
����������
�������

Citation: Ibrahim, M.; Alsheikh, A.;

Awaysheh, F.M.; Alshehri, M.D. Solar

Power Plants Anomaly Detection

Using Machine Learning. Energies

2022, 15, 1082. https://doi.org/

10.3390/en15031082

Academic Editor: Anastasija

Nikiforova

Received: 29 December 2021

Accepted: 26 January 2022

Published: 1 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Machine Learning Schemes for Anomaly Detection in Solar
Power Plants
Mariam Ibrahim 1 , Ahmad Alsheikh 2, Feras M. Awaysheh 3,* and Mohammad Dahman Alshehri 4

1 Department of Mechatronics Engineering, German Jordanian University, Amman 11180, Jordan;
mariam.wajdi@gju.edu.jo

2 Department of Natural Science & Industrial Engineering, Deggendorf Institute of Technology,
94469 Deggendorf, Germany; a.alsheikh@gju.edu.jo

3 Institute of Computer Science, Delta Center, University of Tartu, 51009 Tartu, Estonia
4 Department of Computer Science, College of Computers and Information Technology, Taif University,

P.O. Box 11099, Taif 21944, Saudi Arabia; alshehri@tu.edu.sa
* Correspondence: feras.awaysheh@ut.ee

Abstract: The rapid industrial growth in solar energy is gaining increasing interest in renewable
power from smart grids and plants. Anomaly detection in photovoltaic (PV) systems is a demanding
task. In this sense, it is vital to utilize the latest updates in machine learning technology to accurately
and timely disclose different system anomalies. This paper addresses this issue by evaluating the
performance of different machine learning schemes and applying them to detect anomalies on
photovoltaic components. The following schemes are evaluated: AutoEncoder Long Short-Term
Memory (AE-LSTM), Facebook-Prophet, and Isolation Forest. These models can identify the PV
system’s healthy and abnormal actual behaviors. Our results provide clear insights to make an
informed decision, especially with experimental trade-offs for such a complex solution space.

Keywords: anomaly detection; machine learning; time series analysis; correlation

1. Introduction

For the past decade, the rapid development and expansion of renewable energy have
been explored, including power plants. Such development is expected to advance our
abilities to produce clean and affordable energy, creating economic growth. As a result,
solar power generation challenges have attracted significant attention recently. A leading
concern is detecting and localizing anomalous patterns within the solar systems. Big data [1]
and data-driven techniques highly assist in detecting and preventing such anomalies on
photovoltaic (PV) components. In many cases, deep learning systems can prove to be
efficient and highly accurate using convolutional neural networks to implement machine
intelligence [2,3].

The scalable and coherent functionality of PV systems needs advanced tools to monitor
the system parameters’ dynamic evolution and release alerts about anomalies to decision-
makers. Online monitoring of PV systems is technically beneficial to assist operators in
managing their plants and establishing economic assimilation into smart grids [4]. The
failure in identifying disastrous faults in photovoltaic (PV) arrays will accordingly diminish
the generated power and indeed introduce fire hazards [5]. After abnormalities appear on
the exterior of solar panels, if panel holders know the existence of the anomalies sooner,
they can eliminate the abnormalities to prevent more power deficiency [6]. Thus, quick and
precise anomaly detection methods are significant to improving PV plants’ performance,
reliability, and safety.

PV schemes usually run inadequately as a result of various forms of anomalies. These
anomalies are either internal or external [7]. Faults arise within the PV system, causing
daytime zero-production. Common faults are a failure in a component, system isolation,
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inverter shutdown, shading, and inverter maximum power point [8]. Extrinsic components
do not emerge by the PV and still undermine its power generation. Shading, humidity,
dust, and temperature are considered the significant external anomalies affecting the PV
system production [7].

