
∫ tk+N∆

tk

`(y(t))dt (14)

In Equations (13) and (14), x̃(t) ∈ X ⊆ R50 and v(t) ∈ U ⊆ R are the nominal state
vector and computed control input vector, respectively. The stage cost `(·) is defined
as follows:

`(y) = `e(y) + `z(y) (15)

where `e(·) is the economic stage cost as introduced in (12) and `z(·) is a zone tracking
penalty term, which is defined as follows:

`z(y) = min
yz

c1(‖y− yz‖2
2) (16)

s.t. yz ∈ Yt (17)

with c1 ∈ R+ being a non-negative weight on the zone tracking term and yz is a slack
variable. The zone tracking stage cost reflects the distance of the system states from the
target zone and is positive definite. The weights c1 must be appropriately selected such
that the zone tracking cost is given a higher priority than the economic objective.

At each sampling time, the following dynamic optimization problem PN(x(tk))
is solved:

min
v,yz

∫ tk+N∆

tk

−y(t) + c1(‖y(t)− yz(t)‖2
2)dt (18)

s.t. ˙̃x(t) = f (x̃(t), v(t)) (19)

y(t) = h(x̃(t)) (20)

x̃(tk) = x(tk) (21)

x̃(t) ∈ X (22)

v(t) ∈ U (23)

y(t) ∈ Y (24)

yz(t) ∈ Yt (25)

In the optimization problem described by Equations (18)–(25), Equation (19) is the
model constraint, Equation (20) represents the output relationship, Equation (21) is the
initial state constraint, Equations (22)–(24) are the constraints on the state, input and output,
respectively, and Equation (25) is the zone constraint. As a result of the cost function
employed, the optimization problem described by Equations (18)–(25) is a multi-objective
optimization problem, which seeks to minimize the deviation of the absorption efficiency
from the target zone Yt while at the same time maximizing the the efficiency within the
target zone.

The solution of PN(x(tk)) denoted v∗ gives an optimal value of the cost V0
N(x(tk))

and at the same time u(tk) = v∗(tk) is applied to the actual system (9).
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3.2. Modification of the Target Zone

While the NZEMPC described in the earlier section ensures that the zone tracking
objective is achieved for the absorption column without any uncertainty, the zone tracking
objective may not be achieved in general for systems with uncertainty. This may be due
to two reasons. First, the target zone may not necessarily be forward invariant for the
closed-loop system. This means that it is possible for the uncertainty to drive the system’s
states to a region outside the forward invariant set but within the target zone. Once the
state is outside the forward invariant set, the target zone cannot be tracked anymore and
will ultimately result in system instability. Second, the NZEMPC algorithm may cause the
system output to operate very close to the boundary of the target zone due to the secondary
economic objective employed; that is maximization of the absorption efficiency. While this
may not be an issue in the nominal case, the presence of the uncertainty may drive the
system states outside the target zone making it difficult to track the zone.

Therefore, to achieve the zone tracking objective in the presence of uncertainty, we
modify the target zone used in the formulation of the EMPC with zone tracking algorithm.
It is worth mentioning that modification of the target zone is not trivial. For example, merely
tracking the center of the target zone may not be the best choice. This is demonstrated in the
simulation section. The idea is to find a robust control invariant set within the target zone,
which ensures that the target zone can still be tracked in the presence of the uncertainty.
A robust control invariant set R is a set of initial states in the target zone for which there
exists a control action such that the trajectory of the system stays in R for all future times
irrespective of the disturbances. Ideally, the largest robust control invariant set within
the target zone is desired [24]; however, finding the largest robust control invariant sets
for large scale systems is very difficult and the method proposed by Decardi-Nelson and
coworkers [24] cannot be applied to the absorption column due to the number of states
involved. We therefore resort to using simpler ellipsoidal control invariant set techniques.
Since the ellipsoidal control invariant set does not consider the presence of uncertainty
in the control system, we use a back-off approach not only to account for the presence of
disturbances but to also avoid operating close to the boundary of the target zone Yt.

