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Abstract: Power generation forecasts for wind farms, especially with a short-term horizon, have been
extensively researched due to the growing share of wind farms in total power generation. Detailed
forecasts are necessary for the optimization of power systems of various sizes. This review and
analytical paper is largely focused on a statistical analysis of forecasting errors based on more than
one hundred papers on wind generation forecasts. Factors affecting the magnitude of forecasting
errors are presented and discussed. Normalized root mean squared error (nRMSE) and normalized
mean absolute error (nMAE) have been selected as the main error metrics considered here. A new and
unique error dispersion factor (EDF) is proposed, being the ratio of nRMSE to nMAE. The variability
of EDF depending on selected factors (size of wind farm, forecasting horizons, and class of forecasting
method) has been examined. This is unique and original research, a novelty in studies on errors
of power generation forecasts in wind farms. In addition, extensive quantitative and qualitative
analyses have been conducted to assess the magnitude of forecasting error depending on selected
factors (such as forecasting horizon, wind farm size, and a class of the forecasting method). Based
on these analyses and a review of more than one hundred papers, a unique set of recommendations
on the preferred content of papers addressing wind farm generation forecasts has been developed.
These recommendations would make it possible to conduct very precise benchmarking meta-analyses
of forecasting studies described in research papers and to develop valuable general conclusions
concerning the analyzed phenomena.

Keywords: forecasting error; evaluation criteria metrics; wind power forecasting; wind turbine;
wind farm; statistical analysis of errors; hybrid methods; ensemble methods; machine learning;
deep neural network

1. Introduction

The forecasting of power generation in wind farms has been an extensively explored
research topic [1–8]. The growing significance of renewable energy sources (RES) and
the remarkably dynamic growth of wind farms in most countries has highlighted the
importance of accurate power generation forecasts due to, e.g., increased wind farm contri-
bution to the overall power system. Cost-efficient and optimized management of a power
system requires RES generation forecasts of the best possible accuracy. System operation
optimization processes include scheduling the operation of fossil-based sources, schedul-
ing maintenance works in the power grid, and preventive and remedial maintenance of
RES themselves. In addition to obtaining forecasts with the best accuracy, the estimation
of errors in these forecasts also proves to be important, as it translates into maintaining
appropriate safety margins.

Forecasting purposes vary by time horizon [4,5,7]. Time horizon, also called planning
horizon, is a fixed point in the future at which a certain process will be evaluated or assumed
to have ended. In wind energy forecasting, time horizon affects the choice of forecasting
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techniques, as they are classified into four types: very short-term (seconds), short-term
(minutes to hours), medium-term (months), and long-term forecasts (months/years) [9].
Based on this classification, each approach is defined in Table 1.

Table 1. Forecasting horizons.

Horizon Applications Duration

Very short-term Turbine regulation, control strategies, electricity market billing,
real-time grid operation, network stability, voltage control 10 s

Short-term
Economic load dispatch planning, load amount, reversibility of

power management, electric market reliability in day-ahead,
load decisions for increments

5 min, 10 min, 15 min, 1 h, 24 h

Medium-term Unit commitment, reserved requirement, generation operator,
operation scheduling 1 month

Long-term Maintenance scheduling, wind farm design, electricity market
restructuring, optimization of operating costs 1 month, 1 year

Each time horizon tends to use different types of data. Very short-term forecasts
are most often based on time series data. Short-term forecasts very often use online
measurement data from a meteorological station, NWP, or combination of both as input
data, with the expectation that weather conditions will remain the same in a short time.

1.1. Major Factors Affecting Wind Power Forecasts

Magnitudes of forecasting errors for wind power generation can vary widely. The
quality of power generation forecasts is affected by a large number of independent factors
based on quantities or classes. The final forecasting error can be seen as the output of a
non-linear function that uses all the factors presented in Table 2 as inputs. Obviously, it is
impossible to create a formal formula for such a function, although it is possible to verify
how selected factors affect the magnitude of error. In some cases, it is possible to determine
the functional relationship between the error and the factor, but, unfortunately, it requires a
very large pool of research samples. In Table 2 modifiable and fixed factors are described.
When the wind farm is already active and generating energy, the following factors are fixed:
site, landscape, and size of the system.

Table 2. Description of major factors affecting wind power forecasts.

Factor Description/Influence on Error Level

Time horizon With increasing forecasting horizon, forecasting errors grow significantly, mainly
due to the falling quality of NWP forecasts [5,6,8,10,11]

Forecasting method (complexity) Complex (ensemble or hybrid) models have typically lower forecasting errors than
single methods (more details in Section 2) [1–5,8]

Size of system The inertia of power production usually grows with system size. This translates
into more predictable production, especially in shorter horizons.

Site (onshore/offshore)
Forecasting errors for offshore wind farms should be less than for onshore wind
farms due to distinctive characteristics of weather conditions (more stable and

higher wind speeds).

Landscape

Forecasting errors for farms located in rough terrain can depend on the local
landscape and meteorological features (e.g., a forest, hills, or a lake in a direct
neighborhood). The best if the terrain has as little roughness as possible—this

guarantees the optimal generation of wind energy [12]

Location of NWP forecasting points
NWP forecasts from points more distant from the wind farm can generate larger
forecasting errors. The topic of optimum selection of NWP forecasting points and

their location on the farm is subject to studies [12]



Energies 2023, 15, 9657 3 of 38

Table 2. Cont.

Factor Description/Influence on Error Level

Types and quantities of input data

The more information related to power generation can be used in the model, the
more accurate generation forecasts can be expected. In particular, using NWP as
input data is especially important (if absent, generation forecast errors grow very

sharply), and with horizons of more than several hours, NWPs are virtually
indispensable [1,2,4,13]

NWP data sources NWP data can vary by quality (forecasting accuracy)—the more accurate NWP
forecasts, the lower power generation forecasting error [2]

Quantity of training sets

The model must use training data encompassing at least one year. With a growing
number of years, the model uses more information and better represents the

seasonality and daily variability of the process (a smaller forecasting error can be
expected)

Data preprocessing Properly conducted steps to clean up and process raw input data can reduce
forecasting error [3]

Data postprocessing
Elimination of impossible situations, e.g., negative power forecasts or forecasts

determined as unlikely for specific input data. Elimination of such cases reduces
the error [13]

Measurement data availability lag Using up-to-date, current data provides for identification and correction of errors
“on the fly,” e.g., using switchable forecasting models

More attention should be paid to forecast model inputs due to the fact that, whereas
some factors, such as location, size of the system, or forecasting horizon, cannot be changed,
the biggest reduction in error can be achieved by appropriate selection of input data or
such selection that encompasses as much information as possible related to the forecast
power generation time series.

Regarding the selection of input data itself, both statistical analysis and a semi-machine
approach can be applied. Statistical analysis using various tests can help to draw conclu-
sions on data interdependencies, however, the time required for this makes it impractical
for big datasets. If larger quantities of data are available, expert selection of a pool of input
data combinations and their subsequent review can prove to be a more practical approach.
The choice of solution depends significantly on the tool—the time required for statisti-
cal analysis can bring more benefits for tools that usually require greater optimization,
e.g., ANN models.

Forecasting models require input data to predict wind power generation. The data
format used by forecasting models need to be relevant to the model itself, i.e., it must
consider which external phenomena have a direct impact on wind generation. This data
can be divided into NWP and time series [14].

NWP is a multivariate dataset based on a set of physical models used to simulate
conditions in the atmosphere; these models are available both on local and global scales.
NWP dataset contains information generated by power metering and prediction of several
meteorological variables, such as wind speed, wind direction, temperature, humidity, air
pressure, time of the day, day of the year, etc. [15,16]. As NWP is a general dataset, the
main factor that affects wind-generated power is wind speed [17,18].

The time series is a univariate dataset of a wind speed or wind power that is measured
at timestamps over a certain period. To obtain a wind speed time series, a mast is usually
installed at the wind farm, with an anemometer mounted at the hub height.

Decomposition methods often used during the forecasting process are based on the
premise that the wind power time series contain different frequency signals with different
characteristics, and that modeling each of the decomposed series separately can lead to
an overall improvement in forecast quality [8]. Popular techniques are discrete wavelet
transform (DWT), empirical mode decomposition (EMD) [3,8], ensemble empirical mode
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decomposition (EEMD) [6], variational mode decomposition (VMD) [4,8], or wavelet packet
transform (WPT).

Machine learning models can use NWP data as features, and/or time series as inputs,
where NWPs are features with information related to the expected output wind speed.
Input matrix X contains the following: historical wind inputs, weather information, and
time data. Output vector y contains the time series and multiple values of predicted wind
power with a changing prediction horizon [19].

When NWP data is not available to be used as input data, common practice is to use
autoregression of the output variable. In some works, measured values of other variables
from the recent past are also used—e.g., measured instantaneous rotor speed or measured
weather parameters for a few hours in the past [20,21]. This allows us to take into account
recent generation trends and a farm’s short-term generation inertia. A practical drawback
of this appeal would be that it cannot be used for forecasts with horizons longer than a
few hours ahead. Other possible approaches would be using measures from one farm
to forecast another one [22]. In this case, the final result would depend on the weather
similarity between used and destination farms and tools used to translate one generation
to another.

When only the wind speed time series is known, a technique called feature engineering
can be used to fabricate new features. This technique’s goal is to fabricate features by
executing simple calculations based on the known feature, the wind speed time series.
These calculations are described by standard deviation, average, minimum, or maximum
wind speed for a period of time [20,23].

In practice, the choice of the source and types of NWP forecasts strongly depends on
the data cost-to-quality ratio, nevertheless, it is worthwhile to maximize both the number of
NWP models with various densities of forecasting points and the number of weather pa-
rameters derived from them [12]. In some cases, the application of various models, or even
bundles of models, is recommended due to the diverse information content of different
models. For instance, for long-term forecasts, NWP climatic models are different from each
other, and identification of the best one can be not only difficult, but virtually impossible,
and drawing any conclusion can require aggregation analysis of various scenarios. On the
macro scale, equally important is to select a proper forecasting point, from which mete-
orological variables would be derived. Hence, the growing trend of extraction of spatial
information using various tools, e.g., CNN, was applied by some research papers [24–26].

1.2. Objective and Contribution

The main objectives of this paper can be summarized as follows:

• classify wind power forecasting techniques;
• provide unique description of major factors affecting wind power forecasts;
• describe the performance of forecasting models;
• conduct comprehensive review (quantitative analysis) based on more than one hun-

dred papers;
• conduct statistical analysis of errors (qualitative analysis).

