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Abstract: The thermodynamic and transport properties of magnesium oxide crystal arc plasma have
been researched under local thermodynamic equilibrium in this paper. The pure CO2 plasma in
the arc initiation stage and Mg-CO mixtures plasma in the stable melting stage were selected. The
parameter-variation method combined with Levenberg–Marquardt algorithm (PVM-LMA) is used
to solve the plasma equilibrium compositions model established by mass action law from higher to
lower temperature in sequence. Taking Mg50%-CO50% plasma as an example, the plasma number
density of 7500 K is calculated according to 8000 K. The results show that the PVM-LMA algorithm
has the advantages of fast and high precision. The comparisons to the results of pure CO2 in previous
literature are displayed and our work shows better agreement with theirs. The results of Mg-CO
mixtures indicate that the chemical properties of Mg atoms are more active and easier to ionize, which
can effectively improve the electrical conductivity and thermal conductivity of plasma and reduce
its viscosity.

Keywords: magnesium oxide crystal arc plasma; PVM-LMA; collision integrals; transport properties

1. Introduction

Magnesium oxide crystals have the characteristics of high purity, good calcium-silicon
ratio, large crystal size and stable physical and chemical properties. It is an important mate-
rial in metallurgical, chemical, electrical, aerospace, and other industrial fields. Magnesium
oxide crystals are the product of magnesite after high temperature melting and cooling.
The melting point of magnesium oxide crystals is higher, reaching above 3100 K. Electric
arc furnaces are the only smelting equipment used to obtain magnesium oxide crystals. At
the same time, smelting magnesium oxide crystal by electric arc furnace is also a work of
high energy consumption, for instance, the theoretical energy consumption of smelting
1 ton magnesium oxide crystal is 2000 kilowatt-hours, and the actual production energy
consumption up to 2900 kilowatt-hours. There is a large space for energy saving and it
is of great significance to study the thermal process in the arc region. To my knowledge,
we have not discovered any research or reports on the equilibrium compositions, thermo-
dynamic and transport properties of melting magnesium oxide crystal plasma, or the arc
performance research of magnesium oxide crystal arc furnaces. Therefore, it is of great
significance to study the arc performance of magnesium oxide furnaces to further study
the working process of electric arc furnaces.

The arc of a magnesium oxide crystal is a typical submerged arc, and most direct
measurement methods are invalid. Currently, the most effective method for obtaining the
corresponding physical properties is numerical calculation based on the basic theory of
thermochemistry. The CO2 and Mg-CO mixture are the main components of the arc in a
magnesium oxide crystal smelting furnace and are derived from MgCO3(s)→MgO(s) +
CO2(g), MgO(s) + C(s)→Mg (g) + CO (g) and CO2(g) + C(s)→ 2CO (g) reactions. MgCO3
is the main component of magnesite, the free carbon atom mainly originates from the heated
electrode and arc agent; CO2 and caustic burned magnesia (MgO), are the intermediate
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products of magnesium oxide crystal, decomposed from magnesite. The plasma of the
Mg-CO mixture is relatively special and rare, because Mg and CO are easily oxidized and
cannot exist in the usual state, but it is the main form of the whole smelting process, while
CO2 only exists briefly in the arc initiation stage. In this study, pure CO2 and different
proportions of Mg-CO mixture plasma were analyzed and calculated to find the influence
of Mg on the change in plasma thermomechanical properties.

Many studies have been carried out on plasma doped with metal vapor. Several
phenomena in daily life are involved, such as high-pressure sodium lamps using mercury
vapor and sodium vapor discharge, and fluorescent lamps [1] that emit visible light from
fluorescent powder by emitting ultraviolet light from mercury vapor at low pressure.
High-intensity discharge (HID) lamps [2] utilize the emissions from mercury, and other
metals are combined such as sodium, scandium, and indium, to provide intense emissions
for floodlighting, street lighting, and data projection. For some special plasma industrial
processes, the influence of metal vapor on the performance of the plasma is obvious. The
presence of Cu enhances the electrical conductivity of SF6-Cu plasmas, as discussed by
Chervy et al. [3], Paul et al. [4] and Wang et al. [5]. The study of the composite diffusion
coefficient by Zhong et al. [6], indicated that increasing the proportion of copper generally
increases the magnitude of the four diffusion coefficients. Cressault et al. [7] also revealed
the significant influence of metal vapor on SF6 and air plasma, and the results indicated
that the peak value of the combined ordinary diffusion coefficient switched to the highest
temperatures when the metal proportion increased, and the diffusion coefficient decreased
when pressure increased. The presence of metal vapor in arc welding has a major influence
on the thermodynamic, transport and radiative properties of the arc. It also determines
the size and shape of the weld pool [8], and the distributions of the temperature, current
density, and heat flux of the arc area. Murphy [9] also studied the role of shielding gas
properties, and metal vapor in thermal plasmas for arc welding. Schnick et al. [10] presented
a gas-metal arc welding (GMAW) model that considers metal vapor, and the influence of
different values for the net radiative emission coefficient of iron vapor was examined.

However, the research of doped Mg metal or Magnesium oxide crystal arc plasma has
not been reported, despite being an urgent task to provide new technical support for energy
saving and emission reduction in the fused magnesium industry. The calculation process
of the plasma transport parameters is divided into three main steps. The equilibrium
composition model was constructed and solved, the collision integral was calculated
according to the principle of interaction between particles, and the transport parameters
were obtained by the Chapman–Enskog method.