Before we present the zone modification algorithm, let us first define the steady-state
(SS) optimization problem with respect to the target zone as

(`∗e , xs, us) = arg min `e(y) (26)

s.t. 0 = f (x, u) (27)

y = h(x) (28)

x ∈ X (29)

u ∈ U (30)

y ∈ Yt (31)

In the optimization problem described by Equations (26)–(31), Equation (27) is the
system model defined in System (9) without any uncertainty, and Equations (28)–(31) are
the same as defined previously. The optimization problem described by Equations (26)–(31)
returns the optimal economic cost `∗e within the target zone Yt as well as the steady-state
state xs and input us. The `∗e serves as a lower bound on the economic cost that can be
achieved in the target zone Yt. In the proposed zone modification algorithm, this value is
relaxed by multiplying it with the relaxation rate r to obtain the relaxed optimal economic
cost `r

e. Here, relaxation of the optimal steady-state economic cost within the target zone
means increasing the value of the economic cost above `∗e such that

`∗e < `r
e (32)

Relaxing the best economic cost within the target zone sacrifices some economic
performance to implicitly account for the effects of the uncertainty in the control system. To



Energies 2022, 15, 1140 9 of 19

achieve the relaxation, the following cost-relaxed steady-state (CRSS) optimization problem
is solved

(xs, us) = arg min 0 (33)

s.t. 0 = f (x, u) (34)

x ∈ X (35)

u ∈ U (36)

y ∈ Yt (37)

`e(y) = `r
e (38)

In the optimization problem described by Equations (33)–(38), Equation (38) is the
economic cost relaxation constraint, which needs to be achieved. It can be seen that the
optimization problem described by Equations (33)–(38) is a feasibility problem since it
does not seek to minimize any cost function. The CRSS problem returns the steady-state
operating point (xs,us) at the relaxed economic cost function value. This is used in the
subsequent parts of the zone modification algorithm to obtain the ellipsoidal control
invariant set.

To compute the ellipsoidal control invariant set, the nonlinear system is first linearized
about the steady-state operating point (xs,us) obtained from the optimization problem
described by Equations (33)–(38) to obtain a linear system of differential equations of the
form

˙̄x(t) = Ax̄(t) + Bū(t) (39)

where A = ∂ f (x,u)
∂x |xs ,us and B = ∂ f (x,u)

∂u |xs ,us are matrices of appropriate dimensions, and x̄
and ū denote the system states and input in deviation form, i.e., x̄ = x− xs and ū = u− us.
Following the linearization, a semi-definite program (SDP) is formulated according to the
work by Polyak and Shcherbakov [28]. The SDP to be solved is presented in Optimization
problem described by Equations (40)–(42).

max
P,Y

trace(P) (40)

s.t. AP + PAT + BY + YT BT ≺ 0 (41)[
P YT

Y ū2
max I

]
� 0 (42)

where P and Y are matrices of appropriate dimension and ūmax is the bound on the
input, i.e., ‖ū‖ ≤ ūmax. By maximizing the trace of P, the maximal ellipsoidal control
invariant set under the constrained input can be obtained from the optimal solution of
Equations (40)–(42) as

Xm = {x̄ ∈ R50 : x̄T P−1 x̄ ≤ 1}, P � 0 (43)

It is worth mentioning that computing an ellipsoidal control invariant set for the
case where System (39) is stable (i.e., real part of the eigen values of A are negative) is
trivial. This is because the stability region spans the entire state space and the input is not
necessary for stabilization. Thus, Optimization problem (40)–(42) will not return a solution
since the maximal ellipsoidal control invariant set is unbounded. In such a situation,
the Lyapunov equation AP + PAT + Q = 0 is solved with Q being an identity matrix of
appropriate dimension. In this case the ellipsoidal control invariant set is obtained as
Xm = {x̄ ∈ R50 : x̄T Px̄ ≤ α} where α ≥ 0 is a scalar parameter which determines the size
of the invariant set.

Remark 1. A linear system obtained by linearizing a nonlinear system might only be accurate
within a very small region of the linearization point (origin). To avoid obtaining an ellipsoidal
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control invariant set that spans areas in the state space for which the linear model is inaccurate, the
bound on the input umax should be reduced. The magnitude of the reduction ultimately depends on
the properties of the system.