Below are listed selected contributions of this paper:

• proposal for a novel, unique ratio, called EDF;
• analysis of variability of the new EDF ratio depending on selected characteristics (size

of wind farm, forecasting horizon, and class of forecasting method) and the original,
novel conclusions drawn from the analysis;

• development of a unique list of recommended content of papers addressing wind farm
generation forecasts (the application of these recommendations would make it possi-
ble to conduct very accurate meta-analyses that would compare various forecasting
studies).

The remainder of this paper is organized as follows: Section 2 presents the classifi-
cation of wind power forecasting techniques. Section 3 describes the performance of the
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forecasting model. Section 4 is the main part of the paper and includes comprehensive sta-
tistical analysis (quantitative and qualitative analysis). Discussion is provided in Sections 5
and 6 draws the main conclusions. References are listed at the close of this paper.

2. Classification of Wind Power Forecasting Techniques

The following alternative methodologies are applied to wind power forecasting: Naive,
Physical, Statistical, and AI/ML methods (see Table 3).

Table 3. Classification of forecasting techniques.

Technique Description Advantage Disadvantage

Naive/Persistence Methods

Simple approach that
evaluates the last period t,

benchmark for more complex
methods

Fast results, applicable only
for short-term forecasts

Does not consider correlations
between input data and the

results are not reliable for the
subsequent steps in time

Physical Methods Physical mathematical model
of the power turbine

No need for training or
historical data, enables

understanding of physical
behavior

Computationally complex, it
relies on fresh data from

several features, extensive
setup effort

Statistical/Multivariate
Methods (time series)

Mapping of relations between
features, generally through

recursive techniques, no NWP
data as an input

Models can be built easily and
with small computational

effort

Quick loss of accuracy with
time

AI/ML methods
(LR, GBT, RF, BPNN, KNNR,

LSTM, CNN, DBN, GRU,
EDCNN, RBF, SVR)

Techniques that enable the
computer to mimic human

behavior without a predefined
mathematical model (“black

box”)

Highest accuracy and can
learn more complex nonlinear

relations

Slower convergence speed,
risk of overfitting,

computational complexity

Statistical models have high precision in very short-term prediction [27]. The most
used statistical model for wind forecasting is the times series model, due to the fact that
future levels of wind power depend on weather features, but they also can depend on the
prior value of wind power generated. The amount of wind power produced in the current
hour affects the amount of wind power generation in the next hour. These models can
determine conditions in time based on relationships between parameters. However, they
depend on pre-set coefficient values.

AI and ML models are suitable for systems that are more complex to model, as they
attempt to discover underlying relationships, and are widely used to accurately predict
wind. Without an a priori structural hypothesis that relates wind power to several historical
meteorological variables, they have a strong generalization and fast speed [18,28].

Each approach mentioned above can have a high forecasting error due to inherent
weaknesses, especially when wind speeds have significant non-linear characteristics, as
volatility causes complex fluctuations. In particular, the conventional single ANN model
has the drawback of falling into local minimum and overfitting, and its performance can be
influenced by the initial parameters. These weaknesses cannot be easily remedied with a
single method. To reduce forecasting error and obtain advanced models that can achieve
higher accuracy, a combination of methods described in Table 4 is incorporated.

Ensemble forecasting methods are generated through the application of various ma-
chine learning techniques and then by merging the outputs, which reduces the risk of
overestimation and is aimed at preserving the diversity of models. The ensemble technique
is known to be applied in both cooperative and competitive styles.

In a cooperative ensemble, the dataset is divided into data subsets, each subset being
forecast individually and then aggregated with other sub-forecasts [29]. This technique is
computationally lightweight due to less need for parameter tuning and is in general used
for very short-term or short-term forecasting.
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Table 4. Classification of complex forecasting techniques.

Technique Description Advantage Disadvantage

Ensemble methods Aggregate a combination of
results from different methods

Usually perform better
than a single method

Larger computational cost of running
individual methods; the combination of
results can obscure problems inherent

in the methods

Hybrid methods
Combination of different methods

connected in series to create
hybrid prediction structures.

Usually perform better
than a single method

Larger computational cost of running
individual methods; require large

quantities of data

Competitive ensembles build individual forecasting models with different parameters
and initial values, and the results are obtained by aggregation of forecasts by different
techniques, such as the Bayesian model average. This technique, used by [30], can cover a
larger dataset and is used to achieve early detection of a large wind ramp before the changes
in the wind speed propagate to other locations. However, it is considered computationally
expensive and is mostly used in medium-term and long-term forecasting.

To obtain an advanced model with higher accuracy, hybrid forecasting models combine
the advantages of different methods with individual superior features [31]. Overall forecast-
ing effectiveness of hybrid methods can be improved, since hybrid methods can overcome
the limitations and take advantage of the merits of individual models by integrating two or
more types of models [28].

A neural network can be used in different steps of the algorithm, for example, a CNN-
based model using transfer learning is used to address the problem of some newly con-
structed farms not having sufficient historical wind speed data to train a well-performing
model by producing synthetic data [32]. In [26], the CNN is trained in layers to extract
local features and relationships between the nodes, and the output layer of CNN is set in
multiple dimensions to directly forecast future wind speed.

The most common approach is to adopt the machine learning algorithm as the main
forecasting tool and to perform data treatment using general techniques as shown by [33],
which consist of variational mode decomposition (VMD) of raw wind power series into
a certain number of sub-layers with different frequencies; the K-means as a data mining
approach being executed for splitting the data into an ensemble of components with a
similar fluctuant level of each sub-layer; and LSTM is adopted as the principal forecasting
engine for capturing unsteady characteristics of each component.

Some authors also combine both hybrid and ensemble approaches into one [34], using
a hybrid technique of intelligent and heuristic algorithms that include neural networks,
wavelet transform, diverse heuristic algorithms, and fuzzy logic. The hybrid technique uses
wavelet transform to filter distortions and noise in wind power signals, the radial neural
networks (RBF) technique being used as a preliminary predictor to find local solutions.
With the local solution, an ensemble combining three neural networks of MLP using various
learning methods along with heuristic WIPSO is used for the final prediction and modeling
of the non-linear behavior of the wind power curve.

3. Performance of Forecasting Model
3.1. RMSE, MAE, and MAPE as Frequently-Used Metrics

The root mean square error (RMSE), given by Formula 1, is a quadratic scoring rule
that estimates the average magnitude of error. It is the most standard function used to
calculate the difference between predicted and observed values, since it reflects the level of
differences between the actual and forecast values, in other words, the absolute magnitude
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of prediction error [35]. However, RMSE is sensitive to outliers, so its outcome can be
biased if the data is not clean [36].

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (1)

where ŷi is predicted value, yi is the actual value, and N is the number of prediction points
or number of samples. A smaller RMSE means that the proposed model performs better.

The mean absolute error (MAE), Equation (2), corresponds to the estimated level of
absolute error. This level indicates the average magnitude of the actual value and the
predicted value [37].

MAE =
1
N

N

∑
i=1
|yi − ŷi| (2)

where ŷi is predicted value, yi is the actual value, and N is the number of prediction points
or number of samples. MAE is not susceptible to outliers and can better reflect the actual
status of predicted errors [38]. The model is deemed to be accurate when MAE is close to
zero.

The mean absolute percentage error (MAPE), Equation (3), calculates the percentage
error relative to the actual value, which is stated as the average ratio, and is also commonly
used to compare different models [36,39].

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ · 100% (3)

where ŷi is predicted value, yi is the actual value, and N is the number of prediction points
or number of samples.

Although RMSE is usually used to express the dispersion of the results, MAE and
MAPE can indicate the deviation of the prediction [17]. The smaller the values of RMSE,
MAE, and MAPE, the more accurate the forecasting model.

3.2. MSE, nMAE, nRMSE, and R2 As Occasionally Used Metrics

The mean squared error (MSE), Equation (4), simply averages the mean squared
difference between the estimated and original parameters [40], which can avoid the problem
that the errors cancel each other out, and accurately reflects the actual prediction error [35].

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (4)

where ŷi is predicted value, yi is the actual value, and N is the number of prediction points
or number of samples.

Sometimes authors need to normalize the MAE and RMSE to quantitatively examine
the prediction performances of some models, their norms being given by the normalized
mean absolute error (nMAE), Equation (5), and normalized root mean squared error
(nRMSE), Equation (6).

nRMSE =

√√√√ 1
N

N

∑
i=1

(
yi − ŷi

Ci

)2
(5)

nMAE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
Ci

∣∣∣∣, (6)

where Ci is the operating capacity of time point i, ŷi is predicted value, yi is the actual
value, and N is the number of prediction points or number of samples. In general, smaller
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values of these metrics indicate that the corresponding solution offers less deviation of
prediction performance [41].

The R-square or coefficient of determination (R2), Equation (7), is the proportion of the
variance in the dependent variable that is predictable from independent variable(s) [42,43].
It indicates the level of correlation between predicted value and the actual value, and it
helps to select the best model with highest forecasting accuracy [44]. It is mostly used in
datasets of large amplitudes [17].

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2 , f or y =

1
N

N

∑
i=1

yi (7)

where y is the average of actual values, ŷi is predicted value, yi is the actual value, and N is
the number of prediction points or number of samples. An R2 closer to one indicates more
accurate forecasting. It can also be displayed as negative to denote an arbitrarily worse
predicting model [20].

3.3. R, PICP, PINAW, sMAPE, MRE, and TIC As Seldom Used Metrics

The Pearson linear correlation coefficient (R or CC), Equation (8), is a metric that deter-
mines the relationship between inputs and outputs by determining the linear dependence
between results and observations [9,37].

R =
∑N

i=1(xi − x̂i)(yi − ŷi)√
∑N

i=1(xi − x̂i)
2 ∑N

i=1(yi − ŷi)
2

(8)

where ŷi and x̂i are predicted values, yi and xi are the actual values, and N is the number
of prediction points or number of samples. The possible R score range can vary between 1
and −1, with 1 representing the biggest correlation, and −1 the lowest one [45].

Prediction interval coverage probability (PICP), Formula (9), measures the ability of
the constructed confidence interval to cover the target values for prediction intervals.

PICP =
1
N ∑N

i=1 ρi, for ρi =

{
1, i f yi ∈ [Li, Ui]

else 0
(9)

where Li and Ui are the lower bound and the upper bound, respectively, of the prediction
values, yi is the actual value, and N is the number of prediction points or number of samples.
The greater the PICP, the more reliable the prediction values [46,47].

Prediction interval normalized average width (PINAW), Equation (10), is used to
measure the width of the PIs for a given length of the prediction interval.

PINAW =
1
N

N

∑
i=1

(Ui − Li)

tmax − tmin
(10)

where tmin and tmax are the maximum and minimum values of the predicted values, and Li
and Ui are the lower bound and the upper bound, respectively, of the prediction values [48].