Several data science initiatives have been proposed to address the previous anomaly.
The application of artificial neural network (ANN) in modeling solar devices is reviewed
by [9]. ANN can avert answering complex mathematical schemes. Compared with ex-
perimental studies, it needs fewer experimental tests to determine the input/output con-
nections, thus saving time and decreasing the financial costs. A long short-term memory
(LSTM) neural network scheme is utilized by [10] to predict the yield of solar stills. It
can predict time-series attitudes to recall patterns for a long time. Correspondingly, arti-
ficial intelligence-based schemes were proposed such as that in [11] that constituted an
LSTM model and a moth-flame optimizer to predict the water yield of solar distillers.
The optimized LSTM performed better than the standalone LSTM scheme. An optimized
hybrid model convolutional LSTM (ConvLSTM) is proposed by [12]. The model integrated
LSTM with a convolutional neural network (CNN). It showed highly precise forecasting
outcomes with lower lags, hidden neurons, and calculation complexity. Moreover, recent
surveys [13,14] revised the application of deep learning (DL) methods in various fields,
including power generation from wind turbines and solar panels, Medicine, Agriculture,
and Data Mining.

The significant contributions of the paper are outlined as follows.

1. The investigation of three well-known anomaly detection models: Autoencoder LSTM
(AE-LSTM), Facebook-Prophet, and Isolation Forest. Comparison tests were con-
ducted examining the accuracy and performance of these models with their optimized
hyperparameters.

2. Defining and classifying the internal and external factors that induce anomalies in the
PV power plant, investigating their effects on the model’s accuracy, and studying the
correlation effect and its impact on detecting anomalies.

In the remainder of this paper, Section 2 discuss the paper background and relevant
work. Section 3 characterizes the used machine learning algorithms. Section 4 characterizes
the collected datasets. Section 5 demonstrates the experimental outputs and parameters
optimization. In the end, we gather our outcomes and presents some future directions at
Section 6.

2. Related Work

Several works have investigated anomaly detection techniques in photovoltaic (PV)
power systems. For instance, reference [6] compared multiple methods to disclose and
categorize abnormalities containing the auto-regressive integrated moving average model
(ARIMA), neural networks, support vector machines, and k-nearest-neighbors classification.
In [15], the authors implemented an abnormality exposure and predictive maintenance
scheme for PV layout. The model is implemented to anticipate the AC power generation
built on an ANN, which determines the AC power generation utilizing solar irradiance and
temperature of PV panel data. A new technique for fault detection is proposed by [16] built
on thermal image processing with an SVM tool that classifies the attributes as defective
and non-defective types.

A model-based anomaly detection technique is proposed by [17] for inspecting the
DC part of PV plants and momentary shading. Initially, a model based on the one-diode
model is composed to outline the ordinary nature of the supervised PV system and form
residuals for fault detection. Next, a one-class support vector machine (1-SVM) process
is implemented to residuals starting with the running model for fault disclosure. Ref-
erence [18] presented SunDown, a sensorless method for disclosing per-panel faults in
solar arrays. SunDown’s model-driven method influences interactions among the power
generated by adjoining panels to detect disparities from anticipated nature. The model
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can manage simultaneous faults in many panels and classify anomalies to decide possible
sources including snow, leaves, debris, and electrical failures.

A new tool (called ISDIPV) is presented by [19], which is capable of detecting anoma-
lies and diagnosing them in a PV solar power plant. It includes three fundamental op-
erational items for data acquisition, anomaly detection, and diagnosis of the disclosed
disparities regarding regular performance. Two forms of modeling methods were imple-
mented to describe the ordinary performance anticipated: linear transfer functions (LTF)
and neural networks models built on multilayer perceptrons (MLP). The research in [20]
presented a data-driven answer for adequate anomaly detection and classification, which
applied PV string currents as signs to disclose and classify PV systems anomalies. The
proposed anomaly detection approach used unsupervised machine learning techniques.
The approach included two phases, particularly local context-aware detection (LCAD) and
global context-aware anomaly detection (GCAD).

Anomalies related to TeleInfra base stations’ fuel consumption were detected by [21] in
the registered data utilizing the generator as an origin of power. Anomalies were detected
through learning the patterns of the fuel consumption applying four classification methods:
support vector machines (SVM), k-nearest neighbors (KNN), logistic regression (LR), and
multilayer perceptron (MLP). The results showed that MLP is the most efficient in the
interpretation measurement.