The first step in calculating thermodynamic and transport properties is to obtain the
composition distribution of the plasma. The equilibrium compositions under local ther-
modynamic equilibrium are constructed using the SAHA and Guldberg–Waage equations
combined with mass conservation, the electric neutrality principle, and Dalton’s partial
pressure law. In fact, the Jacobian matrix of the algebraic equations abstracted by this
model is singular and it has always been a difficult problem to solve singular nonlinear
equations. The minimization method proposed by Gordon and McBride [11] is the popular
method to obtain plasma number density, and essentially uses Lagrange multipliers and
Newton–Raphson iteration to solve the nonlinear equation system [12–14]. However, this
approach must be sensitive to the initial value of the iteration. PVM is an algorithm that
does not rely on initial values and solves the equations by introducing auxiliary equations,
but the premise is that the parametric equation composed of the original equation and
auxiliary equation must be non-singular, which also means that PVM can’t directly solve
singular nonlinear equations. The Levenberg–Marquardt algorithm (LMA) can solve sin-
gular nonlinear equations [15] and reduce the probability of falling into local optimum
by adjusting the trust region. In this study, the parameter-variation method [16] com-
bined with LMA [17,18] (PVM-LMA) is adopted for batch solution from a higher to a
lower temperature.
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The collision integral is another important part for calculating the transport parameters.
For a mixture of plasma doped with Mg, the collision integral of metal Mg with other
neutral molecules is a difficult point in the study, because they cannot be obtained directly
from the existing literature. Accordingly, the Lennard–Jones like phenomenological model
potential [19] is introduced to calculate the interactions between particles, and hence their
collision integrals. For collision integrals between other particles, we refer to the latest
parameters and calculation methods. Finally, the Chapman–Enskog method is applied
to calculate the transport parameters of the plasma based on the number density and
collision integral.

The research in this paper is divided into four parts, and the research contents are
as follows:

In Section 2, the plasma equilibrium compositions model under local thermodynamic
equilibrium is built by the law of mass action. The PVM-LMA is adopted to batch solve
this model from a higher to a lower temperature. The calculation method of the partition
function of different types of particles and the relevant data and their sources are given
simultaneously.

In Section 3, the model of thermodynamic and transport properties is selected to obtain
the density, enthalpy, thermal conductivity, electrical conductivity, and viscosity of the pure
CO2 and Mg-CO mixture plasma.

The collision integral as important information for calculating transport properties is
detailed in Section 4. The interactions and collision cross section between particles i and j
(i could be equal to j), are disposed by methods or data provided by the latest literature.

In Section 5, the equilibrium compositions, thermodynamic and transport properties
are obtained over a wide temperature range at atmospheric pressure. The results of pure
CO2 plasma are compared with those obtained in literature, and the influence of Mg metal
on transport parameters was analyzed.

2. Equilibrium Compositions Model and PVM-LMA
2.1. Equilibrium Compositions

The plasma equilibrium compositions model under the local thermodynamic equi-
librium condition, consists of four parts: Saha and Guldberg–Waage equations, mass
conservation, charge conservation and Dalton’s law. For magnesium oxide crystal arc
plasma, there are eight neutral molecules, 10 ions and electrons, along with five dissociation
reactions and 10 ionization reactions, which are listed in Table 1 for molecules and Table 2
for reactions.

Table 1. The list of molecules in magnesium oxide crystal arc plasma.

Neutral particles CO2, CO, O2, C2, O, C, Mg, MgO
Ions O2

+, CO+, O+, O++, O+++, C+, C++, C+++, Mg+, Mg++

Electron e

Table 2. The chemical reactions list of in magnesium oxide crystal arc plasma.

Serial Number Reaction Serial Number Reaction

1 CO2 
 CO + O 9 C+ 
 C++ + e
2 CO 
 C + O 10 C++ 
 C+++ + e
3 MgO 
 Mg + O 11 O 
 O+ + e
4 C2 
 C + C 12 O+ 
 O++ + e
5 O2 
 O + O 13 O++ 
 O+++ + e
6 CO 
 CO+ + e 14 Mg 
 Mg+ + e
7 O2 
 O2

+ + e 15 Mg+ 
 Mg++ + e
8 C 
 C+ + e

The equations of the compositions model are expressed by Equation (1). The first
equation displays charge conservation; the second indicates that the ratio of two different



Energies 2022, 15, 1036 4 of 24

elements is constant; this equation does not exist if the element number is 1 and there
are Ne − 1 equations of this type, Ne is the element number (Ne = 3 in Mg-CO plasma
and Ne = 2 in pure CO2 plasma); the third is the expression of Dalton’s law; the fourth
and fifth equations are Saha’s equation, marking the ionization reaction, and Guldberg–
Waage’s equation, indicating the dissociation reaction. For different chemical reactions, the
coefficient values of the equation vary greatly, causing Equation (1) to exhibit an obvious
weak singular characteristic.

F =



f1(n1, n2, · · · , nN) = ∑
i

nizi = 0

fm(n1, n2, · · · , nN) = ∑
i

nilm,i − const ∗∑
i

nil1,i = 0

fNe+1(n1, n2, · · · , nN) = ∑
i

nikBT − p = 0

...

f...(n1, n2, · · · , nN) = nenr+1 − 2Qr+1
Qr

(
2meπkT

h2

)3/2
exp

(
− EI,r+1

kBT

)
nr = 0

f...(n1, n2, · · · , nN) = nAnB − QAQB
QAB

(
2πmAmBkT

mABh2

)3/2
exp

(
− Ed

kBT

)
nAB = 0

(1)

where p is ambient pressure, and ne and ni are the number density of electron and the
i-th particle, respectively. kB is the Boltzmann constant, and T is the temperature. nzi is
the number density of i-th atom element. zi is the charge on the i-th particle. Qr and Qr+1
are the partition functions of the r valence molecule or cation and the r + 1 valence cation
of the molecule, respectively. Q is the internal partition functions, subscript AB, A B are
molecular species. EI,r+1 is reaction energy of ionization reaction and Ed is energy of the
dissociation reaction.