The Symmetric Mean Absolute Percentage Error (sMAPE) metric, Formula (11), a
variation of MAPE, is used to describe the relative error of a set of forecasts and their labels
as a percentage [36,37].

sMAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi + ŷi

∣∣∣∣ · 200% (11)

where y is the average of actual values, ŷi is predicted value, yi is the actual value, and N is
the number of prediction points or number of samples.
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Theil’s inequality coefficient (TIC), Equation (12), is used to measure the predictive
performance of the model [49].

TIC =

√
1
N ∑N

i=1 (yi − ŷi)
2√

1
N ∑N

i=1 ŷi
2 +

√
1
N ∑N

i=1 ŷi
2

(12)

where y is the average of actual values, ŷi is predicted value, yi is the actual value, and N
is the number of prediction points or number of samples. The smaller the TIC value, the
stronger the prediction ability [50].

The mean relative error (MRE), Equation (13), calculates the magnitude of the differ-
ence between predicted and actual values [51].

MRE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (13)

where y is the average of actual values, ŷi is predicted value, yi is the actual value, and N
is the number of prediction points or number of samples.

The mean bias error (MBE), Equation (14), gives the average bias error of prediction. It
is used to determine if the predicted value is underestimated <0 or overestimated >0 [1,2,52].

MBE =
1
N

N

∑
i=1

(yi − ŷi) (14)

where ŷi is the predicted value, yi is the actual value, and N is the number of prediction
points or number of samples. This metric is useful to identify the need to add extra steps to
calibrate the model.

3.4. Interesting Usage of Other Metrics

Some studies use prediction accuracy metrics such as MSE, combinations of MAE, and
RMSE to create the fitness function, as the fitness function directly affects the convergence
of the algorithms and the optimal solution [17,35,49].

The MAPE is a commonly used evaluation metric that generates infinite values when
the actual value yi is zero or close to zero. To avoid this problem, mean arctangent absolute
percentage error (MAAPE) is used, Equation (15).

MAAPE =
1
N

N

∑
i=1

arctan
∣∣∣∣yi − ŷi
yi + ŷi

∣∣∣∣ (15)

where MAAPE ranges from 0 to π
2 , y is the average of actual values, ŷi is predicted value,

yi is the actual value, and N is the number of prediction points or number of samples. A
smaller MAAPE indicates smaller forecasting error [9].

To compare the predictive performance of the models, promoting percentages (P) are
applied in different metrics, Equation (16).

PMETRIC =

∣∣∣∣METRIC1 −METRIC2

METRIC1

∣∣∣∣ (16)

where METRIC1 and METRIC2 are the error metrics calculated for two different prediction
models. The promoting percentages are called PMAE, PMAPE, PRMSE, PNMAE, PNRMSE,
and PSMAPE [26,33,48,53–55].

The metrics MAE, MSE, and RMSE are usually used in deterministic forecasting
methods. As for probabilistic forecasting, the process can be more complicated, due to the
influence of external factors leading to a better analysis based on the verification of the
quantile forecasts given by PICP and PINAW [56].
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For a comparative assessment of the performance test of the analyzed methods, the
skill score (SS) metric is useful. The skill score metric uses one nRMSE (Equation (17)) or
nMAE metric (Equation (18)) or two error metrics—nRMSE and nMAE—and in this case, it
is calculated by Equation (19) [2]. Higher SS values are an indication of superior prediction
quality. An advantage of using a skill score is the ability to compare the forecasting qualities
of various systems, using the level of reduction in forecasting error relative to the reference
method as the quality indicator (persistence method—naive model).

SSRMSE =

(
1−

nRMSE f orecast

nRMSEre f erence

)
(17)

where nRMSE f orecast is the error of the analyzed method, and nRMSEre f erence is the error of
the reference method (persistence method—naive model).

SSMAE =

(
1−

nMAE f orecast

nMAEre f erence

)
(18)

where nMAE f orecast is the error of the analyzed method and nMAEre f erence is the error of
the reference method (persistence method—naive model).

SSRMSE, MAE =
1
2

[(
1−

nMAE f orecast

nMAEre f erence

)
+

(
1−

nRMSE f orecast

nRMSEre f erence

)]
(19)

4. Comprehensive Statistical Analysis

Out of 106 papers, statistical analysis was conducted on those which applied nRMSE
and nMAE errors and which could calculate these two error metrics based on the rated
power of the system and the levels of RMSE and MAE errors. In addition, based on the
content of those papers, crucial details (factors) of studies were selected to enable statistical
quantitative analysis and error analysis and their relationship with other factors. Table 5
(onshore systems, data from 60 papers) and Table 6 (offshore systems, data from six papers)
contain sets of selected information from the studies presented in the papers.
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Table 5. Summary of errors obtained for onshore wind power forecasting models.

No. Title/Reference
Horizon

System
Nominal
Power ***

Method Details Error Metric Input Data Details

- - - nRMSE nMAE -

1.
Wind power forecasting based on daily wind speed data using

machine learning algorithms [23]
Proposed Method——

1 year 1 MW
RF (ensemble) 0.0302 * 0.0070 * Daily wind speed, mean wind speed, standard deviation,

total generated wind power values—Turkish State
Meteorological ServiceXGBoost (ensemble) 0.0344 * 0.0065 *

2.
Short-term wind power forecasting based on support vector

machine with improved dragonfly algorithm [17]
Proposed Method—IDA-SVM

48 h 2050 KW
IDA-SVM (hybrid) 0.0524 0.0404 Wind power, wind speed, wind direction, and

temperature—La Haute Borne wind farm
DA-SVM (hybrid) 0.0617 0.0515

3.
A cascaded deep learning wind power prediction approach based

on a two-layer of mode decomposition [24]
Proposed Method—EMD-VMD-CNN-LSTM

1, 2, 3
steps ? MW

EMD-VMD-CNN-
LSTM (Dataset #1, avg,

hybrid)
0.0329 * 0.0227 *

Three sets of hourly averaged wind power, wind speed, and
wind direction time series, Sotavento Galicia wind farm

EMD-VMD-CNN
(Dataset #1, avg, hybrid) 0.0396 * 0.0321 *

4.
A Model Combining Stacked Auto Encoder and Back Propagation

Algorithm for Short-Term Wind Power Forecasting [57]
Proposed Method—SAE_BP

1, 2, . . . ,
9 steps 1500 MW

SAE_BP (avg,
hybrid/ensemble) 0.0941 * 0.0738 * Wind generation from Ireland all island—EirGrid Group

SVM (avg, single) 0.1396 * 0.1185 *

5.
Deep belief network based k-means cluster approach for

short-term wind power forecasting [16]
Proposed Method—DBN

10 min 17.56 MW
DBN (single) 0.0322 0.0236 Wind speed, wind direction, temperature, humidity, pressure,

history wind speed, history wind power—NWP meteogalicia
and Sotavento wind farmBP (single) 0.0580 0.0446

6.
Multi-distribution ensemble probabilistic wind power forecasting

[29]
Proposed Method—MDE

1, 6, 24 h 16 MW

Q-learning (6 h, single) 0.2355 0.1841 Meteorological information (many features), synthetic actual
wind power, and wind power forecasts generated by the
Weather Research and Forecasting (WRF) model—MDE

probabilistic forecasting framework, from the Wind
Integration National Dataset (WIND) ToolkitNWP (24 h, single) 0.1817 0.1337

7.
Forecasting energy consumption and wind power generation

using deep echo state network [36]
Proposed Method—DeepESN—Stacked Hierarchy of Reservoirs

10 steps 6910 million
KWh

DeepESN
(hybrid/ensemble) 0.0326 * 0.0247 *

?—historical WPG data in Inner Mongolia
BP (single) 0.0957 * 0.0764 *

NAÏVE (single) 0.2033 * 0.1593 *

8.
Feature Extraction of NWP Data for Wind Power Forecasting

Using 3D-Convolutional Neural Networks [25]
Proposed Method—3D-CNN—Three Dimensional Convolutional

Neural Network

30
min—72

h

Normalized
data

3D-CNN (20 h, single) 0.210 ** 0.150 ** Wind power from every 10 s, from April 2015 to July 2017 +
NWP—wind farm in Tohoku region2D-CNN (20 h, single) 0.212 ** 0.156 **

NAÏVE (20 h, single) 0.212 ** 0.156 **

9.
A gated recurrent unit neural networks based wind speed error

correction model for short-term wind power forecasting [58]
Proposed Method—Gated Recurrent Unit Neural Networks

24 h ?
Proposed (single) 0.1345 0.0687 Wind speed, wind power, and NWP wind speed data,

sampled at a period of 15 min—wind farm in Sichuan
ProvinceANN (single) 0.1350 0.0680
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Table 5. Cont.

No. Title/Reference
Horizon

System
Nominal
Power ***

Method Details Error Metric Input Data Details

- - - nRMSE nMAE -

10.

Medium-term wind power forecasting based on multi-resolution
multilearner ensemble and adaptive model selection [9]

Proposed Method—MRMLE-AMS—Multilearner Ensemble and
Adaptive Model Selection

6, 12, 18 h
Step = 6 h 200 MW

MRMLE (dataset #4,
step 3, hybrid) 0.1254 * 0.0943 *

Actual wind power series in Canada as experimental datasets
Hao’s model (dataset #4,

step 3,
hybrid/ensemble)

0.1554 * 0.1245 *

NAÏVE (dataset #4, step
3, single)

0.4218 * 0.3226 *

11.
Short-term wind power prediction based on improved

small-world neural network [59]
Proposed Method—SWBP—Small-World BP neural network

15 min Normalized
data

SWBP (single) 0.0820 0.0601 Wind speed and power, air temperature, barometric pressure,
relative humidity, wind velocity, and direction at the height of

10, 30, 50, and 70 m—Jiangsu wind farmBP (single) 0.1072 0.0841

12.

Wind power forecasting based on singular spectrum analysis and
a new hybrid Laguerre neural network [31]

Proposed Method—OTSTA-SSA-HLNN—opposition
transition state transition algorithm-SSA-HLNN

1, 3, 6, 12
steps

Approx. 1500
KW (graph)

OTSTA-SSA-HLNN
(experiment1, hybrid) 0.0612 0.0923

?—Wind farm in Xinjiang
STA-SSA-HLNN

(experiment1,
hybrid/ensemble)

0.0727 0.1101

13.

Short-term wind power forecasting using the hybrid model of
improved variational mode decomposition and Correntropy Long

Short-term memory neural network [50]
Proposed Method—IVMD-SE-MCC-LSTM—Improved

VMD-SE-MCC-LSTM

? 1402.7 KW

IVMD-SE-MCC-LSTM
(hybrid) 0.0347 * 0.0241 *

Wind power series from 1 to 4 parameters—Gansu and
Dingbian wind farm

EMD-SE-MCC-LSTM
(hybrid) 0.0370 * 0.0270 *

14.