Once Xm is obtained, it is projected into the output space using the output equation to
obtain the modified target zone Ym such that

Ym = h(Xm) (44)

Since the output equation in Equation (10) depends on only the concentration of CO2
in the gas exiting the top of the absorption column (inlet CO2 concentration in the gas
phase is fixed), the minimum and the maximum state in Xm can be used to obtain Ym. For
more general cases, a finite sample of states in Xm may be required. The modified output
zone Ym is then enlarged by an ε-ball. This is used as a stopping criterion by checking if
the enlarged modified output target zone (Ym + εB) does not intersect with any part of the
output space outside the output target zone, that is

Ym + εB∩Yt\Y = ∅ (45)

The procedure is run in a while loop until the stopping criterion in Equation (45) is met.
The entire zone modification algorithm is summarized in Algorithm 1. A visual depiction
of the algorithm is shown in Figure 2.

Algorithm 1: Modification of target zone.
Input: f , h, `e, X, U, Yt, umax, ε, r, Nmax, `∗e
Output: Xm, Ym

1 Y0 ← Yt
2 X0 ← ∅
3 `r

e ← `∗e
4 i← 1
5 while Yi−1 + εB∩Yt\Y do
6 `r

e ← (1 + r)`r
e

7 Solve the optimization problem described by Equations (33)–(38) to obtain
(xs, us)

8 Linearize the System (9) at (xs, us) to obtain A and B
9 if A is stable then

10 Solve the Lyapunov equation to obtain P
11 else
12 Solve the SDP described by Equations (40)–(42) to obtain P

13 Find the ellipsoidal control invariant set Xi using P
14 Yi ← h(Xi)
15 if i = Nmax then
16 Xi ← ∅
17 Yi ← ∅
18 break

19 i← i + 1

20 Xm ← Xi
21 Ym ← Yi
22 return Xm, Ym

The algorithm takes as inputs the nominal system model f , the output equation h, the
state X and input U constraints, the optimal economic cost within the target zone `∗e as well
as the parameters ε, the cost relaxation rate r and the maximum number of iterations Nmax.
Nmax is introduced in the algorithm to ensure that the while loop does not run indefinitely
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if a poor choice of the parameters are selected. The algorithm terminates with an empty set
if the parameters are poorly chosen.

Figure 2. An illustration of three iterations of the zone modification algorithm in a fictitious two
dimensional space. The rectangle represents the original target zone, the circle with solid line
represent the ellipsoidal invariant set and the circle with dashed lines represent the εB enlargement
of the ellipsoidal invariant set. The algorithm terminates in the third step when the εB-enlarged
ellipsoidal invariant set does not intersect with the set outside the target zone.

While the modified output zone Ym is in a form that can be used in the NZEMPC
optimization problem described by Equations (18)–(25), this may not the best approach.
This is because there is no guarantee that the set Ym obtained from the projection of the
ellipsoidal control invariant set Xm is also control invariant; therefore, the ellipsoidal control
invariant set Xm needs to be used the MPC algorithm; however, replacing the zone slack
constraint (25) will lead to having the number of slack variables equal to the dimension
of the state of the system. Since in most control systems the dimension of the output is
smaller than or equal to the dimension of the system states, the increased number of slack
variables yz will eventually increase the size of the optimization problem to be solved
online. Thus to mitigate this problem, the zone constraint is modified to Equation (53) and
an additional positivity constraint (54) is added. This results in only one slack variable with
is independent of the input or the output dimension. Full details of the robust economic
model predictive control with zone tracking (RZEMPC) algorithm is presented in the
optimization problem described by Equations (46)–(54).

min
v,yz

∫ tk+N∆

tk

−y(t) + c1(‖yz(t)‖2
2)dt (46)

s.t. ˙̃x(t) = f (x̃(t), v(t)) (47)

y(t) = h(x̃(t)) (48)

x̃(tk) = x(tk) (49)

x̃(t) ∈ X (50)

v(t) ∈ U (51)

y(t) ∈ Y (52)

(x̃(t)− xs)
T P(x̃(t)− xs) ≤ 1 + yz(t) (53)

yz(t) ≥ 0 (54)

The constraints in the optimization problem described by Equations (46)–(54) are the
same as previously defined.