A new technique is presented by [4] for monitoring PV systems by detecting anomalies
using “k-nearest neighbors (kNN)” and “one-class support vector machine (OCSVM)”.
The self-learning algorithms markedly decreased the measuring exertion and supported
the reliable monitoring of faults. The authors of [22] used a k-nearest-neighbors algorithm
and a multilayer perceptron to process the data from a DC sensor and detect differing
attributes of the electrical current. A sensorless detection approach is proposed by [5]
that is controlled by the rapid current decline enclosed by two maximum power point
tracking (MPPT) sampling moments in PV plants. Simulations were executed to validate
its possibility to determine anomalies against fluctuating environments, regardless of the
discrepancy and irradiance ranks.

An anomaly detection framework of monocrystalline solar cells is proposed by [23].
The framework has two stages: In the initial stage, a generative adversarial network (GAN)
is applied to construct an anomaly detection model. This model permits the detection of
abnormal compositions using only non-defective samples for training. Next, the discovered
anomalies will be employed as generated features for the supervised training of a fully
convolutional network.

An analytical scheme is presented by [24] for online investigation of the raw video
streams of aerial thermography. This scheme combines image processing and statistical
machine learning methods. The presented scheme depends on robust principal component
analysis (RPCA), which is utilized on PV images for the concurrent detection and confine-
ment of anomalies. In addition to RPCA, post-processing procedures are proposed for
image noise reduction and segmentation. Distinct models are chosen by [25] for the energy
yield data examination. These are linear models, proximity-based models, probabilistic
models, anomaly ensembles, and neural networks that have the highest detection rate.

SolarClique, a data-driven method, is considered by [26] to detect anomalies in the
power generation of a solar establishment. The method does not need any sensor apparatus
for fault/anomaly detection. Instead, it exclusively needs the assembly outcome of the array
and those of close arrays for operating anomaly detection. An anomaly detection technique
utilizing a semi-supervision learning model is suggested by [27] to predetermine solar
panel conditions for bypassing the circumstance that the solar panel cannot produce power
precisely as a result of equipment deterioration. This method utilizes the clustering model
for regular actions filtration and the neuron network model, Autoencoder, to establish
the classification.

A general, unsupervised, and scalable scheme is presented by [28] to detect anomalies
in time-series data that can run offline and online. The scheme is composed of a rebuilding
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model following a variational autoencoder. Both the encoder and decoder are parametrized
with recurrent neural networks to recognize the temporal reliance of time-series data.
The outcomes illustrate that the model can detect anomalous arrangements by utilizing
probabilistic restoration metrics such as anomaly scores. Reference [29] proposed a new
ensemble model anomaly detection approach with non-linear regression models and
anomaly scores following correlation study adapted for cyber-physical intrusion detection
in smart grids.

The unsupervised contextual and collective detection approach is utilized by [30] to
data flow by a huge energy dispenser in the Czech Republic. The approach examines dis-
tinctive forms of potential abnormalities (e.g., above/below-voltages). Common item-set
mining and categorical clustering techniques are used along with clustering silhouette
thresholding to identify anomalies. A recent survey is presented by [31] of distinct anomaly
detection methods. These techniques consist of classification, nearest neighbor, cluster-
ing, statistical, spectral, information–theoretic, and graph. Selecting the convenient AD
algorithm relies on input data, the form of anomalies, output data, and domain knowledge.

3. Materials and Methods: ML Algorithms

Different techniques and methods used in this paper are discussed in this section.
Namely, we shed more light on the used ML algorithms (i) AutoEncoder Long Short-
Term Memory (AE-LSTM), (ii) Facebook-Prophet, and (iii) Isolation Forest. These al-
gorithm architectures are intensively discussed, creating a solid understanding of this
research methodology.