Short term wind power forecasting using hybrid variational mode
decomposition and multi-kernel regularized pseudo inverse

neural network [44]
Proposed Method—VAPWCA-VMD-RMKRPINN—VMD based

kernel regularized pseudo inverse neural network

10, 30
min and

1, 3 h

Approx. 30
MW

(graph)

VAPWCA-VMD-
RMKRPINN (3h, 150

samples, hybrid)
0.0310 * 0.0261 *

Wind power—Wyoming wind farm
VAWCA-EMD-

RMKRPINN (3h, 150
samples, hybrid)

0.0337 * 0.0274 *

15.

Short-term wind power forecasting using long-short term
memory based recurrent neural network model and variable

selection [27]
Proposed Method—LSTM-RNN

1 to 24 h 17.56 MW LSTM-RNN (24 h,
single) 0.1043 0.0765

Surface pressure, temperature, wind speed at 10 M, 35 M, 100
M, 170 M, wind direction at 35 M, 170 M—Sotavento Galicia

wind farm NWP from Weather & Energy PROGnoses
(WEPROG)
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Table 5. Cont.

No. Title/Reference
Horizon

System
Nominal
Power ***

Method Details Error Metric Input Data Details

- - - nRMSE nMAE -

16.
A novel hybrid model for short-term wind power forecasting [35]

Proposed Method—The Proposed Hybrid Model
1, 2, 3
steps 2.5 KW

The Proposed Hybrid
Model (set 1, 3 steps,

single)
0.0773 * 0.0570 *

Wind speed—Sotavento Galicia wind farm
EMD-ENN (set 1, 3

steps, single) 0.0793 * 0.0625 *

NAÏVE (set 1, 3 steps,
single)

0.1280 * 0.1020 *

17.

A novel hybrid technique for prediction of electric power
generation in wind farms based on WIPSO, neural network and

wavelet transform [34]
Proposed Method—RBF + HNN + WT + WIPSO

24, 72 h 254 MW

RBF + HNN + WT +
WIPSO (72 h, winter,

hybrid)
0.0201 0.0173

Wind power, temperature, wind direction, wind speed,
humidity, and air pressure—wind farms in Alberta, Canada

RBF + HNN + WT +
MPSO (72 h, winter,

hybrid)
0.0250 0.0200

18.
Wind Speed Prediction of IPSO-BP Neural Network Based on

Lorenz Disturbance [43]
Proposed Method—LD-PCA-IPSO-BPNN

10 min ? ?

LD-PCA-IPSO-BPNN
(hybrid) 0.0095 * 0.0082 * Wind speed, wind direction, temperature, air pressure,

specific volume, specific humidity, and surface
roughness—Sotavento wind farmPCA-IPSO-BPNN

(hybrid) 0.0269 * 0.0235 *

19.
Multi-step Ahead Wind Power Forecasting Based on Recurrent

Neural Networks [53]
Proposed Method—LSTM/GRU with wind speed correction

1, 2, 3, 4
steps

step: 10
3 MW

LSTM (wind speed
correction step *,

hybrid)
0.0181 * 0.0090 * Wind turbine state, rotation rate, generating capacity,

sine of wind direction, cosine of wind direction, pitch angle,
temperature, and wind power—wind turbine in North China

and NWP
GRU (wind speed
correction step *,

hybrid)
0.0185 * 0.0096 *

20.
A New Prediction Model Based on Cascade NN for Wind Power

Prediction [60]
Proposed Method—Proposed

10, 20,
. . . , 50,
60 min

1, 2, . . . ,
7 days

17.56 MW

Proposed (7 days,
hybrid) 0.1942 * 0.2762 *

Hourly wind speed and power forecast—Sotavento wind
farmMLP (7 days, single) 0.4704 * 0.3519 *

NAÏVE (7 days, single) 0.7204 * 0.5108 *
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Table 5. Cont.

No. Title/Reference
Horizon

System
Nominal
Power ***

Method Details Error Metric Input Data Details

- - - nRMSE nMAE -

21.
A new short-term wind speed forecasting method based on
fine-tuned LSTM neural network and optimal input sets [61]

Proposed Method—Optimized WT-FS-LSTM by CSA and by PSO

1 step
Step:

approx.
240

(graph)

Normalized
data

Optimized
WT-FS-LSTM by CSA

(hybrid)
0.1536 0.1217

Hourly wind speed—Sotavento wind farm
Optimized

WT-FS-LSTM by PSO
(hybrid)

0.1621 0.1306

WT-FS-LSTM (hybrid) 0.1655 0.1311

22.
Wind speed forecasting method based on deep learning strategy

using empirical wavelet transform, long short term memory
neural network and Elman neural network [54]

Proposed Method—EWT-LSTM-Elman

1, 2, 3
steps ?

EWT-LSTM-Elman (3
steps, hybrid) 0.065 * 0.049 *

Wind speed series
EWT-BP (3 steps,

hybrid) 0.077 * 0.058 *

23.
A Comparative Study of ARIMA and RNN for Short Term Wind

Speed Forecasting [62]
Proposed Method——

? ?
RNN (dataset 1, single) 0.0942 * 0.0750 *

Hourly mean wind speed—Coimbatore meteoblue weather
websiteARIMA (dataset 1,

single) 0.1058 * 0.0917 *

24.
Can we improve short-term wind power forecasts using

turbine-level data? A case study in Ireland [63]
Proposed Method—VMD-ELM with WT-data

1,2, . . . , 8
h

24,923 KW

VMD-ELM with
WT-data 0.0773 0.0564

Wind power, WT-data, or WF-data—wind farm in West and
Southwest of IrelandVMD-ELM with

WF-data 0.0811 0.0605

25.
Short term forecasting based on hourly wind speed data using

deep learning algorithms [64]
Proposed Method——

? Normalized
data

LSTM
(October–December,

single)
1.236 0.8742

Hourly wind speed, air temperature, pressure, dew point,
and humidity—metrological wind dataset from the location

ELM
(October–December,

single)
0.9215 0.3978

26. Hybrid Approach for Short Term Wind Power Forecasting [65]
Proposed Method—Proposed Method 24 h 2100 KW Proposed method

(December, hybrid) 0.0162 * 0.0077 * Wind speed—Jodhpur wind farm

27.

Very Short-Term Spatial and Temporal Wind Power Forecasting:
A Deep Learning Approach [66]

Proposed Method—CST-WPP—convolution-based
spatial-temporal wind power predictor

5—30
min

Normalized
data

CST-WPP (30 min) 0.0749 0.0494
5 min mean wind power data of 28 wind farms—Australian

Energy Market OperatorVAR (30 min, single) 0.0861 0.0651

NAÏVE (30 min, single) 0.1174 0.0974
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Table 5. Cont.

No. Title/Reference
Horizon

System
Nominal
Power ***

Method Details Error Metric Input Data Details

- - - nRMSE nMAE -

28.
Short-Term Wind Speed Forecasting Using

Ensemble Learning [67]
Proposed Method—–

48 h ?

Bagged trees (December,
ensemble) 0.138 * 0.107 * 10 min wind speed data—modern-era retrospective analysis

for research and applications, version 2 (MEERA-2)
Boosted trees

(December, ensemble) 0.147 * 0.113 *

29.
Seasonal Self-evolving Neural Networks Based
Short-term Wind Farm Generation Forecast [68]

Proposed Method—SSEN—Seasonal Self-Evolving Neural
Networks

10 min, 1
h

300.5 MW

SSEN (10 min,
ensemble) 0.0302 0.0170 Power outputs, wind speed and direction—National

Renewable Energy Laboratory (NREL) and Xcel Energy

LSTM (10 min, single) 0.0307 0.0180

30.
Markov Models based Short Term Forecasting of

Wind Speed for Estimating Day-Ahead Wind Power [69]
Proposed Method——

24 h 2100 KW Markov chain model
(Group 1, single) 0.0714 * 0.0620 * Wind speed—Dark Sky API

31.
Day-Ahead Wind Power Forecasting Based on Wind Load Data

Using Hybrid Optimization Algorithm [49]
Proposed Method—VMD-mRMR-FA-LSTM

24 h
Approx. 85

MW
(graph)

VMD-mRMR-FA-LSTM
(hybrid) 0.0358 * 0.0348 * Wind power, load, temperature, air pressure, humidity, wheel

height, wind speed and wind direction at 10m, 30m, 50m and
70m—Beijing Lumingshan Wind Power PlantmRMR-FA-LSTM

(hybrid) 0.0388 * 0.0379 *

32.
Short-Term Wind Power Prediction Using GA-BP Neural

Network Based on DBSCAN Algorithm Outlier Identification [70]
Proposed Method—DBSCAN-GA-BP

10 min, 1
h ?

DBSCAN-GA-BP
(single) 0.0646 0.0524 Wind speed, temperature, humidity, cosine value of wind

direction, air pressure and power
GA-BP (single) 0.0978 0.0798

33.
Ultra-Short-Term Wind-Power Forecasting Based on

the Weighted Random Forest Optimized by the Niche
Immune Lion Algorithm [71]

Proposed Method—WD-NILA-WRF

5 min 49.5 MW

WD-NILA-WRF (WF A,
hybrid) 28.5797 24.2484 Wind power, wind speed, wind direction, temperature,

humidity, air density, air pressure, ground roughness, and
other factors—wind farm in Inner Mongolia ANILA-RF (WF A,

hybrid) 70.9289 54.4785

34.
Wind Power Short-Term Prediction Based on LSTM

and Discrete Wavelet Transform [72]
Proposed Method—DWT_LSTM

1, 2, 3, 4,
5 steps

Approx. 1500
MW

(graph)

DWT_LSTM (WF 3—5
steps) 0.024 * 0.016 *

Wind power—wind farm in Yunnan, China
DWT_BP (WF 3—5

steps) 0.027 * 0.018 *

35.
Short-Term Wind Power Forecasting: A New Hybrid Model
Combined Extreme-Point Symmetric Mode Decomposition,

Extreme Learning Machine and Particle Swarm Optimization [73]
Proposed Method—ESMD-PSO-ELM

15 min? 49.5 MW

ESMD-PSO-ELM
(hybrid) 2.7 2.23

Wind power—wind farm in Yunnan, China
EMD-PSO-ELM

(hybrid) 3.25 2.88
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Table 5. Cont.