4. Simulation Results

In this section, we present different set of simulations to demonstrate the effectiveness
and applicability of the proposed EMPC algorithm. We compare the results of the control
algorithm with the modified zone to that of the controller with the original target zone.
Specifically, we present the performance of the controllers under additive state uncertainties
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that represent various kinds of uncertainties in the process model. We also compare the
performance of the controllers under time-varying inlet flue gas flow rate.

We begin this section with the simulation settings and model parameters used in this
work. Then, we investigate the effects of additive state uncertainty that may be present in
the process. Finally, we analyze and compare the performance of the controllers when the
inlet flue gas flow rate vary.

In these simulations, the dynamic optimization problems described by Equations (18)–(25)
and Equations (46)–(54) were numerically transcribed using the collocation method and
solved with the nonlinear optimization solver Ipopt [29]. They were both implemented in
the python package mpctools [30] and casadi [31].

The steady-state optimization problems described by Equations (26)–(31) and Equa-
tions (33)–(38) were implemented using casadi in python and solved using the nonlinear
program Ipopt.

The semi-definite program described by Equations (40)–(42) was implemented in the
python-embedded modeling language cvxpy [32] and solved using the splitting conic
solver [33].

In all cases, the optimization problems were solved on a laptop with a 2.6 GHz Intel
quadcore CPU and 16 GB RAM.

4.1. Simulation Settings

The plant configuration for the process model described in Section 2.2 is determined
according to Decardi-Nelson et al. [16] and is presented in Table 2.

Table 2. CO2 gas absorption column configuration.

Property Value

Column internal diameter Dc (m) 0.43
Packing height (m) 6.1

Packing type IMTP #40
Nominal packing size (m) 0.038
Specific packing area (m2) 143.9

The properties of the inlet flue gas entering the column from the bottom and the inlet
solvent entering the column from the top are also shown in Table 3 and Table 4, respectively.
In this work, we assume that the properties of the solvent entering the absorption column
from the desorption unit is fixed with the exception of the flow rate which is manipulated.
The flue gas flow rate to the column may vary but this is unknown to the controller.

Table 3. Nominal flue gas condition.

Property Value

Temperature (K) 319.70
Volumetric Flow rate FG (m3/s) 0.0832

CO2 mole fraction 0.1500
N2 mole fraction 0.8000

MEA mole fraction 0.0000
H2O mole fraction 0.0500
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Table 4. Nominal inlet amine solvent condition.

Property Value

Temperature (K) 314.0
CO2 mole fraction 0.0266
N2 mole fraction 0.0000

MEA mole fraction 0.1104
H2O mole fraction 0.8630

In this work, we assume that all the states are measured and available to the controller
at any sampling time tk≥0 with a sampling interval ∆ set at 10 min. This is a reasonable
assumption since it has been shown that only the temperature measurements, which can
be easily obtained, can be used to reconstruct the full states of the absorption column [34].
Unless otherwise stated, the prediction and control horizon N of the controllers is set at
10. The parameters ε, r, α and Nmax in Algorithm 1 are fixed at 0.009, −0.005, 5 and 10,
respectively. The value of umax was fixed at 20% of the available input energy for control
and the identity matrix was used as the value of Q. The output zone to be tracked was
chosen to be between 0.85 and 0.90 i.e., Yz = [0.85 0.90] with a target zone tracking weight
c1 = 10,000. This ensures that a high absorption efficiency is not pursued by the controller
due to the economic objective, which can cause operational issues such as flooding of
the column and solvent over-circulation at high liquid flow rates. This also prevents the
controller from allowing large quantities of CO2 to be released into the atmosphere resulting
in higher CO2 taxes. In the implementation of the control algorithms, the system states
were scaled such that

x̂(tk) = x(t)/xscale, û(tk) = u(t)/uscale (55)

where x̂ and û are the scaled states and inputs respectively, and xscale and uscale are the
steady-state values corresponding to the center of the zone, i.e., an absorption efficiency
of 0.875. The additive state uncertainty w in (9) was assumed to be uniformly distributed
in [−0.00001× 1 0.00001× 1] where 1 = xscale/xscale is a vector of ones having the same
dimension as the state. The nonlinear process model (13) was used in all the simulations.