2.2. PVM-LMA

In this study, magnesium oxide crystal arc plasmas at a temperature range from 300 K
to 30,000 K and atmospheric pressure were studied. At higher temperatures (T > 20,000 K),
the electron and the highest cation are the main components of the plasma, and it is easy
to calculate the number density of the plasma by taking them as the initial value of the
numerical calculation. However, this assumption cannot satisfy the solution requirements
at a lower temperature. The control equations are expressed as:

F(x, t) = tF(x)− (1− t)F
(

x(0)
)
= 0 (2)

where, F(x) and F(x,t) are solving and parameter control equations, and t is the variational
parameter, 0 ≤ t ≤ 1. x(0) is the initial value of the iteration. It attempts to solve a set of
N nonlinear equations F(x,t) = 0, by introducing one or more variational parameters t, and
then solving the equations. It is easy to see that the two important parameters using this
method are to determine N, and to obtain x(0) which is as close as possible to solution
x*. The parameter control equation F(x,t) = 0 is also a Jacobian singular nonlinear system,
and LMA can quickly solve singular equations with the given initial values. In this study,
the equilibrium composition at a temperature, which is the minimum of higher than the
current temperature is used to set x(0).

The PVM-LMA is proposed to solve the equilibrium compositions model in batches
from higher to lower temperature. The calculation flow of PVM-LMA is shown in Figure 1.
Tmax is any temperature that is higher than the solution temperature and have more accurate
compositions. The calculation flow is divided into three parts. First, solve the value of
parameter-variation number N. Second, according to the parameter value t, the parameter-
variation equations is solved in sequence. Finally, if it fails, a local calculation method
is proposed to reduce the variation frequency of parameters t to ensure the calculation
accuracy. The authors summed up an immature experience, and suggested the difference
∆T = T(k+1) – T(k), that if T > 15,000 K, then ∆T = 1000 K; if T > 8000 K, then ∆T = 500 K; if
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T > 5000 K, then ∆T = 100 K; if T > 3000 K, then ∆T = 50 K, else ∆T = 10 K. These
suggestions can effectively bridge the gap between x(0) and x*, and can decrease N to
improve the calculation efficiency.

Figure 1. Calculation flow chart of PVM-LMA for solving the plasma compositions.
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The numerical density of Mg50%-CO50% mixture plasma at an atmospheric pressure
of 7500 K is calculated by example based on 8000 K. The variations in each particle number
density and precision with iteration are demonstrated in Figure 2. Many molecular number
density values are too low to be displayed in the figure, such as CO+, O2

+, MgO, C++, etc. It
is not difficult to see from the figure that C and O atoms only have first-order ionization in
the temperature range of 7500–8000 K, and some Mg atoms have lost two electrons, which
is determined by the chemical properties of active metal Mg atoms. Ten LMA calculations
were performed in the whole process, and calculation accuracy was 1.16 × 10−16.

Figure 2. Variations in the control parameter, the precision, and the number density of each particle
with the iteration for the Mg50%-CO50% mixture plasma.

2.3. Partition Functions

The internal partition function, Q, is the bridge connecting the microscopic state with
the macroscopic thermophysical properties. Equations (3), (4) and (7) are the formulas
for calculating the partition functions of atomic, diatomic and triatomic molecules, re-
spectively [20]. For atoms, consider each electronic level states. For diatomic molecules,
it involves the electronic, vibrational and rotational states. For polyatomic molecules, a
simple harmonic partition function is adopted on the premise of ignoring rotational levels.
In particular, the electron partition function Q = 2.

For atom:

Q = ∑
i

wi exp
(
− εi

kBT

)
(3)

where, wi is the degeneracy and is a dimensionless constant, and εi is the atomic energy
level term value of the i-th energy level, cm−1. The atomic energy level term values can be
obtained from the National Institute of Standards and Technology (NIST) [21].
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For diatomic molecule:

Q = ∑
e

∑
v

∑
r

ge exp
(
− εe

kBT

)
gv exp

(
− εv

kBT

)
gr exp

(
− εr

kBT

)
(4)

ε and g are the diatomic molecular energy level term value and degeneracy, the subscript e,
v, r represents the electrical, vibrational and rotational state, respectively.

The vibration energy of the v-th vibrational state and the e-th electronic state can be
computed as follows:

εvib(e, v)
hc

= ωe

(
v +

1
2

)
−ωexe

(
v +

1
2

)2
+ ωeye

(
v +

1
2

)3
+ · · · (5)

εrot(e, v, J)
hc

= Bv J(J + 1)− Dv J2(J + 1)2 (6)

where, Bv = Be− αe(v + 1/2) and Dv = De− βe(v + 1/2). ωe, ωexe, ωeye, Be, De, αe, and βe
are the spectroscopic constants, and the Dv term is ignored because it is usually very small.
Table 3 lists the spectroscopic constants for different energy levels of the diatomic molecules.

Table 3. The spectroscopic constants for different energy levels of diatomic molecules.