No. Title/Reference
Horizon

System
Nominal
Power ***

Method Details Error Metric Input Data Details

- - - nRMSE nMAE -

36.
Hourly Day-Ahead Wind Power Prediction Using the Hybrid

Model of Variational Model Decomposition and Long Short-Term
Memory [74]

Proposed Method—Direct-VMD-LSTM

24 h
Approx. 30

MW
(graph)

D-VMD-LSTM (hybrid) 0.1287 * 0.1070 *
Hourly wind power—wind farm located in Henan

VMD-BP (hybrid) 0.1487 * 0.1927 *

37.
Wind Power Prediction Based on Extreme Learning Machine with

Kernel Mean p-Power Error Loss [51]
Proposed Method—ELM-KMPE

Short-
term?

6 MW
ELM-KMPE (hybrid) 1.3643 * 0.6369 * Wind speed, wind direction, temperature, atmospheric

humidity, and atmospheric pressure + weather data—NWP
and SCADAELM (single) 1.3648 * 0.6703 *

38.
TRSWA-BP Neural Network for Dynamic Wind Power

Forecasting Based on Entropy Evaluation [75]
Proposed Method—TRSWA-BP

1, 4, 6, 24
h ?

TRSWA-BP (24h,
hybrid) 0.1703 * 0.1018 * Wind power

BP (24h, single) 0.1747 * 0.1132 *

39.
Ultra Short-Term Wind Power Forecasting Based on Sparrow

Search Algorithm Optimization Deep Extreme Learning Machine
[76]

Proposed Method—SSA-DELM

Ultra-
short-
term

?

3600 KW
SSA-DELM (hybrid) 0.0321 * 0.0194 *

Wind Power, wind Speed, wind Direction—SCADA + wind
farm data

WA-DELM (hybrid) 0.0323 * 0.0201 *

40.
Numerical Weather Prediction and Artificial Neural Network

Coupling for Wind Energy Forecast [77]
Proposed Method—? Hybrid

> 6 h ?
Hybrid (hybrid) 0.163 0.105

?—NWP
Baseline (single) 0.214 0.137

41.
A Hybrid Framework for Short Term Multi-Step Wind Speed
Forecasting Based on Variational Model Decomposition and

Convolutional Neural Network [26]
Proposed Method—VMD-CNN

16 h ?
VMD-CNN (hybrid) 0.0655 * 0.0515 *

Wind speed—Sotavento Galicia wind farm

VMD-NN (hybrid) 0.0959 * 0.0764 *

42.
Forecasting Models for Wind Power Using Extreme-Point

Symmetric Mode Decomposition and Artificial Neural Networks
[55]

Proposed Method—Proposed model

24 h 49.5 MW

Proposed model
(hybrid) 0.0251 0.0191 Wind power, humidity (30 m), pressure (50 m), temperature

(100 m), wind direction (50 m), wind speed (50 m)—wind
farm, China

EEMD (ensemble) 0.0281 0.0218

43.
Multi-Step Ahead Wind Power Generation Prediction Based on

Hybrid Machine Learning Techniques [41]
Proposed Method—mRMR-IVS

1, 2, 3, 4 h 94 MW

mRMR-IVS (Xuqiao,
hybrid) 0.0971 0.0762 Power generation + wind speed, trigonometric wind

direction, temperature, humidity, and atmospheric
pressure—Anhui, Xuqiao wind farm + NWPPSR-IVS (Xuqiao,

hybrid) 0.1041 0.087

44.
An improved residual-based convolutional neural network for

very short-term wind power forecasting [37]
Proposed Method—Ours

1, 2, 3 h 2.5 MW
Ours (jan, single) 0.0326 0.0234 Wind power, wind speed, and wind direction—wind farm

located in southeastern Turkey
VGG-16 (jan, single) 0.0942 0.07

45.
A novel hybrid approach based on variational heteroscedastic
Gaussian process regression for multi-step ahead wind speed

forecasting [45]
Proposed Method—CEEMDAN-VHGPR (CVHGPR)

1, 2, 3
steps ?

CVHGPR (W1, 3-step) 0.0244 * 0.0189 *
Wind speed—Sotavento Galicia wind farm

CGPR (W1, 3-step) 0.0250 * 0.0193 *
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Table 5. Cont.

No. Title/Reference
Horizon

System
Nominal
Power ***

Method Details Error Metric Input Data Details

- - - nRMSE nMAE -

46.
A novel reinforced online model selection using Q-learning

technique for wind speed prediction [78]
Proposed Method—OMS-QL

1 h ?
OMS-QL (hybrid) 0.0635 * 0.0348 * Wind speed—Colorado wind farm

CLSTM (M9, hybrid) 0.0937 * 0.0670 *

47.

Hybrid and Ensemble Methods of Two Days Ahead Forecasts of
Electric Energy Production in a Small Wind Turbine [1]

Proposed Method—The ensemble method based on hybrid
methods

48 h 5 KW

The ensemble method
based on hybrid

methods (ensemble/
hybrid)

0.0936 * 0.0563 *
Generated power, wind speed at different levels, blades pitch

angle, nacelle orientation, etc.—SCADA and Levenmouth
Demonstration Turbine (LDT)Physical model+LSTM

(hybrid) 0.0940 * 0.0565 *

NAÏVE (single) 0.2005 * 0.1267 *

48.

Advanced Ensemble Methods Using Machine Learning and Deep
Learning for One-Day-Ahead Forecasts of Electric Energy

Production in Wind Farms [2]
Proposed Method—Ensemble Averaging Without Extremes

(many single and ensemble methods)

24 h 50 MW

Ensemble Averaging
Without Extremes
(many single and

ensemble methods)
(ensemble/ hybrid)

0.1618 0.1130 Many input data, lagged values of forecasted time series,
meteo forecast—wind speed, Indictor of variability of the

daily electric energy production—NWP UM, south of Poland
GBT (XGBOOST

(ensemble) 0.1636 0.1185

NAÏVE (single) 0.3833 0.2877

49.
A novel hybrid model based on nonlinear weighted combination

for short-term wind power forecasting [79]
Proposed Method—Proposed

Short-
term

?

1112.40 KW
Proposed (hybrid) 0.0386 * 0.0318 * Wind speed—Shaanxi Dingbian wind farm
PSO-DBN (hybrid) 0.1565 * 0.1004 *

50.
Ultra-short term wind power prediction applying a novel model

named SATCN-LSTM [80]
Proposed Method—SATCN-LSTM

1 step
step: 16

Normalized
data

SATCN-LSTM (Q1st,
hybrid) 0.9070 0.4970 Wind speed, air density, wind direction, temperature, and

surface pressure—wind farm California
TCN-LSTM (Q1st,

hybrid) 0.9160 0.5060

* recalculated from RMSE or MAE and nominal system power, ** approximated values from graphs, *** nominal system power only applies to the error for a specific case rather than all
cases.
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Table 6. Summary of errors obtained for offshore wind power forecasting models.

No. Title/Reference
Horizon

System
Nominal
Power ***

Method Details Error Metric Input Data Details

- - - nRMSE nMAE -

1.
Wind power forecasting of an offshore wind turbine based on

high-frequency SCADA data and deep learning neural network
[20]

Proposed Method——

? 7 MW

Tensor Flow with
feature engineering

(single)

0.07789
* 0.0572 * Active power, wind speeds, blade pitch angles, nacelle

orientation, ambient temperature, and yaw error, from 1 July
2018 to 30 June 2019—SCADA database from Offshore

Renewable Energy (ORE) CatapultTensor Flow with ReLU
activation (single)

0.07390
* 0.0534 *

2.
A hybrid deep learning-based neural network for 24-h ahead

wind power forecasting [42]
Proposed Method—CNN-RBFNN-DGF

24 h 2,000,800 KW
CNN-RBFNN-DGF

(hybrid) 0.0385 * - Wind power generation—Changgong

CNN-RBFNN (hybrid) 0.0697 * -

3.
Exploiting Deep Learning for Wind Power Forecasting Based on

Big Data Analytics [15]
Proposed Method—EDCNN

24 h 900 MW
EDCNN (ensemble) 0.085 - Wind speed, dew point temperature, dry bulb temperature,

past lagged values of wind power, and wavelet packet
decomposed wind power—NWP and 100 weather station in

West Texas Mesonet (WTM)”SELU CNN (ensemble) 0.12 -

4.
Wind power forecasting using attention-based gated recurrent

unit network [19]
Proposed Method—AGRU + Attention

5, 15, 13
min, 1h, 2

h
16 MW

AGRU + Attention (2 h,
ensemble) 0.1007 Historical wind power sequences and NWP data—National

Renewable Energy Laboratory (NREL)
AGRU + RFE (2 h,

ensemble) 0.1147

5.
Offshore wind power forecasting-A new hyperparameter

optimization algorithm for deep learning models [81]
Proposed Method—LSTM optimized by Optuna

? 6.5 MW

LSTM optimised by
Optuna (Data1, single) 0.0950 * - Generated power, wind speed at different levels, blades pitch

angle, nacelle orientation, etc.—SCADA and wind farm,
Levenmouth Demonstration Turbine (LDT)LSTM (Data1, single) 0.0963 * -

NAÏVE (Data1, single) 0.0979 * -

6.

Short-term multi-hour ahead country-wide wind power
prediction for Germany using gated recurrent unit deep learning

[82]
Proposed Method—RNN-GRU, RNN-LSTM

1, 3, 5, 12
h

33,626 MW

RNN-GRU (1 h) 0.0017 * 0.0009 * Wind speeds, air density, air pressure, power price index,
wind speed V1, V10, and V50 (2 m above displacement

height), h2 (10 m above displacement height), and h3 (50 m
above ground), surface roughness length, temperature 2

m—OPSD Time Series, 2019

RNN-LSTM (1 h) 0.0026 * 0.0012

SVR-RBF (1 h) 0.2968 * 0.2333 *

* recalculated from RMSE or MAE and nominal system power, *** nominal system power only applies to the error for a specific case rather than all cases.
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In addition to the papers mentioned in Tables 5 and 6, in Section 4.1 (Comprehensive
Quantitative Review) below we also use in certain analyses information from those papers
which did not provide nRMSE and nMAE error values or these values could not be
calculated due to absence of information on the rated power of the system. These papers
are the following: [26,83–122].

4.1. Comprehensive Quantitative Review

Based on data from 116 papers, statistical analysis was conducted to determine, among
other things: the frequency of use of various error metrics, classes of forecasting methods,
distinct types of input variables for forecasting models, scopes of rated powers of the
systems subject to forecasting, location of the systems subject to forecasting, and typical
forecasting horizons. The analysis in this subparagraph excludes papers that provided less
reliable or no data.