3.1. AutoEncoder Long Short-Term Memory (AE-LSTM)

AutoEncoder (AE) is an unsupervised ANN. It has the same structure of three sym-
metrical layers: input, hidden (interval description), and an output layer (remodeling) [32].
It has internal encoding and decoding processes. The encoding starts from the input to
the hidden layer, whereas decoding handles the hidden layer to the output layer. AE has
the merit of learning unlabelled data efficiently to predict from the input vector. Figure 1
illustrates the construction of AE.

Figure 1. The AutoEncoder (AE) model.
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The encoding process is described by:

H = f1(Wi · X + bi) (1)

where Wi and bi are the weights and bias parameters among the input and the hidden layer.
X is the primary input, H is the intermediate representation of the primary data, and f1 is
the activation function (e.g., ReLU, Logistic (Sigmoid) and TanH). Likewise, the decoding
process is expressed as:

X̂ = f2(Wh · H + bh) (2)

where Wh and bh are the weights and bias parameters between the hidden and the out-
put layer, respectively. X̂ is the output that is reconstructed from the input data. AE is
trained with the objective of minimizing the difference between the output X̂ and the
input vector X through squared error [33], also called the reconstruction error [32], which is
represented by:

L(X, X̂) = ‖X̂− X‖2. (3)

Long Short-Term Memory (LSTM) is part of recurrent neural networks (RNNs). It
employs an enclosed state (memory) to handle time-series inputs to hold the sequence
relation of the input vector X [34]. It also uses the backpropagation through time (BPTT)
model [35], but this causes a gradient vanishing. Therefore, LSTM uses three controlling
gates: the input, forget, and output gates and the memory cell that memorizes a temporal
state. The gates can reduce the gradient vanishing intensively by renewing and controlling
the data flow [34]. Figure 2 illustrates the LSTM unit.

Figure 2. Long Short-Term Memory (LSTM) unit.

LSTM controls the information flow through the gates using the following equations:

it = σ(Wi[xt, ht−1] + bi) (4)

ft = σ
(

W f [xt, ht−1] + b f

)
(5)

ut = tanh(Wu[xt, ht−1] + bu) (6)

ot = σ(Wo[xt, ht−1] + bo) (7)

ct = ft � ct−1 + it � ut (8)

ht = ot � tanh(ct) (9)

where ht is the present final output, ct is the current cell state, xt is the present input, ft is
the forget gate, it is the input gate, ut is the input to the cell c that is gated by the input gate,
ot is the output control signal, and � is an element-wise multiplication [34]. The AE-LSTM
neural network learns the correlation among input variables and the correlation in the time
series. The LSTM entity also avoids the issue of long-term memory reliance.
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3.2. Facebook-Prophet

A prophet is a time-series forecasting algorithm; it extends Twitter’s Anomaly Detec-
tion (TAD) by replacing the residual component with holidays to detect changepoints [36].
Prophet separates a time series into three elements, seasonal, trend, and holidays, as follows:

y(t) = g(t) + s(t) + h(t) + εt (10)

where g(t) is the trend function that captures non-seasonal changes, s(t) is the seasonal
changes function, and h(t) is the holiday’s function. εt is a function that seizes any other
changes that do not fit the three main functions. g(t) has both saturating growth and
piecewise linear models [36]. g(t) defines the logistic growth model as follows:

g(t) =
c

1 + exp(−(k(t− (m))
(11)

where c is the carrying capacity, k is the growth rate, and m is an offset specification. g(t)
then incorporates trend updates in the growth model by describing change points sj where
the growth rate is permitted to update at time t. Assume there exist S changepoints at times
sj, where j = 1, . . . , S. Designate a vector of rate adjustments δ ∈ RS, where δj is the change
in rate that happens at time sj. The rate at time t is defined as follows:

t = k + a(t)Tδ (12)

where a(t)T δ is the cumulative growth until changepoints sj [37] and a(t) ∈ {0, 1}S is a
vector that can be computed as follows [36]:

aj(t) =
{

1, if t ≥ sj
0, Otherwise .