Molecule Electronic State Te/cm−1 ωe/cm−1 ωexe/cm−1 ωeye/cm−1 Be/cm−1 αe/cm−1 re/Å Vmax

CO X1Σ+ [22] 0 2159.3 13.6 0.0216 1.9313 0.0175 1.132 50
A1Π [23] 65,358.7 1514.24 19.4 0.7658 1.6115 0.02325 1.241 22
B1Σ+ [24] 86,926.9 2161.75 39.84 0 1.961 0.0262 1.12 1

CO+ X2Σ+ [25] 0 2214.127 15.094 −0.0117 1.97694 0.01894 1.1159 20
A2Πi [25] 20,732.037 1561.806 13.4785 0.00865 1.58939 0.019494 1.2443 25
B2Σ+ [26] 45,841.25 1734.8 27.1166 0.326 1.79954 0.0312 1.1694 10
C2∆ [27] 62,953.7 1142.89 33.877 0.611 1.34796 0.0407 1.3547 10

O2 X3Σg
− [28] 0 1581.61 10.039 0.05018 1.4376 0.012539 1.2068 19

B3Σu
− [28] 51,025.73 723.6 10.756 0.74742 0.8256 0.013596 1.5978 15

O2
+ X2Πg [29] 0 1906.07 16.5 0.0211 1.6896 0.0193 1.117 20

a4Πg [29] 40,068.1 899 13.726 0.01 1.0617 0.0194 1.408 20
A2Πg [29] 32,524.3 1035.13 10.115 −0.0331 1.10476 0.0155 1.382 20
b4Σg

− [29] 49191 1197.2 17.172 0.0118 1.28766 0.0219 1.28 20

C2 X1Σg
+ [30] 0 1855.01 13.555 −0.132 1.82 0.018 1.2425 21

a3Πu [30] 8391.3 1608.2 12.055 −0.012 1.6165 0.0169 1.3184 35
b3Σg

− [30] 43,239.8 1829.57 13.94 0 1.8332 0.0196 1.238 22
A1Πu [30] 716.2 1641.35 11.67 0 1.6342 0.01663 1.3119 33
C1Πg [30] 6434.8 1470.4 11.155 0.0139 1.4986 0.0163 1.3184 23
d3Πg [30] 9124.2 2085.9 18.623 0 1.921 0.0126 1.23 17
e3Πg [30] 20,022.5 1788.22 16.457 −0.501 1.755 0.019 1.2661 13

D1Σg
+ [30] 40,796.7 1106.56 39.26 2.81 1.1922 0.0242 1.5351 12

MgO X1Σ+ [31] 0 785.1 5.18 0 0.5743 0.005 1.749 10
A1Π [31] 3503.3 664.4 3.9 0 0.5050 0.004 1.864 10
B1Σ+ [31] 20,004 824.1 4.76 0 0.5822 0.0045 1.737 10
D3∆ [31] 29,775 632.5 5.3 0 0.5014 0.0048 1.872 10

For polyatomic molecules:

Q =
m

∏
i

[
1− exp

(
−hcωi

kT

)]−1
(7)

m is the vibrational degrees of freedom, for linear molecules, m = 3n − 5, and nonlinear
molecule m = 3n − 6, n is the number of atoms. In this study, only the CO2 molecule
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is considered, and it is a linear molecule with vibration freedom m = 4 and degenerate
vibration frequencies of 2349 cm−1, 1337 cm−1 and 667 cm−1 (doubly degenerate).

3. Model of Thermodynamic and Transport Properties
3.1. Thermodynamic Properties

The average density ρ in Equation (8), internal energy e in Equation (9), specific
enthalpy h in Equation (10), and constant-pressure specific heat cp in Equation (11) have
been listed. According to statistical thermodynamics, the thermodynamic properties can be
computed given the compositions and partition functions. The expressions are as follows:

ρ = ∑ mini (8)

e =
3
2

kB
ρ ∑

i
niT +

1
ρ∑

i
niEi+

kB
ρ ∑

i
niT2 ∂ ln Qint

i
∂T

(9)

h =
5
2

kB
ρ ∑

i
niT +

1
ρ∑

i
niEi+

kB
ρ ∑

i
niT2 ∂ ln Qint

i
∂T

(10)

cP =
∂h
∂T

(11)

where, n, m, and E are the number density, mass, and formation enthalpy of the molecule
and Qint is the internal part of the partition functions.

3.2. Transport Properties

The transport properties reflect the parameters of material conduction, heat transfer
energy and flow state. For plasma, it is performed by Chapman–Enskog method, and
assuming that the molecular number density distribution is a first-order perturbation to
the Maxwellian distribution, which is then expressed in a series of Sonine polynomials [32],
finally leading to a system of linear equations that can be suitably solved to obtain different
transport properties. In this study, the expressions reported by Devoto [33,34] were adopted
to calculate the transport properties.

3.2.1. Diffusion Coefficients

The binary diffusion coefficients Db
ij for the i-th and j-th species are computed by:

Db
ij =

3kBTiTj

16pµijQ
(1,1)
ij

(12)

where Ti, and Tj are the temperatures of the i-th and j-th species, respectively. p is the total
pressure of plasma. Q(1,1) is the first-order collision integral given by Equation (25). µij is
the reduced mass, and the expression is

µij =
mimj

mi + mj
(13)

mi, and mj are the molecular masses of the i-th and j-th species, respectively.
The multivariate diffusion coefficient Dij is obtained by the first-order approximation

of the binary diffusion coefficient, and is expressed as follows:

Dij =
Fji − Fii

mj|F|
(14)

Fij =
1
ρ

[
ni

Db
ij
+ ∑

l 6=i

nlmj

miDb
il

](
1− δij

)
(15)
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F is a two-dimensional matrix composed of Equation (15). δij is the Kronecker delta
function. Fji is the cofactor of F, and |F| is the determinant of matrix F.