4.2. Results and Discussion

In this section, we present the results for the two control algorithms, namely EMPC
with target zone tracking (NZEMPC) and EMPC with modified zone tracking (RZEMPC).
We also consider the case where the modified zone is at the center of the target zone. This
case was added to illustrate the notion that arbitrarily tracking a zone within the center
of the target zone, though easy, may not be the best strategy to ensure finite-time zone
tracking with good performance. Performance or cost as defined in this section refers
to Equation (15), which represents both the economic performance and the ability of the
controller to ensure that the output is within target zone at all times.

4.2.1. Additive State Uncertainty

The average performance of the controllers for the case of additive state disturbances
are shown in Table 5. As can be seen from Table 5, our proposed zone EMPC control
algorithm with modified target zone outperforms that of the controller that tracks the
original target zone. The EMPC with modified target zone at the center of the zone
performs better than tracking the original target zone but does not perform better than that
with the modified target zone. This implies that the parameters in Algorithm 1 need to be
carefully tuned to ensure that both the performance and the zone tracking objectives are
achieved. One way to do this is to consider that uncertainty information when selecting ε
as this ensures a reasonable back-off from the boundary of the target zone.
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Table 5. Comparison of the nominal EMPC with target zone tracking and the two EMPCs with
modified zone tracking (smaller is better).

Controller Average Cost

EMPC tracking the target zone −0.72785
EMPC tracking the modified zone −0.88639

EMPC tracking the center of target zone −0.86811

To understand why this happens, Figures 3 and 4 have been provided. As mentioned
earlier, the presence of the secondary economic objective can cause the system output to
operate close to the boundary of the target zone. This is the case for the operation of the
absorption column since the economic objective is to maximize the absorption efficiency.
The presence of the uncertainty causes the system output to move out of the target leading
to high cost and inability to track the target zone. By modifying the target zone, our
proposed controller ensures that there is room available for the system to operate within
the target zone even in the presence of the uncertainty. It is worth mentioning that, by
modifying the target zone, some performance is sacrificed in favor of achieving the zone
tracking objective. This can be seen in Figure 3 where the controller tracking the target zone
operates at a higher absorption efficiency compared to the one that tracks the modified
target zone. Because of the target zone violation, it can be seen in Figure 4 that the cost
trajectory of the NZEMPC is erratic compared to that of the RZEMPC.
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Figure 3. Trajectories of the absorption efficiency (y) for the absorption column under the operation of
the zone EMPC control algorithm tracking the original target zone (blue) and modified zone (orange).
Target zone: EMPC tracking the target zone; Modified zone: EMPC tracking the modified zone;
Upper zone limit: upper bound of the target zone.
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Figure 4. Trajectories of the stage cost for the absorption column under the operation of the zone
EMPC control algorithm tracking the original target zone (blue) and modified zone (orange).

4.2.2. Time-Varying Flue Gas Flow Rate

The operation of a typical power plant is usually periodic every day and seasonally.
This is because of the variation in electricity demand. Electricity demand is usually low
in the early morning and very late at night where consumer activity is low. It gradually
rises to a peak around noon and stays there for sometime before finally reducing again at
night. Furthermore, it has been suggested that renewable energy sources be integrated
into the energy generation mix with the renewable energy sources being the main power
generation sources and the fossil fuel power plants as backups; however, some renewable
energy sources may not be very reliable. For example, the ability of a solar panel to generate
electricity depends on the availability of sunlight, which may not always be available. This
integrated energy mix will therefore further cause more erratic operation of the fossil fuel
power plant. A consequence of this changes in the demand and subsequently the output
of the power plant is that the flue gas emanating from the power plant to the absorption
column will vary frequently. This time-varying behavior can have significant effects on the
performance of the PCC plant attached to the fossil fueled power plant; therefore, flexible
operation of the PCC plant attached to the power plant is inevitable. This has been the
subject of several studies in the control of PCC plant attached to a load-following power
plant [11,12,16,17].