(13)

Then, the prophet modifies the primary logistic growth model to include trend updates
for non-linear, saturating growth as follows:

g(t) =
c(t)

1 + exp(−(k + a(t)Tδ)(t− (m + a(t)Tγ)))
(14)

and the linear growth can be draft as follows:

g(t) =
(

k + a(t)Tδ
)

t +
(

m + a(t)Tγ
)

. (15)

Let δ ∈ RS such that points in δ are the rate of modifications in g(t). The allocation of
change points is made by assigning δ using Laplacian distribution

(
δj ∼ Laplace (0, τ)),

where τ controls the compliance of growth rate [37] and γj is set to −sjδj to make the
function continuous [36].

3.3. Isolation Forest

Isolation Forest is an unsupervised anomaly detection model built on decision trees. It
defines anomalies as data points that are limited and abnormal [38]. Isolation Forest works
by defining a tree structure based on randomly selected features and then processing a
sample of the data picked randomly into the tree [38]. The branching structure process is
done with a random threshold selected in the range of the selected feature’s minimum and
maximum values. If a sample goes deeper into the tree, it is unlikely to be an anomaly.
On the contrary, if the sample is positioned in shorter branches, it is more likely to be an
anomaly [38].

The algorithm can be described as follows: Let T be a node in the tree, q is a sample
of selected features, p is the threshold value, and X = {x1, x2, x3, x4, . . . , xn} is the dataset
with n samples where each sample has d features. T can be a leaf node or can be an inside
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node (with two sub-nodes Tle f t, Tright ). If the threshold p > q, then the sample will be
maintained to the Tle f t. Otherwise, the sample will be assigned to Tright. This process keeps
repeating until either all data at the node have similar values, or the node has one sample
only, or the tree reaches the maximum possible depth (length). The length of path h(x) can
be determined by counting the edges that connect the tree from the root node to an outside
node. The smaller h(x) means that sample x is more likely to be defined as an anomaly.
The anomaly score s of the sample x can be computed as:

s(x, n) = 2
E(h(x))

c(n) (16)

where c(n) is the evaluation of average h(x) for the outside node and can be computed as:

c(n) =


2H(n− 1)− 2(n−1)

n for n > 2
1 for n = 2
0 otherwise

(17)

where H(i) expresses the harmonic that can be evaluated by ln(i) + γ, (γ represents Euler’s
constant) [38].

4. Collected Data

The used data were collected at two solar power plants in India (plant 1 is near
Gandikotta, Andhra, and plant 2 is near Nasik, Maharashtra) over 34 days, each with
15 min intervals. Every plant included 22 inverter sensors connected at both the inverter
and the plant levels to measure the generation rate (an internal factor that could cause
anomalies), such as AC and DC powers. At the plant level, the inverter measured the
irradiation, the ambient, and the module temperatures (they represented the external
factors that could cause anomalies) for weather measurements. The data were published,
licensed, and accessed under [39].

Figure 3 shows the correlation matrix denoting the correlation coefficients among
the characteristic elements. The matrix computes a linear correlation among variables,
where −1 means that the correlated variables have a powerful negative correlation, and
1 indicates a strong positive correlation. The diagonal values give the dependence of a
variable by its own (also called autocorrelation). Spearman’s rank correlation [40] is used
to determine the correlation rank between features as follows:

ρ = 1−
6 ∑ d2

i
n(n2 − 1)

(18)

where ρ is the Spearman’s rank correlation coefficient, di is the difference among the two
ranks for every observation, and n is the number of observations. The figure shows that
both internal and external factors are highly correlated except for the daily and the total
yields. The daily yield represents all the generated power in KW for this particular inverter
until the recorded time t. On the other hand, the total yield is the summation of all the
generated power from the 22 inverters in this specific plant. In the future, we will also
consider allocating data in federated architectures [41].



Energies 2022, 15, 1082 8 of 17

Figure 3. Correlation matrix computing the linear correlation among the characteristic elements for
power plants 1 and 2.

5. Results and Discussion

This section explains the experimental evaluation carried out to validate and evaluate
the paper claims. A complete description of the experimental setup is provided. Following,
we analyze our findings and results in detail.