3.2.2. Thermal Conductivity

Thermal conductivity is the summation of the electron translational, heavy species
translational, internal and reactive thermal conductivities. The expression of the plasma
thermal conductivity is given by [14]

λ = λtr,e + λtr,h + λr + λint (16)

where, λ, λtr,e, λtr,h, λr and λint represent the total thermal conductivity, electron translation,
heavy particles translation, reactive and internal thermal conductivities, respectively. The
translational part makes a distinction between electrons and heavy particles, second-order
and first-order approximate calculation methods were adopted, respectively, and they are
represented by Equations (17) and (18).

λtr,e =
75n2

e kB
8

(
2πkBT

me

)1/2
(

q11 −
(
q12)2

q22

)−1

(17)

The formula for qij is detailed in the [34,35].

λtr,h =
75kB

8

√
2πkBT
|q|

∣∣∣∣∣∣∣
q00

ij q01
ij

q10
ij q11

ij ni

nj/
√mj

∣∣∣∣∣∣∣ (18)

where qij
mn has been introduced by Brokaw [33].

The internal thermal conductivity is caused by the existence of vibrational and rota-
tional degrees of freedom in the molecules and electrons do not exist. The internal thermal
conductivity of heavy particles was calculated by Eucken [32] and expression reported by
Capitelli et al. [36].

λint = ∑
i 6=e

pDii
RTh

·
(

Cp,i −
5
2

R
)
·
(

∑
j 6=e

xjDii

xiDij

)−1

(19)

where, R, Cp,i are the gas constant and constant-pressure specific heat of the i-th particle,
respectively. xi and xj are the mole fractions of the i-th and j-th particles, respectively.

The reaction thermal conductivity describes energy changes of two chemical reactions,
including an endothermic process for the forward reaction and exothermic process for the
reverse reaction. Exothermic processes occur mainly at low temperatures. Equation (20) is
the expression given by Brokaw [37].

λr = −
1

kBT2|A|

∣∣∣∣∣∣∣∣∣
A11 · · · A1M ∆H1

...
...

...
...

AM1 · · · AMM ∆HM
∆H1 · · · ∆HM 0

∣∣∣∣∣∣∣∣∣ (20)

where ∆Hi is the reaction enthalpy of the i-th reaction. A is a two-dimensional matrix and
Aij can be obtained by

Aij =
M−1

∑
k=1

M

∑
l=k+1

(
kBT
pDb

kl

)
xkxl

[
νik
xk
− νil

xl

][
νjk

xk
−

νjl

xl

]
(21)

vik is the stoichiometric coefficient of k-th particle in i-th reaction.
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3.2.3. Electrical Conductivity

Electrical conductivity can be computed using the expression reported by Ghorui [38],
neglecting the contribution of the ions.

σ = 3
(

π

2kBTeme

)1/2
e2n2

e

∣∣∣∣ q11 q12

q21 q22

∣∣∣∣∣∣∣∣∣∣
q00 q01 q02

q10 q11 q12

q20 q21 q22

∣∣∣∣∣∣
(22)

3.2.4. Viscosity

Viscosity in the first-order approximation is given by

µ = −5
√

2πkBTh
2

∣∣∣∣∣ q̂00
ij nj

√mj

nj 0

∣∣∣∣∣(∣∣∣q̂00
ij

∣∣∣)−1
(23)

q̂00
hk = 8nh

(
mh
mk

)
∑

l

nl
√

ml

(mh + ml)
3/2

[
10
3

Q(1,1)
hl (δhk − δkl)mk + 2mlQ

(2,2)
hl (δhk + δkl)

]
(24)

where the elements q̂00
hk, which take into account collision integrals, are reported in Devoto [39].

4. Collision Integral

Collision integrals, which are averaged over a Maxwellian distribution of the transport
collision cross-sections for the binary interaction between species, are the determinants
for calculating transport properties. Collision integrals for the interaction between species
i and j are defined as:

Q(l,s)
ij

(
T∗ij
)
=

2(l + 1)

(s + 1)!
(

2l + 1− (−1)l
)∫ +∞

0
e−γ2

x2γ+3Q(l)
ij (ε)dx (25)

where γ2 = µijg2
ij/2kBT. The transport cross-section of the order l can be computed using

Equation (26), if the tabulations of the collision integrals are invalid.

Q(l)
ij = 2π

∫ +∞

0

(
1− cosl χ

)
bdb (26)

where b and χ are the impact parameter and the angle of deflection, respectively; the angle
of deflection is given by the expression:

χ = π −
∫ ∞

rc

dr/r2[
1− 2υ(r)/µijg2 − b2/r2

] (27)

where r and υ(r) are the distance and interaction potential between the particles, respectively.

4.1. Neutral–Neutral Interactions

For neutral–neutral interactions, the exponential repulsive potential is adopted to cal-
culate the collision integral between nonmetallic neutral particles, and can be expressed as

ϕij(r) = V0 exp(−βr) (28)

where, V0 and β are the coefficients, and most of them are available from references [40,41].
Regarding the interaction potential between Mg and other non-metal particles, the

author did not find direct supporting data. The Lennard–Jones like phenomenological
model potential is an improvement of the Lennard–Jones function, proposed by Laricchiuta
and Colonna et al. [19]. This potential is valid in the entire interaction range and could
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allow the direct evaluation of collision integrals for different atmospheres. The interaction
expression of the Lennard–Jones like phenomenological is

ϕij(x) = ε0

[
m

n(x)−m

(
1
x

)n(x)
− n(x)

n(x)−m

(
1
x

)m
]

(29)

where x = r/re, and n(x) = β + 4x2. For the neutral–neutral case, the values of m = 6 and
neutral–ion cases are m = 4. The value of the β parameter can be estimated by the following
empirical formula Equation (30) and it ranges from 6 to 10 depending on the hardness of
the interacting electronic distribution densities [42].