We compare the performance of the EMPC with target zone tracking (NZEMPC) to
that of the EMPC with modified zone tracking (RZEMPC) under a time-varying flue gas
flow rate setting. This was achieved by varying the flue gas flow rate using the disturbance
shown in Figure 5.
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Figure 5. Generated trajectories of the disturbance of the flue gas flow rate signifying ramping up
and ramping down operations of a power plant.

The disturbance to the flue gas mimics typical ramp up and ramp down behavior of a
power plant. The average costs of the operation of the absorption column under the two
controllers is presented in Table 6. As can be seen, the EMPC with modified zone tracking
yields a better overall cost on average than that of the EMPC with target zone tracking. The
reason for the poor performance in the NZEMPC is the same as explained in the earlier
section. The economic objective drives the absorption efficiency to the boundary of the
target zone, which leads to a target zone violation once the disturbance is present. The
RZEMPC on the other hand causes the system to operate away from the boundary thus
making room for the effects of the disturbance. This ensures that the absorption efficiency
stays within the target zone at all times, which leads to a better cost on average. The
absorption efficiency trajectory can be seen in Figure 6. It can be seen that in both cases,
the absorption efficiency decreases during the ramp up and increases during the ramp
down. This is because when the flue gas flow rate increase, the amount of CO2 entering the
column also increase. The controllers still try to capture the same amount of CO2 since the
process model used in the controller uses the nominal flue gas flow rate. A careful look at
the cost trajectories in Figure 7 and as shown in Table 6 shows that during the ramping up
phase, the NZEMPC yields a better cost than that of the RZEMPC; however, the NZEMPC
performs poorly during the ramping down phase. The RZEMPC on the other hand ensures
a fairly constant cost throughout the operation. This shows the benefits of modifying the
target zone to ensure finite time zone tracking.
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Figure 6. Trajectories of the absorption efficiency for the absorption column under the operation of
the zone EMPC control algorithm tracking the original target zone (blue) and modified zone (orange)
for the time-varying flue gas scenario.

0 200 400 600 800
Time (min)

0.8

0.6

0.4

0.2

0.0

Co
st

ZEMPC with target zone ZEMPC with modified zone

Figure 7. Trajectories of the stage cost for the absorption column under the operation of the zone
EMPC control algorithm tracking the original target zone (blue) and modified zone (orange) for the
time-varying flue gas flow rate.

Table 6. Comparison of the average cost of NZEMPC and RZEMPC under time-varying flue gas flow
rate (smaller is better).

Controller Ramping Up Cost Ramping Down Cost Average Overall Cost

EMPC tracking the target zone −0.8948 −0.4525 −0.6690
EMPC tracking the modified zone −0.8813 −0.8916 −0.8866
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5. Concluding Remarks

In this work, a control problem that typically arises in the operation of the absorption
unit in a post-combustion CO2 capture plant is addressed using an EMPC with zone
tracking formulation. This helps to avoid the problems of solvent overcirculation and
flooding in the column during operation. To ensure that finite-time zone tracking objective
is achieved in the presence of modeling uncertainty, the target zone to be tracked is modified.
The proposed zone modification algorithm makes use of ellipsoidal control invariant set
and a back-off strategy, which is scalable for systems with large number of states such
as the absorption column. The use of the control invariant set as the zone ensures that
the zone can be tracked since there is no guarantee that the original target zone is control
invariant. It was shown that the EMPC with modified zone tracking performed better than
the EMPC with target zone tracking in the presence of model uncertainties and exogenous
disturbances. Finally, the simulation example demonstrates the efficacy of the proposed
EMPC algorithm with zone tracking as a effective control strategy for the absorption
column of a typical post-combustion CO2 capture plant.

The use of the linearized model to compute the ellipsoidal control invariant set for
the nonlinear system results in a very small control invariant set. This is a limitation
of our proposed zone modification algorithm. In the future, a more general nonlinear
control invariant set approximation algorithm could be employed. Further, it would be
interesting to apply the zone EMPC algorithm to the entire PCC plant. Another direction is
the extension of the zone modification algorithm to other general nonlinear systems.
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