PV systems may have many types of anomalies. To make a proper comparison between
the used anomaly detection algorithms, tests were conducted to investigate the effect of
both internal and external factors as well the correlation effect on the data of all inverter
sensors for the two plants. For instance, a test was done to compare the generated AC
power and the irradiation for inverter number 1 of power plant 1, as illustrated in Figure 4.
It can be noticed that there was a drop in the AC power in the periods of 7 June and 14 June.
This notice can indicate a failure at the inverter level.



Energies 2022, 15, 1082 9 of 17

Figure 4. Signal comparison between AC, DC Power, Irradiation, and the Module Temperature
signals from inverter number 12.

The number of anomalies in the signal is 13, which were distributed on 7 June and
14 June. On the contrary, for other inverters such as inverter number 12, there was no drop
in the AC power generation, as illustrated in Figure 5.

Figure 5. Signal comparison between AC, DC Power, Irradiation, and the Module Temperature
signals from inverter number 12.

Before testing the candidate algorithms, the grid parameters search optimizer, sup-
ported by Scikit learn [42], was used to tune each algorithm’s hyperparameters. The
optimizer explores all possible combinations of a defined range of values for each parame-
ter until the best accuracy is obtained. This measure means that an appropriate objective
function can be defined for each algorithm to select the optimal parameters. The algorithms
are tested on the AC Power signal from inverter number 1 in power plant 1 to detect the
13 true anomalies. The algorithm’s parameters and optimizer results are stated in the
following subsections.

5.1. Facebook-Prophet Optimized Parameters

An essential parameter in Facebook-Prophet is the number of change points (n-
changepoints) in the dataset. Its usual value is 25. Change points are uniformly distributed
on the first 80% of the time-series signal. The changepoint_prior_scale indicates how flexible
the change points are allowed to be, which means how much the change points can suit
the data. Its usual value is 0.05. The seasonality_mode parameter defines two modes: the
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additive and multiplicative modes. The default mode is additive, which signifies that the
seasonality’s impact is combined with the forecast trend. Table 1 shows the parameters
grid for Prophet with a total of 162 possible models.

Table 1. Grid parameters of Facebook-Prophet.

Parameter Grid

n_changepoints [10,25,50,75,100,150,200,300,400,500]

changepoint_prior_scale [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

seasonality_mode [‘multiplicative’, ‘additive’]

Due to the working principle of Prophet of predicting a time-series signal, the objective
functions were selected to be R-squared (R2), Mean Squared Error (MSE), and Mean
Absolute Error (MAE). They can be computed as follows:

R2 =
∑Ni

i=1

(
yi − Ŷi

)
∑Ni

i=1(yi − Ȳi)
(19)

MSE =
∑Ni

i=1

(
yi − Ŷi

)2

Ni
(20)

MAE =
1
N

N

∑
i=1

∣∣yi − Ŷi
∣∣ (21)

where y, Ŷ are the actual and the predicted data, respectively, whereas Ȳ is the mean value
of actual data. The optimization results found the best R2 = 87.448%, MAE = 76.125 KW,
and MSE = 135.013 KW for the following optimal parameters:

• n_changepoints = 0.9;
• changepoint_prior_scale = 200;
• seasonality_mode = multiplicative.

The R2 shows a high value that describes an acceptable prediction accuracy, while the
MAE and MSE show that the model has an acceptable error in forecasting the AC power
signal whose values lie in the range of 1200–1400 KW.

5.2. AE-LSTM Optimized Parameters

AE-LSTM, on the contrary, shares the same parameters that any other neural network
model has, which are the number of hidden neurons, the number of layers, activation
function, epochs, and batch size. For simplification, the number of hidden layers was
chosen to be four layers with Rectifier (ReLU) activation function, and the number of
hidden neurons was optimized for each layer separately. Table 2 shows the parameters
grid for AE-LSTM with a total of 54,432 possible models:

Table 2. Grid parameters of AE-LSTM.