β = 6 +
5(

si + sj
) (30)

where the subscripts i and j identify the colliding partners. The softness s is defined as
the cubic root of polarizability. The polarizabilities of molecules can be found in book
“Handbook of Chemistry and Physics” [43]. For open-shell atoms and ions, a multiplicative
factor, which is the ground state spin multiplicity, should also be considered.

The phenomenological method represents the binding energy, ε0, and the equilibrium
distance, re, in terms of polarizabilities of the interacting partners, α, by the following
correlation formulas [44]

re = 1.767
α1/3

1 + α1/3
2

(α1α2)
0.095 (31)

ε0 = 0.72
Cd

r6
e

(32)

where re is given in Å, α in Å3, and ε0 in eV. The Cd constant (eV Å6) is an effective
long-range London coefficient

Cd = 15.7
α1α2[√

α1/N1 +
√

α2/N2
] (33)

where, N is the effective number of electrons that contribute to the polarization of the
neutral species.

In this study, we calculated the equilibrium distance and binding energy between Mg
and C, Mg-Mg, and Mg-O particles. The relationship between the reduced phenomenologi-
cal and reduced distance is illustrated in Figure 3. The equilibrium distance is 4.55Å, and
the binding energy is 7.65 × 10−3 eV for Mg-C particles, 4.51 Å and 4.05 × 10−3 eV are the
related values for Mg-O, and 4.96 Å and 0.029 eV is the equilibrium distance, and binding
energy of Mg-Mg particles, respectively. In regard to the collision integral, the Ω(1,1), Ω(1,2),
Ω(1,3) and Ω(1,4) for different particles have been computed, Figure 4 illustrates the curves
of collision integrals of Mg-C, Mg-Mg and Mg-O as a function of temperature.

4.2. Neutral–Ion Interactions

For neutral–ion interactions, two processes should be considered: purely elastic colli-
sions and inelastic resonant charge-exchange processes [45]. When l is 1 or 3, the second
process plays an important role in obtaining the collision integrals Ω(l,s)

ij . The total collision
integrals are estimated using Equation (34):

Ω(l,s) =

√(
Ω(l,s)

in

)2
+
(

Ω(l,s)
el

)2
(34)



Energies 2022, 15, 1036 12 of 24

Figure 3. Reduced phenomenological potential for neutral-neutral interaction (m = 6).

Figure 4. The curve of collision integrals as a function of temperature. (a) Mg-C; (b) Mg-Mg;
(c) Mg-O.
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Ω(l,s) is the total collision integral ignoring the subscripts i and j, Ω(l,s)
in and Ω(l,s)

el are
the elastic collision integrals and inelastic collision integrals for particle i and j.

The interactions with charge exchange transport cross-sections are given by

Q(l)
ij = 2(A− B ln g)2 (35)

where, g is the relative velocity between particles; A and B are constants, which can be
obtained from experimental data or theoretical calculations. The values for O and O+ could
obtain by Rutherford and Vroom [46]; For O2 and O2

+, this have been studied by Capitelli,
Giordano and Gorse C et al. [47]; About C and C+, we can refer to André, Aubreton and
Clain et al. [48].

For elastic collisions, the polarization potential model was being selected and its
expression is

ϕin(r) =
(

1
4πε0

)2 (Zie)
2αn

2r4 (36)

where, Zi is the ion charge number and αn is the polarizability of the neutral species.
ε0 is the permittivity of vacuum and e is the electron charge. For the polarization potential,
collision integrals were obtained quickly in a closed form, and the calculation formula has
been listed by Wang and Rong et al. [45] and Bruno and Catalfamo et al. [49].

4.3. Electron–Neutral Interactions

When differential cross-section data are available, transport cross-sections can be
directly calculated using Equation (25). Table 4 lists the calculation methods of collision
integrals between electrons and different neutral particles, which are directly quoted in
this study.

Table 4. Method and references for computation of collision integrals between electron and neu-
tral particles.

Molecules Method References

e-CO2 Tabulated collision integrals [50]
e-O2 Tabulated collision integrals [51]
e-CO Tabulated collision integrals [52]
e-C2 Tabulated collision integrals [53]
e-C Tabulated collision integrals [54]
e-O Tabulated collision integrals [55,56]

e-Mg Tabulated collision integrals [57]

4.4. Charged–Charged Interactions

The interaction between charged particles adopts the screened Coulomb potential formula,

ϕij(r) =
ZiZje2

r2 exp
(
− r

λD

)
(37)

where, Zi, and Zj are the charges of charged particles i-th and j-th, respectively, e is the
charge of an electron charge, and λD is the Debye length of these plasmas, which can be
expressed as follows:

λD =

√
ε0kBT
e2ne

(38)

where, ε0, and ne are the permittivity of vacuum and the electron number density, respectively.
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5. Results and Discussion
5.1. Equilibrium Compositions

The plasma composition, which is required to obtain thermodynamic parameters,
transport coefficients and radiative characteristic parameters, was calculated assuming
chemical equilibrium. In this study, the number densities of pure CO2, Mg0%-CO100%,
Mg1%-CO99%, Mg5%-CO95%, Mg10%-CO90%, Mg20%-CO80%, Mg30%-CO70%, Mg40%-
CO60% and Mg50%-CO50% mixtures at temperatures ranging from 300 to 30000 K, under
atmospheric pressure were calculated, and the results are illustrated in Figures 5 and 6. This
picture shows that the first ionization of O occurs at about 10,000 K and C and at 14,000 K.
Figure 5 shows that these results are in good agreement with those of Yang et al. [58]. We
inferred that electron and highest atomic cations (e, C3+, O3+, Mg2+, N3+) are the main
components at higher temperatures, such as T > 25,000 K. The decomposition reaction of
polyatomic molecules is more thorough, and the ionization reaction of atomic molecules is
deeper. In the temperature range of 2000 K to 8000 K, all types of reactions exist in parallel,
including dissociation, recombination and ionization reactions.