Figure 1 presents the outcome of statistical analysis of the number of forecasting
studies concerning wind power generation in particular regions of the world based on
the research papers analyzed here. What is remarkable is the very uneven distribution of
studies across regions of the world. Special attention must be drawn to China—by far the
largest number of papers addressing wind farm generation forecasting. The second best is
the United States.
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The performance of a wind power forecasting model is measured with different
statistical metrics. These metrics quantify the prediction error of a model, providing the
accuracy between the predicted values and the measured data [65]. It is difficult to make
a comprehensive evaluation using the single error index, and, as Figure 2 shows, studies
can consider up to six different metrics to evaluate, compare performance and quantify
forecasting errors [20,40]. However, in general, only 2 or 3 statistical metrics are used in
model validation. In some cases, authors also do not specify the metric used to evaluate the
performance of the model. The combination of statistical metrics, presented by Figure 2,
varies by study.
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Table 7. Frequency of use of model performance evaluation metrics. 

Use Metric Number of Times Used 
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Figure 2. Number of statistical metrics used per article to evaluate the performance of forecasting
models (evaluation of 114 articles).

It means that the metrics used to evaluate the performance of each model are different
for each study. Figure 3 shows a summary of quantifiers used in the studies analyzed, and
these metrics are split into four groups (see Table 7).
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Figure 3. Common ways to measure and evaluate the error of models predicting quantitative data.

Table 7. Frequency of use of model performance evaluation metrics.

Use Metric Number of Times Used

Frequent RMSE, MAE, and MAPE 46–62
Occasional MSE, nRMSE, nMAE, and R2 15–24

Seldom R, PICP, sMAPE, MBE, MRE, . . . , TIC 2–9
Rare Other Metrics 1
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RMSE, MAE, and MAPE are popular accuracy metrics due to their ease of interpretabil-
ity by decision-makers and participants of energy markets. Those metrics, unlike mean bias
errors, do not falsify the average quality of forecasts by compensating over-forecasting with
under-forecasting. Moreover, they give a decent estimation of the average error one can
expect from forecasts for each prediction step [123]. Because of squaring the error, RMSE is
more sensitive to the detection of high values of errors in error time series, which make
it a good metric for detecting extreme error values. In turn, MAE does not additionally
magnify extreme values of errors and is the closest to the most naturally expected type of
error—mean error. Unlike the two previous metrics, MAPE is not dependent on the scale
of values in the data, which makes it useful for comparing data of different scales—e.g.,
errors for prosumer wind turbines and very big wind farms. It also allows us to find how
an accurate model is in the scale of changing the momentary real value. This metric is,
however, susceptible to zero/small values of generation appearing in its denominator [124].
The result can be either an indefinite expression or a substantial error at a given step,
and as a consequence, its value is reflected in the final average value. Because of the
aforementioned, we recommend not using MAPE. In Figure 3 one can see the rare use of
metrics other than the three most frequent ones. Usually, they are root or derivative metrics
of those three and are used to solve previous ones’ drawbacks, e.g., nRMSE and nMAE
add an aspect of comparability between objects of different scales, which cannot be easily
conducted without normalization of time series, used in MAPE for example. A coefficient
of determination is also relatively frequently used. It serves as a means of describing not
how well a model predicts but how much of the modeled process is actually modeled.

Forecasting methods were classified into single methods, ensemble methods, and
hybrid methods, and calculations were conducted on how frequently each of those methods
was the best method (lowest nRMSE error) in each of the studies described in the papers
reviewed here. Figure 4 presents the outcome of our analysis. A hybrid method was usually
the best class of forecasting methods (almost 44%). Quite a substantial percentage (almost
25%) of studies in which a single method was the best is surprising. This can be explained
by the fact that some papers proposed single methods only, without comparing them to
other classes (ensemble, hybrid). Additionally, note that, in some cases, ensemble and
hybrid methods have the characteristics of both classes. For instance, the general hybrid
model also contains model(s) from the ensemble class. Comparison of forecast quality of
the single, ensemble, and hybrid methods are presented in Section 4.2.2. Analysis of errors
and EDF depending on the class of forecasting methods.
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Figure 4. Frequency of using forecasting methods (quantity statistics).

Based on information from papers (for which rated powers were provided), the
percentage of farms for which generation forecasts were conducted was calculated for
specific ranges of rated powers. By far most frequently studied were systems sized from
more than 10 MW to 100 MW, with the second largest group of systems being those sized
up to 10 MW (Figure 5). Domination of the former range is probably due to the fact that it
is the most frequent range of powers in wind farms, and, on the other hand, for very small
(prosumer) systems, power generated from wind turbines is forecast much less frequently.
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ries are used clearly most frequently. NWP and weather measurements are used only 
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The percentage of farms for which generation forecasts have been conducted was
calculated by forecasting horizon (Figure 6). By far the most frequent forecasting horizon is
“24 h” and “few steps”, with “one step” (5 min, 10, min, 15 min, or 1 h) being slightly less
frequent. Forecasts with horizons of more than 24 h are clearly rare. On the one hand, the
reason may be more difficult access to NWP with such horizons and the awareness of the
loss of quality of such forecasts, especially as compared to horizons with few steps ahead.
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The frequency of use of various sets of input data in the forecasting models described
in the papers was calculated (Figure 7). Lagged generation values of the forecast time series
are used clearly most frequently. NWP and weather measurements are used only slightly
less frequently. Other types of input data are used at least ten times less frequently than the
three input data mentioned above (or incidentally). Such infrequent use of input data such
as lagged NWP, time variables and generation stats (statistics on the forecast times series)
in forecasting models is surprising.
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4.2. Comprehensive Error Analysis

Out of 116 papers, error analysis was conducted on those which applied both nRMSE
and nMAE errors and which could calculate these two error metrics based on the avail-
able rated power of the system and the values of RMSE and MAE errors (errors pre-
normalization). In addition, quotients of nRMSE to nMAE errors were calculated. A new,
unique EDF (error dispersion factor) metric has thus been introduced to analyses, described
by Formula (20). Therefore, EDF is a combination of two frequently used error metrics.
Statistical analyses in Section 4.2, Section 4.2.1 and Section 4.2.2 apply, among others, to the
potential usefulness of EDF in analyses of wind power forecasts.

EDF =
RMSE
MAE

=
nRMSE
nMAE

=

√
1
N ∑N

i=1(yi − ŷi)
2

1
N ∑N

i=1|yi − ŷi|
(20)

The analysis in this subparagraph excludes papers that provided less reliable data
(abnormal errors, abnormal error quotients)—abnormal phenomena are addressed in the
Section 5. Table 8 presents basic statistics, and Figure 8 visualizes selected statistics.

Table 8. Descriptive statistics of errors and error quotients.

Descriptive Statistics nRMSE nMAE EDF

Mean 0.0787 0.0566 1.4160
Standard deviation 0.0578 0.0407 0.2307

Minimum 0.0162 0.0077 1.0283
Maximum 0.2762 0.1942 2.1129

Quotient of maximum/minimum 17.05 25.22 1.75
The 10th percentile 0.0244 0.0174 1.1841

The 25th percentile (lower quartile) 0.0324 0.0236 1.2740
The 50th percentile (median) 0.0654 0.0504 1.3603

The 75th (upper quartile) 0.1007 0.0756 1.5019
The 90 percentile 0.1618 0.1070 1.7741

Variance 0.0033 0.0017 0.0562
Skewness 1.3448 1.2811 1.2939
Kurtosis 1.9858 1.8489 1.5423
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The averages in Table 8 are slightly larger than the medians both for nRMSE, nMAE,
and EDF. The dispersion of errors is remarkably high—the maximum/minimum quotient
for nRMSE error metric is more than 17, and for nMAE errors, the quotient is more than
25. Such large dispersion of values can be partly justified by different forecasting horizons
(from 10 min to 72 h).

4.2.1. Analysis of Errors by Forecasting Horizon

Figures 9 and 10 present nRMSE and nMAE errors, respectively, in ascending order,
based on the papers in which these error metrics were provided (also considering those
which did not provide the rated power of the system). In addition, information on the
forecasting horizon is provided. Forecasts with longer horizons display significantly much
larger nRMSE errors, which is unsurprising (the accuracy of wind speed forecasts decreases
with increasing forecasting horizon).
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Figure 11 presents how the amount of error depends on the forecasting horizon. This
figure summarizes information from Figures 9 and 10—average values for both metrics
were calculated for selected forecasting horizons. In general, average errors grow with
increasing forecasting horizon, although, for the 24 h horizon, average errors are slightly
more than for the 48 h horizon. This is probably due to the fact that there were significantly
fewer papers describing forecasts with a 48 h horizon than with a 24 h horizon (random
element of lower errors from a small number of samples). By far the largest were the
average errors for the 72 h horizon—more than two-and-a-half larger than for 24 h and 48
h horizons. For the “one step” horizon, average errors are two times smaller than average
errors for the 24 h horizon. This information has large practical significance—it shows
what magnitude of normalized errors should be expected from the respective forecasting
horizon. Please note that the averages calculated for the 48 h and 72 h horizons may not be
fully representative due to a small number of samples.
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Figure 11. Magnitudes of error by forecasting horizon.

To determine precisely whether there is a statistically significant relationship between
the forecasting horizon and error magnitudes, numerical forecasting horizons were selected
(1/6 h, 1/4 h, 1/2 h, 1 h, 6 h, 12 h, 24 h, 48 h, and 72 h), which enabled us to calculate
Pearson linear correlation. The statistical analysis concluded a statistically significant (5%
level of significance) positive linear correlation between the forecasting horizon (multiples
of 1) and the magnitude of nRMSE error (R = −0.347). nRMSE error grows with increasing
forecasting horizon. Figure 12 presents how the magnitude of nRMSE error depends on the
forecasting horizon.
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The statistical analysis concluded a statistically significant (5% level of significance)
positive linear correlation between the forecasting horizon (multiple of 1) and the magni-
tude of nRMSE error (R = 0.410). nMAE error grows with increasing forecasting horizons.
Figure 13 presents how the magnitude of nMAE error depends on the forecasting horizon.
It is worthwhile to emphasize that the linear correlation between the forecasting horizon
and the magnitude of error is slightly larger for the nRMSE error metric than for nMAE.

The statistical analysis concluded a statistically insignificant (5% level of significance)
negative linear correlation between the forecasting horizon and EDF (R = −0.196). The
EDF slightly decreases with increasing forecasting horizon. Figure 14 presents how EDF
depends on the forecasting horizon.

For forecasts with very short horizons (from 10 min to 1 h), the average EDF is 1.422,
and 1.3163 for 6 h, and it falls to 1.2724 for the 24 h horizon. For the 48 h and 72 h horizons,
the samples are too few to calculate reliable averages.

In addition, statistical analysis omitting the 48 h and 72 h horizons concluded a nega-
tive correlation. Not a very large one, but statistically significant (15% level of significance),
between the forecasting horizon and EDF (R = −0.283).