Parameter Grid

Number_hidden_neurons L1 [5,10,15,20,25,30]

Number_hidden_neurons L2 [5,10,15,20,25,30]

Number_hidden_neurons L3 [5,10,15,20,25,30]

Number_hidden_neurons L4 [5,10,15,20,25,30]

batch [5,10,15,20,25,30]

epochs [200,250,300,350,400,450,500]
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The AE-LSTM also learns/trains on a time-series signal and then tries to predict/
forecast these signal characteristics in the future. Therefore, the same as in Prophet, the R2,
MSE, and MAE were used as objective functions. The optimization results found the best
R2 = 98.1749%, MAE = 12.733 KW, and MSE = 20.934 KW for the optimal parameters epochs
(200) and batch size of 20. The number of hidden neurons and the complete AE-LSTM
model are illustrated in Figure 6.

Figure 6. The AE-LSTM model.

5.3. Isolation Forest Optimized Parameters

Isolation Forest was also optimized for the number of estimators (n_estimators) or
trees in the ensemble. In other words, it is the number of trees that will construct the forest.
It has a default value of 100. Another parameter is the contamination, which describes
the expected proportion or rate of outliers/abnormality in the dataset. Table 3 shows
the parameters grid for AE-LSTM with a total of 338 possible models. The bootstrap is a
parameter that controls the sampling process. If it is set to True, then the exclusive trees fit
random subsets of the training data sampled with replacement. If it is set to False, then
sampling without replacement is conducted.

Table 3. Grid parameters of Isolation Forest.

Parameter Grid

bootstrap [False, True]

n_estimators [50,100,200,300,400,500,600,700,800,900,1000,1500,2000]

contamination [0,0.01,0.03,0.06,0.09,0.12,0.15,0.2,0.25,0.3,0.4,0.45,0.5]

The Isolation Forest does not predict any time-series signal compared to Prophet and
AE-LSTM. Instead, it classifies the data points into normal and abnormal, with the same
concept as random forest. Therefore, the objective function will focus on the number of true
and false anomalies. The optimization results for 338 possible models found only one value,
which is 25 anomalies, where 12 points are true anomalies, and the other 13 points are false
anomalies. These results are represented in a confusion matrix, as shown in Table 4.
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Table 4. The confusion matrix.

Healthy Anomaly

Healthy True Positives (TP) = 216 False Negatives (FN) = 13

Anomaly False Positives (FP) = 0 True Negatives (TN) = 12

The confusion matrix can be used to compute the accuracy, precision, sensitivity, and
F1 Score. Their formulas are given as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(22)

Precision =
TP

TP + FP
(23)

Sensitivity =
TP

TP + FN
(24)

F1 Score = 2 ∗ ( Recall + Precision )

( Recall + Precision )
. (25)

The computed values are as follows: accuracy = 0.8963, precision = 0.9474, sensitivity
= 0.9432, and F1 Score = 0.9453.

5.4. Anomaly Detection Performance

The Isolation Forest, AE-LSTM, and Prophet algorithms are implemented to evaluate
their performance in detecting the AC-generated power signal abnormalities. The outcomes
are illustrated in Figure 7. It can be noticed that even though Prophet detected the anomalies
on 7 and 14 June, it failed to determine the healthy signal by labeling it as an anomaly with
a total of 53 anomalies (false anomalies). Isolation Forest also detected the true positive
anomalies but marked all the signal peaks as anomalies with 25 outliers. The AE-LSTM
detected the correct 13 anomalies compared to the irradiation signal, thus indicating a fault
in the inverter module. It was also successful in identifying the healthy signal. Hence, the
inverter module is working well. In addition, the models are tested on a healthy AC Power
signal from inverter number 12. Prophet and Isolation Forest found anomalies within this
signal. It is worth mentioning that the Isolation Forest detected false anomalies on the
peaks, while AE-LSTM determined that there are no anomalies, as shown in Figure 8.

The second test investigated the external correlated factor of module temperature, as
shown in Figure 9. It can be seen that the signal is healthy. However, the Prophet found
anomalies within a complete healthy signal. The Isolation Forest detected false anomalies
on the peaks, and the AE-LSTM determined that it is a healthy signal and thus detected
no anomalies. This experiment indicates that the temperature module does not need to be
maintained for the next tested time interval, and it is working correctly.