It was observed that the number density of the intermediate product experienced a
parabolic process of increase and then decrease, as CO2, C2 and O2. With an increase in
temperature, the intensity of the ionization reaction of O2 (O2 
 O2

+ + e) is obviously
higher than that of O2 (O2 
 O + O), and the number density of O2

+ is higher than that
of O2.

It can also be observed from Figure 6 that the chemical properties of Mg are relatively
active, and its ionization reaction occurs at a lower temperature than the decomposition
reaction of CO. The temperature of the first-order and second-order ionization reaction
occurs at 2600 K and 4200 K, which is obviously earlier than the first and second order
ionization of C and O atoms. Mg2+ molecules have higher molar coefficients at lower
temperatures. The presence of MgO is extremely low and almost impossible to detect.
Concurrently, owing to the low ionization reaction temperature of the Mg atom, the electron
overflow temperature of the plasma containing Mg atoms is approximately 2600 K earlier
than that of pure CO plasma.

Figure 5. Equilibrium compositions of pure CO2 mixture plasma at temperatures of 300–3000 K and
a pressure of 0.1 MPa.
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Figure 6. Equilibrium compositions of Mg-CO mixture plasma at temperatures of 300–3000K
and a pressure of 0.1 MPa. (a) CO100% (b) Mg1%-CO99% (c) Mg5%-CO95% (d) Mg10%-CO90%
(e) Mg20%-CO80% (f) Mg30%-CO70% (g) Mg40%-CO60% (h) Mg50%-CO50%.

5.2. Thermodynamic Properties

Thermodynamic parameters are the most direct data for studying the temperature
distribution in the arc macroscopically. The comparisons to the results of pure CO2 density
and enthalpy in previous literature are displayed in Figure 7. Compared to the results of
Yang et al. [58], our work shows better agreement with theirs. The calculated densities and
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enthalpies at different proportions for Mg and CO are illustrated in Figures 8 and 9. As
illustrated in these figures, the relationship between the density and temperature presents
an approximate exponential function. With an increase in temperature, the density of
plasma drops sharply until it remains at a low level, but the overall trend continues to
decline. The enthalpy of all plasmas indicated an upward trend. When the temperature
was lower than 5000 K, the value remained at a low level. In the range of 5000–15,000 K,
the enthalpy increases rapidly, and the growth rate slows down after 15,000 K.

Figure 7. The density and enthalpy of pure CO2 at 0.1MPa. The result is shown for comparison.

Figure 8. The curves of density for different proportion Mg-CO mixtures plasma at a temperature of
300–30,000 K and 0.1 Mpa.
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Figure 9. The curves of enthalpies for different proportion Mg-CO mixtures plasma at a temperature
of 300–30,000 K and 0.1 Mpa.

Evidently, from Figure 8, at the same temperature, the higher the ratio of Mg molecules,
the lower the density of the plasma, because the molecular weight of Mg is lower than that
of CO. In particular, the difference in plasma density of different proportions of Mg below
6000 K is higher than that at temperatures above 6000 K, which is caused by the fact that
the total number density of the plasma gradually decreases while the proportion of Mg
atoms does not change.

Evident from Figure 9, the enthalpy value overturns in the temperature range of
7000–8000 K, and the enthalpy value of Mg50%-CO50% changes from the maximum to
the minimum at the same temperature. This is because after 7300 K, Mg exists mainly
in the form of Mg2+, the first-order ionization reaction (Mg 
 Mg+ + e) is completely
completed, and the number of Mg+ particles is quite negligible. Specifically, the intensity
of the reaction Mg+
 Mg2

+ + e is extremely low, and the enthalpy value caused by the
chemical reaction is approximately 0. With an increase in the proportion of Mg, the enthalpy
decreased. When the temperature is higher than 15,000 K, the particles in the plasma are
mainly electrons and the highest value of atomic ions. The enthalpy increase caused by
the chemical reaction decreases with an increase in temperature, therefore the enthalpy
increase tends to slow down.

5.3. Transport Properties

Figures 10–15 illustrate the curves of thermal conductivity, electrical conductivity
and viscosity for pure CO2 and Mg-CO plasma in the 300–30,000 K temperature range at
0.1 MPa. The comparisons to the results of pure CO2 thermal conductivity, electrical con-
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ductivity and viscosity in previous literature are displayed in these figures. Compared to
the results of other authors, our work shows better agreement with Cressault et al. [59] and
Colombo et al. [60] for thermal conductivity, Cressault et al. [61], Colombo et al. [61] and
Asinovsky et al. [62] for electrical conductivity and Cressault et al. [61], Colombo et al. [60]
and Margin et al. [62] for viscosity. Such as, the electrical conductivity value presented by
Cressault et al. at 5000 K is about 20,000 S/m, our result is 20,600 S/m; The maximum ther-
mal conductivity value of Cressault et al. is about 4.43 W/m/K, our result is 4.4 W/m/K;
The maximum viscosity value presented by Cressault et al. is about 14 × 10−4 kg/m/s,
occurring at about 6000 K, our result is 14.1 × 10−4 kg/m/s at the same temperature.