Energies 2023, 15, 9657 26 of 38

Energies 2022, 15, 9657 25 of 39 
 

 

 
Figure 12. Dependence of nRMSE on forecasting horizon. 

The statistical analysis concluded a statistically significant (5% level of significance) 
positive linear correlation between the forecasting horizon (multiple of 1) and the magni-
tude of nRMSE error (R = 0.410). nMAE error grows with increasing forecasting horizons. 
Figure 13 presents how the magnitude of nMAE error depends on the forecasting horizon. 
It is worthwhile to emphasize that the linear correlation between the forecasting horizon 
and the magnitude of error is slightly larger for the nRMSE error metric than for nMAE. 

 
Figure 13. Dependence of nMAE errors on forecasting horizon. 

The statistical analysis concluded a statistically insignificant (5% level of significance) 
negative linear correlation between the forecasting horizon and EDF (R = −0.196). The EDF 
slightly decreases with increasing forecasting horizon. Figure 14 presents how EDF de-
pends on the forecasting horizon. 

For forecasts with very short horizons (from 10 min to 1 h), the average EDF is 1.422, 
and 1.3163 for 6 h, and it falls to 1.2724 for the 24 h horizon. For the 48 h and 72 h horizons, 
the samples are too few to calculate reliable averages. 

In addition, statistical analysis omitting the 48 h and 72 h horizons concluded a neg-
ative correlation. Not a very large one, but statistically significant (15% level of signifi-
cance), between the forecasting horizon and EDF (R = −0.283). 

Figure 13. Dependence of nMAE errors on forecasting horizon.

Energies 2022, 15, 9657 26 of 39 
 

 

 
Figure 14. Dependence of EDF on forecasting horizon. 

The EDF (Figure 14) and (Formula (20) show the average variability of the moduli of 
error regardless of the magnitude of the error. If absolute errors on all samples are the 
same, this ratio reaches its minimum value of 1. The larger the error deviation on partic-
ular samples from the average, the larger the ratio. This resembles the behavior of stand-
ard deviation determined for the moduli of error for samples, however, with the differ-
ence that standard deviation reaches a minimum value equal to zero, and the dynamics 
of that ratio is much larger—significantly dependent on particular samples. For the EDF, 
the dynamics of values are smaller, which better illustrates the variability of errors across 
the sample pool. It should also be mentioned that the EDF in fact shows the ratio of the 
second moment of error to the first moment of error. 

The decreasing levels of EDF with a rising forecasting horizon means that the varia-
bility of error decreases with an increasing forecasting horizon. On the one hand, it is 
probably due to the growing error, and, on the other, the averaging nature of the forecast-
ing models for longer horizons, which stabilizes errors around certain values. 

It is worthwhile to note that statistical analysis of hourly values of wind speed pre-
sented in [1] concluded that the variance of wind speed forecasts for horizons ranging 
from 1 to 24 h was 3.121, and for 25- to 48-h horizons, it was 3.063, which is less. 

4.2.2. Analysis of Errors and EDF Depending on the Class of Forecasting Methods 
Some of the 116 papers analyzed here provide the forecasting error of a method from 

the “single method” class. The primary objective of the analysis was to investigate per-
centage error reduction achieved by the best (proposed) method from the ensemble or 
hybrid class relative to the single method with the largest forecasting error (excluding the 
outcome of the naive method). Figure 15 presents, in descending order, percentage reduc-
tions of nRMSE and percentage reductions of nMAE of the best methods relative to single 
methods. What is remarkable is a very wide dispersion of percentage reductions of error. 
For nRMSE, the largest percentage reduction of error is 80.02%, and the smallest is 2.76%. 
Similar observations apply to the dispersion of nMAE. 

Figure 14. Dependence of EDF on forecasting horizon.

The EDF (Figure 14) and (Formula (20) show the average variability of the moduli
of error regardless of the magnitude of the error. If absolute errors on all samples are the
same, this ratio reaches its minimum value of 1. The larger the error deviation on particular
samples from the average, the larger the ratio. This resembles the behavior of standard
deviation determined for the moduli of error for samples, however, with the difference that
standard deviation reaches a minimum value equal to zero, and the dynamics of that ratio
is much larger—significantly dependent on particular samples. For the EDF, the dynamics
of values are smaller, which better illustrates the variability of errors across the sample pool.
It should also be mentioned that the EDF in fact shows the ratio of the second moment of
error to the first moment of error.

The decreasing levels of EDF with a rising forecasting horizon means that the vari-
ability of error decreases with an increasing forecasting horizon. On the one hand, it is
probably due to the growing error, and, on the other, the averaging nature of the forecasting
models for longer horizons, which stabilizes errors around certain values.

It is worthwhile to note that statistical analysis of hourly values of wind speed pre-
sented in [1] concluded that the variance of wind speed forecasts for horizons ranging from
1 to 24 h was 3.121, and for 25- to 48-h horizons, it was 3.063, which is less.

4.2.2. Analysis of Errors and EDF Depending on the Class of Forecasting Methods

Some of the 116 papers analyzed here provide the forecasting error of a method
from the “single method” class. The primary objective of the analysis was to investigate
percentage error reduction achieved by the best (proposed) method from the ensemble
or hybrid class relative to the single method with the largest forecasting error (excluding
the outcome of the naive method). Figure 15 presents, in descending order, percentage
reductions of nRMSE and percentage reductions of nMAE of the best methods relative to
single methods. What is remarkable is a very wide dispersion of percentage reductions of
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error. For nRMSE, the largest percentage reduction of error is 80.02%, and the smallest is
2.76%. Similar observations apply to the dispersion of nMAE.
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Unfortunately, a small proportion of the papers reviewed here provide forecasting 
error using a naive (persistence) method—such error would be the best benchmark for the 
level of improvement achieved by other proposed methods, including single methods. 
The forecasting methodology assumes that a forecasting method is valuable if its error is 
less than the error of the naive method. Six papers provide errors for the naive method. 
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naive method for six cases (pairs of nRMSE and nMAE) 

Figure 15. (a) Percentage reduction in nRMSE for the best method relative to the single method; (b)
percentage reduction in nMAE for the best method relative to the single method.

Figure 16 presents the average percentage improvement of the hybrid methods and
ensembles method relative to the single method for nRMSE and nMAE error metrics. The
percentage improvement of error metrics is much bigger for hybrid methods in comparison
to ensemble methods however the number of cases (19 for hybrid methods and 14 for
ensemble methods) is too small to generalize this fact.
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Figure 16. Average percentage improvement of the hybrids method and ensembles method relative
to the single method for nRMSE and nMAE error metrics.

Unfortunately, a small proportion of the papers reviewed here provide forecasting
error using a naive (persistence) method—such error would be the best benchmark for
the level of improvement achieved by other proposed methods, including single methods.
The forecasting methodology assumes that a forecasting method is valuable if its error is
less than the error of the naive method. Six papers provide errors for the naive method.
Figure 17 presents, in descending order, percentage reductions of nRMSE relative to the
naive method for six cases (pairs of nRMSE and nMAE)
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The average EDF for the best method is 1.432 and the median EDF is 1.364. The aver-
age EDF for the single method is 1.352, and the median EDF is 1.294. Therefore, both the 
average and median levels are clearly larger for the best method. Both series do not have 
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been therefore applied to the analysis of pairs, which concluded that there are statistically 
significant differences between pairs in both series (they have different expected values). 

Figure 17. Percentage improvement of the best method relative to the naive method for nRMSE and
nMAE error metrics.

The average percentage reduction calculated for six cases is 60.53% for nRMSE and
63.79% for nMAE. Therefore, both average percentages are much larger than similar values
calculated for nRMSE and nMAE reductions when errors of best methods are compared to
single methods. Nevertheless, in a small number of cases, percentage reductions of nRMSE
and nMAE for the best method relative to single methods are large and similar to the best
method compared to the naive method. It means that some single methods referred to in
literature are only marginally better than naive methods.

The second objective of our analysis is to compare EDF for the best (proposed: ensem-
ble or hybrid) method and a single method. Based on 33 cases (pairs of ratios), we have
determined that in 77% of cases, the EDF for the best method is larger than the EDF for the
single method used in the respective study—this is more frequently observed for larger
values of those ratios. The Pearson coefficient of linear correlation (R) between the ratios
for the best method and the ratios for the single method is 0.737.

Figure 18 presents pairs of EDF sorted in descending order by the level of ratios for
the best method.
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Figure 18. Pairs of EDF sorted in descending order by the level of quotients for the best method.

The average EDF for the best method is 1.432 and the median EDF is 1.364. The
average EDF for the single method is 1.352, and the median EDF is 1.294. Therefore, both
the average and median levels are clearly larger for the best method. Both series do not have
normal distribution—Shapiro–Wilk test was conducted. Wilcoxon signed-rank test has
been therefore applied to the analysis of pairs, which concluded that there are statistically
significant differences between pairs in both series (they have different expected values).
Therefore, differences between medians are statistically significant, and not without reason.
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An interesting conclusion can be drawn based on our analysis—the variability of the
moduli of errors in the best methods (smallest forecasting errors) is typically larger than
for the “single method” class (much larger forecasting errors). The moduli of errors in
the “single method” class are much larger and much closer to each other than in the best
(hybrid or ensemble) method. In some studies, a single method could also use slightly less
information (a different set of input data), which can also affect the characteristics of errors
(magnitude and variability level).

4.2.3. Analysis of Errors Based on System Size

Our analysis covered the studies which provided nRMSE and nMAE and the size
of the system. Statistical analysis did not reveal a statistically significant (5% level of
significance) linear correlation between the size of the system (rated power) and nRMSE
and nMAE errors (R =−0.110, R =−0.111, respectively). In theory, errors should grow with
increasing size of the system due to much less uniform weather conditions (wind speed) in
wind farms occupying extensive areas, the fact of using usually point-based meteorological
forecasts, the wake effect, and other factors affecting the farm which are more difficult to
represent if they overlap in the same space. The Pearson coefficient of linear correlation (R)
between nRMSE and nMAE is 0.994 (5% level of significance). It means that these error
metrics are very similar to each other. The details are presented in Figure 19. In addition,
there is a large dispersion of the magnitudes of error for systems of similar sizes. This can
be due to different sets of input data (different quality of information).
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Figure 19. Magnitude of error depending on rated power of the system.

The statistical analysis concluded an insignificant (5% level of significance), marginally
positive linear correlation between the size of the system (rated power) and EDF (R = 0.039).
The EDF usually varies between 1 and 2. The average value of the EDF is 1.35. The details
are presented in Figure 20.

Energies 2022, 15, 9657 29 of 38 
 

 

expected values). Therefore, differences between medians are statistically significant, and 
not without reason. 