The third test examined the effect of the uncorrelated internal factors, which are
expressed in the daily yield. The daily yield signal is a healthy signal with no apparent
anomalies that could be determined. This signal means that even if there is a failure in one
of the 22 inverters, it did not affect the daily yield signal. The Prophet and Isolation Forest
also failed this test, while AE-LSTM succeeded in determining no anomalies in a healthy
signal, as shown in Figure 10.

The results above showed that the AE-LSTM was the most accurate in detecting the
true anomalies without tagging false positive points (normal) as anomalies. In addition,
we proved that the two optimized models did not accurately distinguish the correct and
the false anomalies. On the contrary, although Prophet and Isolation Forest found the true
anomalies, both models labeled healthy/normal points as anomalies. Furthermore, the
results demonstrated that Prophet and Isolation Forest are more sensitive to noisy signals
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and need more datasets to generalize and capture signal characteristics to distinguish a
false from a true anomaly. Interesting future work would be investigating the blockchain
technology for the large-scale solar power plant networks [43] and examining recent trends
in machine learning such as active machine learning [44]. These findings may assist in
maintaining the plant at the component level by scheduling a time to repair the faulted
inverters all at once, thus reducing the off-time during which other components can still
operate properly.

It is worth mentioning that the genetic algorithm (GA) serves as an alternative to the
grid search method used in this work. GA is a metaheuristic search method originating from
the theory of evolution. It can be used to select values under given constraints that achieve
a lower loss of a defined objective function [45]. GA was not implemented in our work
because the range of changes in the algorithm’s accuracy was relatively small; therefore,
the grid search method was used instead. Future work may include the application of GA
for intelligent anomaly mitigation techniques.

Figure 7. Anomaly detection outcomes from the three models on a faulty AC Power signal.

Figure 8. Anomaly detection outcomes from the three models on a healthy AC Power signal.
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Figure 9. Anomaly detection outcomes from the three models on a healthy module temper-
ature signal.

Figure 10. Anomaly detection outcomes from the three models on a healthy daily yield signal.

6. Conclusions

Anomaly detection in modern solar power plants using data-driven approaches is
vital in reducing downtimes and increasing efficiency. In this paper, three machine learning
models’ performances were analyzed to illustrate the most exemplary model that can
precisely determine the abnormalities in the photovoltaic (PV) system. The correlation
coefficients between the plants’ internal and external feature parameters were determined
and used to analyze the efficiency of machine learning models in detecting anomalies.
The AE-LSTM detected anomalies and successfully identified the healthy signal. Future
work would include the investigation of intelligent anomaly mitigation techniques. In
addition, an interesting area to investigate would be employing the recent distributed
machine learning trend, i.e., federated learning, in large-scale intelligent solar power grids.
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Abbreviations
The used acronyms and notations in the paper.

Acronyms
PV Photovoltaic
AE-LSTM AutoEncoder Long Short-Term Memory
ANN Artificial neural network
RNN Recurrent neural networks
R2 R-squared
ReLU Rectifier activation function
1-SVM One-class support vector machine
FProphet Facebook-Prophet
IForest Isolation Forest
Notations
X Input vector of AutoEncoder
X̂ Predicted output vector of AutoEncoder
Wi Weights
bi Bias
f 1 Activation function
H Intermediate representation of the primary data
ht The present final output
ct Current cell state
xt Present input
f t Forget gate
it Input gate
ut The input to the cell c that is gated by the input gate
ot The output control signal
� An element-wise multiplication
g(t) Trend function
h(t) The holidays function
C The carrying capacity
k The growth rate
m An offset specification
si Change points

https://www.kaggle.com/anikannal/solar-power-generation-data
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δ Vector of rate adjustments
a(t)Tδ The cumulative growth until change points sj
p The threshold value
q A sample of selected features
h(x) The length of path
H(i) The harmonic
ρ Spearman’s rank
di The difference among the two ranks of each observation
y The actual data
Ŷ The predicted data
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