Figure 11 illustrates the variation curve of total thermal conductivity with temperature
under different Mg element proportions. Consider the entire temperature range from
300 to 30,000 K, the thermal conductivity increases with the temperature. However, in the
range of 5000–10,000 K, the value of total thermal conductivity is significantly enhanced,
which is caused by the variety and intensity of chemical reactions in this temperature range.
When the temperature is lower than 5000 K, the thermal conductivity is negligible, and it
also varies very little with temperature. Higher than 10,000 K, the thermal conductivity
gradually increases, and the increase is getting faster and faster. These are determined by
the number density of the most active electron.

Figure 10. The thermal conductivity of pure CO2 at 0.1 MPa. The calculated results are shown
for comparison.
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Figure 11. The curves of thermal conductivities for different proportion Mg-CO mixtures plasma at a
temperature of 300–30,000 K and 0.1 Mp.

Figure 12. The electrical conductivity of pure CO2 at 0.1 MPa. The calculated results are shown
for comparison.
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Figure 13. The curves of electrical conductivity for different proportion of Mg-CO mixtures plasma
at a temperature of 300–30,000 K and 0.1 Mpa.

Figure 14. The viscosity of pure CO2 at 0.1 MPa. The calculated results are shown for comparison.
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Figure 15. The curves of viscosity for different proportion Mg-CO mixtures plasma at a temperature
of 300–30,000 K and 0.1 Mpa.

It is also easy to deduce from Figure 11 that the thermal conductivity is different owing
to the different proportions of Mg in different temperature ranges. The entire temperature
range can be approximately divided into three parts: below 5000 K, 5000–10,000 K, and
above 10,000 K. In the first interval, the higher the concentration of Mg, the higher the
thermal conductivity. This is caused by the ionization reaction of the Mg atoms at a lower
temperature. The larger the Mg atom proportion, the greater the thermal conductivity of
the reaction and the greater the total thermal conductivity. In the intermediate temperature
range, the major contributor to the thermal conductivity is the reaction thermal conductivity
of other atoms. The intensity of the chemical reactions related to Mg has been reduced, and
its contribution has decreased. Thus, the higher the proportion of Mg atoms, the lower the
total thermal conductivity.

The curve of conductivity of Mg-CO plasma with temperature in the range of
300–30,000 K is illustrated in Figure 13. From a global perspective, the electrical con-
ductivity increases with increasing temperature. The main factor affecting the electrical
conductivity is the electron number density, the higher the electron number density; the
stronger the electrical conductivity. The chemical properties of Mg atoms are relatively
active, and ionization reactions can occur at a lower temperature, thus precipitating elec-
trons. In contrast, the ionization temperature of pure CO gas is much higher than that
of Mg atoms, which can be directly seen in this figure. In the case of low temperature,
the larger the Mg atomic proportion, the higher the electron number density obtained by
the ionization reaction and the stronger the electrical conductivity. The same was true at
higher temperatures.

The curves of viscosity for different proportions of Mg-CO mixture plasma at tem-
peratures of 300–30,000 K and 0.1 MPa is illustrated in Figure 15. Momentum transport is
responsible for the viscosity of the plasma. This is due to the increase in particle velocity



Energies 2022, 15, 1036 22 of 24

with temperature. Viscosity mainly depends on the momentum transmission of heavy
particles, lower temperature, and the smaller speed of heavy particles, resulting in a drop
in momentum transport, and decrease in viscosity values. For temperatures higher than
10,000 K, the long-range Coulomb force between charged particles increases because of an
increase in charged particles, and a decrease in the viscosity. Mg atoms ionize at a lower
temperature and generate charged particles, resulting in a long-range Coulomb force as
early as possible to exert a blocking effect. The larger the proportion of Mg, the lower the
viscosity value.

6. Conclusions

In this study, magnesium oxide crystal arc plasma was studied and analyzed. The
pure CO2 plasma and different proportions for Mg-CO mixtures plasma of Mg0%-CO100%,
Mg1%-CO99%, Mg5%-CO95%, Mg10%-CO90%, Mg20%-CO80%, Mg30%-CO70%, Mg40%-
CO60% and Mg50%-CO50% are selected. The equilibrium plasma composition model un-
der local thermodynamic equilibrium condition was established by the Saha and Guldberg–
Waage equations combined with the mass and charge conservation equations, and Dalton’s
law. The PVM coupled with the LMA algorithm was adopted to solve this model from
higher temperatures to lower temperatures. The Chapman–Enskog method was adopted
to construct an accurate plasma transport properties model. For the interaction between
metallic Mg atoms and nonmetallic molecules, the Lennard–Jones like phenomenologi-
cal model potential was adopted to calculate the collision integral. The thermodynamic
parameters of the mixtures were also calculated. Results are as follows:

The PVM combined with the LMA algorithm can solve the singular nonlinear equa-
tions of the Jacobian matrix and this algorithm can solve the plasma composition model in
batches with high solution accuracy.

As an active metal, Mg can significantly increase the thermal and electrical conductivi-
ties at low temperatures.

The ionized electrons from Mg can promote the ionization of other molecules, and the
long-range Coulomb force between charged particles effectively reduces the viscosity of
the plasma.
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26. Bembenek, Z.; Domin, U.; Kępa, R.; Porada, K.; Rytel, M.; Zachwieja, M.; Jakubek, Z.; Janjić, J. New Bands and New Analyses in
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