An interesting conclusion can be drawn based on our analysis—the variability of the 
moduli of errors in the best methods (smallest forecasting errors) is typically larger than 
for the “single method” class (much larger forecasting errors). The moduli of errors in the 
“single method” class are much larger and much closer to each other than in the best 
(hybrid or ensemble) method. In some studies, a single method could also use slightly less 
information (a different set of input data), which can also affect the characteristics of errors 
(magnitude and variability level). 

4.2.3. Analysis of Errors Based on System Size 
Our analysis covered the studies which provided nRMSE and nMAE and the size of 

the system. Statistical analysis did not reveal a statistically significant (5% level of 
significance) linear correlation between the size of the system (rated power) and nRMSE 
and nMAE errors (R = −0.110, R = −0.111, respectively). In theory, errors should grow with 
increasing size of the system due to much less uniform weather conditions (wind speed) 
in wind farms occupying extensive areas, the fact of using usually point-based 
meteorological forecasts, the wake effect, and other factors affecting the farm which are 
more difficult to represent if they overlap in the same space. The Pearson coefficient of 
linear correlation (R) between nRMSE and nMAE is 0.994 (5% level of significance). It 
means that these error metrics are very similar to each other. The details are presented in 
Figure 19. In addition, there is a large dispersion of the magnitudes of error for systems of 
similar sizes. This can be due to different sets of input data (different quality of 
information). 

 
Figure 19. Magnitude of error depending on rated power of the system. 

The statistical analysis concluded an insignificant (5% level of significance), 
marginally positive linear correlation between the size of the system (rated power) and 
EDF (R = 0.039). The EDF usually varies between 1 and 2. The average value of the EDF is 
1.35. The details are presented in Figure 20. 

 
Figure 20. Magnitude of EDF depending on rated power of the system.



Energies 2023, 15, 9657 30 of 38

4.2.4. Analysis of Error Based on System Location (Onshore v. Offshore)

The number of papers addressing forecasting for offshore farms is small, as they
constitute less than 6% of the 116 papers subject to this analysis. Only six papers (Table 6)
provide nRMSE or nMAE, which is too little to conduct an accurate statistical analysis.
Figure 21 compares nRMSEs for two forecasting horizons (average of the errors provided
in the papers) for offshore and onshore farms.
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Figure 21. Magnitude of nRMSEs depending on farm location and forecasting horizon.

Offshore farms have smaller forecasting errors than onshore farms. This is expected,
as it results from more stable and stronger winds at offshore farms. In addition, these are
typically very large systems. For a 1 h horizon, such a sizable difference may result from
the fact that the average for offshore farms was based on only two values of error and the
fact that some onshore forecasts did not use meteorological forecasts of wind speed (larger
forecasting errors occur in such cases). In real terms, at 24 h horizon, nRMSE at onshore
farms can be about twice as large (assuming that meteorological forecasts are used in both
locations).

5. Discussion

A comprehensive review and statistical analysis of errors based on an extensive
selection of 116 papers allowed us to conclude, using actual figures, a correlation between
the magnitude of error and selected factors. The quantitative analysis is provided for the
aggregate assessment of how frequently various categories of (quite diverse) forecasting
methods are applied, what typical input data are (meteorological forecasts are typically
used for horizons above 6 h), how often various forecasting horizons have been used
(typical horizons being in the range of 1 h to 24 h).

The analyses concluded that some papers used incomplete data that prevented them
from being used in an aggregate meta-analysis of studies, which applies, in particular, to
error metrics (nRMSE and nMAE).

In addition, several untypical (extreme) nRMSE and nMAE error levels have been
identified, which, due to extreme dissimilarity to the remaining data of the same class
(forecasting error being too large or too small) by expert judgment have been excluded
from the analyses presented in Section 4.2. Comprehensive Error analysis. Figure 22 presents
the variability of nRMSE error in the papers reviewed here.

A novel, unique ratio called EDF has been explored. The EDF shows the average
variability of the moduli of error regardless of the magnitude of error. The analysis of
variability of the new EDF ratio depending on selected characteristics (size of wind farm,
forecasting horizon, and class of forecasting method) has been performed. There is a small
negative correlation but statistically significant between the forecasting horizon and EDF.
Additionally, the EDF for the best forecasting method is larger than the EDF for the single
forecasting method. The analysis concluded an insignificant, marginally positive linear
correlation between the size of the system (rated power) and EDF.
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Based on our analysis of papers, in our subjective assessment, to maximize the qual-
ity of aggregate meta-analysis of studies addressing power generation forecasting in wind 
farms, a research paper should contain the following items (our recommendations): 
• mandatory use of normalized error metrics for the assessment of forecasting quality: 

nRMSE Formula (5) and nMAE Formula (6), accompanied by a description of the 
normalization method (recommended normalization using the rated power of the 

Figure 22. Variability of nRMSEs in the reviewed papers, with red-marked less reliable values.

Statistical analysis in one paper concluded, in addition, an untypical value of EDF.
Statistical data from the reviewed papers for which EDF could be calculated shows that
EDF levels range from 1.028 to 7.478, although a vast majority of EDF levels range between
1 and 2 (this range seems to be most credible—minimum value of the ratio is 1). The
outcome of our analysis is presented in Figure 23.
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Based on our analysis of papers, in our subjective assessment, to maximize the quality
of aggregate meta-analysis of studies addressing power generation forecasting in wind
farms, a research paper should contain the following items (our recommendations):

• mandatory use of normalized error metrics for the assessment of forecasting quality:
nRMSE Formula (5) and nMAE Formula (6), accompanied by a description of the
normalization method (recommended normalization using the rated power of the
system), which would enable comparative assessments of the quality of studies of
systems of various sizes (or regardless of how big the wind farm is);

• we do not recommend the use of MAPE metric, which is susceptible to substantial
error for small or zero generations;

• mandatory use of a forecast conducted by naive (persistence) method to enable the
assessment of the quality of the best model proposed by the authors of the paper
relative to the reference model; in such case calculation of the skill score metric by
Formula (17), (18), or (19) is recommended in addition;
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• provide strict, precise information on forecasting horizon(s) and information if the
forecast is, e.g., “One Step,” e.g., from 1 h to 24 h, or one step ahead with follow-up
predictions (in which case forecasting errors are typically smaller);

• provide strict, precise information on the set(s) of input data for the proposed model(s);
• provide the source of meteo forecasts (GFS, ECMWF, other sources) if used in the

forecasting model;
• explicit statement on whether the forecasting model uses meteo forecasts and/or

on-site measurements of weather conditions at the wind farm;
• provide the range of training, validation, and testing data, and how the range of data

is divided into the identified subsets;
• provide details of the location, unless confidential (location and size of the wind farm,

and landscape features prevalent at the location).

6. Conclusions

This paper is the outcome of a comprehensive review and statistical analysis of errors
using more than one hundred research papers. The quantitative analyses allowed us to
assess the distribution of frequency of application of selected parameters in research studies
(including the number and type of error metrics, forecasting horizon, rated power of the
system, classes of forecasting methods, and location of the forecast systems).

Our qualitative analyses allowed us to provide an aggregate assessment of power
generation forecasting in wind farms, including how selected factors affect the magnitude
of forecasting errors. In addition, the rationale for using complex (ensemble, hybrid) fore-
casting methods instead of single methods was verified, by examining how this improves
the quality of forecasts.

Notably, only 6 of 116 papers addressed power generation forecasts in offshore farms—
it means that such research should intensify going forward, although it is in part due
to a significantly smaller number of such systems than of onshore farms. The offshore
location of a farm involves a number of distinct characteristics (such as a surface with
exceptionally low roughness, significantly higher wind speeds, and more stable power
generation). The magnitude of forecasting errors is significantly smaller. Due to a small
number of offshore-related papers, our analysis was much more constrained.

In our view, research on topics related to aggregate statistical analyses (meta-analyses)
should continue. We are planning to increase the number of reviewed papers at least
two- or three-fold in the future. Such a number will enable us to conduct a more precise
statistical assessment of a large number of factors affecting the magnitude of forecasting
error, and expand the analyses related to the EDF factor proposed by us. In our view, it is
crucial that published papers on generation forecasts in wind farms contain information
from our recommended list, to enable conducting the necessary analyses.
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ANN Artificial Neural Network
ARIMA Autoregressive Integrated Moving Average
BP Back Propagation
BPNN BP Neural Network
CNN Convolutional Neural Network
CSA Crow Search Algorithm
DA Dragonfly Algorithm
DBN Deep Belief Network
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DGF Double Gaussian Function
DWT Discrete Wavelet Transform
EDCNN Efficient Deep Convolution Neural Network
EDF Error Dispersion Factor
EEMD Ensemble Empirical Mode Decomposition
EMD Empirical Mode Decomposition
EWT Empirical Wavelet Transformation
FS Feature Selection
GBT Gradient Boosted Trees
GRU Gated Recurrent Unit
HLNN Laguerre Neural Network
HNN Hybrid Neural Network
IPSO Improved Particle Swarm Optimization
KNNR K-Nearest Neighbors Regression
LD Lorenz Disturbance System
LR Linear Regression
LSTM Long-Short-Term Memory
MAAPE Mean Arctangent Absolute Percentage Error
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MBE Mean Bias Error
MCC Maximum Correntropy Criterion
MKRPINN Multi-Kernel Regularized Pseudo Inverse Neural Network
MPSO Modified Particle Swarm Optimization
MRE Mean Relative Error
mRMR Maximum Relevance and Minimum Redundancy Algorithm
MSE Mean Squared Error
nMAE Normalized Mean Absolute Error
NN Neural Network
nRMSE Normalized Root Mean Squared Error
NWP Numerical Weather Prediction
OMS-QL Online Model Selection using Q-learning
P Promoting Percentages
PCA Principal Component Analysis
PICP Prediction Interval Coverage Probability
PINAW Prediction Interval Normalized Average Width
PSO Particle Swarm Optimization
R or CC Pearson Linear Correlation Coefficient
R2 R-square or Coefficient of Determination
RBF Radial Basis Function
RES Renewable Energy Sources
RF Random Forest
RMSE Root Mean Square Error
SAE Stacked Auto-Encoders
SE Sample Entropy
sMAPE Symmetric Mean Absolute Percentage Error
SS Skill Score
SSA Singular Spectrum Analysis
STA State Transition Algorithm
SVM Support Vector Machine
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SVR Support Vector Regression
TIC Theil’s Inequality Coefficient
VMD Variational Mode Decomposition
WF Wind Farm
WIPSO Weight Improved Particle Swarm Optimization
WPT Wavelet Packet Transform
WT Wavelet Transform
xGBoost eXtreme Gradient Boost
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