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Abstract: The integration of renewable resources with distribution networks (DNs) is an effective way
to reduce carbon emissions in energy systems. In this paper, an economic and low-carbon-oriented
optimal planning solution for the integration of photovoltaic generation (PV) and an energy storage
system (ESS) in DNs is proposed. A convolutional neural network (CNN)-based prediction model
is adopted to characterize the uncertainties of PV and load demand in advance. Then, taking the
lowest total economic cost, the largest carbon emission reduction, and the highest system power
supply reliability as the optimization objectives, the optimal distribution network planning model is
constructed. The improved multi-objective particle swarm optimization (MOPSO) algorithm is used
to solve the optimization model, and the effectiveness of the proposed solution is confirmed through
a comparative case study on the IEEE-33 bus system. Simulation results show that the proposed
solution can better maintain the balance between economic cost and carbon emissions in DNs.

Keywords: carbon emission; photovoltaic generation; energy storage system; distribution network
planning; uncertainty modeling

1. Introduction

With the intensification of the greenhouse effect and the global energy supply problem,
building a new low-carbon power system has become a consensus [1]. With the integration
of distributed generation (DG), the traditional distribution networks are facing many new
challenges [2], e.g., the output curves of PV and load are difficult to match to each other,
which leads to increased network loss, decreased power supply quality, and reduced
stability of the DNs [3]. As a key technology of the DNs, the energy storage system has the
advantages of fast power response, high adjustment accuracy, and flexible configuration
location [4], which can effectively mitigate the impact of PV output fluctuations on the
DNs, maintain the frequency stability, and improve the power supply quality. The access
of PV and ESS has greatly changed the structure and operation state of traditional DNs [5];
therefore, in order to improve the comprehensive benefits of the power system, the optimal
location and capacity configuration of PV and ESS have become two of the focuses in this
research area [6].

Uncertainty modeling in source-side and load-side is the basis of distribution network
planning [7]. In [8], a short-term PV power prediction method combining improved
K-means clustering, grey relational analysis (GRA), and an Elman neural network was
proposed. The work in [9] constructed a hybrid short-term PV generation forecasting
model in microgrid; a particle swarm optimization (PSO) and support vector machine
(SVM) were adopted in this solution. In [10], a probabilistic prediction model based on a
CNN for regional PV generation was presented. In [11], a hybrid machine learning-based
algorithm was proposed for short-term wind power forecasting. As for load forecasting,
reference [12] proposed a short-term load forecasting model which fully considered solar
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radiation and historical electricity consumption data. In [13], a weighted hybrid support
vector regression (SVR) method was adopted to predict the electricity demand in buildings.
In [14], a load prediction model for electric market participants was proposed. In [15], a
long short-term memory (LSTM)-based short-term load prediction method that considered
residential characteristics was formulated.

In addition, much effort has been made in distribution network optimal planning
issues. In [16], the capacities of various ESS in a microgrid system were optimized while
also considering the power supply and demand characteristics. In [17], the location and
sizing of hydrogen systems was solved to improve the performances of DNs. A combined
framework for distribution network expansion planning and an energy storage system
configuration in an active distribution network (ADN) was proposed in reference [18] to
minimize the investment and grid loss. The study in [19] carried out an optimal allocation
method for DNs with different combinations of PV-DGs, gas turbine-based DGs, and
distribution static compensators. The study in [20] proposed an optimal configuration and
operation solution of DG and ESS in which the energy dispatch problem was considered
simultaneously. In addition, in [21], a water cycle algorithm (WCA) was adopted to solve
the optimal planning model for DGs in an ADN. In [22], an optimal planning model for
DGs in a passive distribution network (PDN) was proposed, and the load scenarios were
incorporated into the model. In [23], an optimal capacity configuration solution for wind,
PV, and ESS in DNs was formulated, and flicker emission was considered to improve the
DN’s performance. However, the aforementioned work did not take carbon emissions and
the uncertainties of DGs into consideration.

In summary, there still remain several technical problems in distribution network
planning that need further investigation: the uncertainties of PV and load have not been
fully considered. Most of the existing research only uses historical data on typical days in
the planning process. In addition, carbon emissions are rarely considered in distribution
network planning. Most of the existing research only focuses on economic factors and sys-
tem reliability. Finally, the number of studies which incorporate the uncertainty modeling
and carbon emission analysis into distribution network planning is relatively few, and the
existing research still needs to be further improved.

To this end, this paper proposes an optimal location and capacity allocation method
of PV and energy storage in distribution networks that considers multiple uncertainties
and system carbon emissions. The overall structure of the proposed solution is shown in
Figure 1. Compared with the aforementioned research, the main contributions of this work
can be summarized as follows. Firstly, a CNN-based scenario generation model is adopted
to characterize the uncertainties of PV and load. Secondly, an optimal location and capacity
configuration model for PV and ESS in DNs is proposed, and, taking the lowest total system
cost, the largest carbon emission reduction, and the highest system power supply reliability
as the objective functions, a new solution for distribution network planning is formulated.
Finally, an improved MOPSO algorithm is used to solve the planning model, which has a
faster convergence speed and a better quality optimal solution.

The rest of the paper is organized as follows. In Section 2, a CNN-based prediction
model is constructed to characterize the multiple uncertainties. Section 3 proposes an
optimal location and capacity configuration model of PV and batteries in a distribution
network. Section 4 adopts an improved MOPSO algorithm to solve the optimization model.
In Section 5, the proposed solution is assessed through a comparative study on the IEEE-33
bus system, and finally, the conclusive remarks are given in Section 6.
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Figure 1. The overview of the proposed planning solution in DNs. 

The rest of the paper is organized as follows. In Section 2, a CNN-based prediction 
model is constructed to characterize the multiple uncertainties. Section 3 proposes an op-
timal location and capacity configuration model of PV and batteries in a distribution net-
work. Section 4 adopts an improved MOPSO algorithm to solve the optimization model. 
In Section 5, the proposed solution is assessed through a comparative study on the IEEE-
33 bus system, and finally, the conclusive remarks are given in Section 6. 

2. Uncertainty Characterization of PV and Load 
Distributed power generation mainly contains PV generation and wind power gen-

eration. Compared with traditional generation methods, DG has the advantages of low 
carbon emissions and high economic benefits. However, the output of DG is affected by 
weather conditions, environmental temperature, wind speed, solar intensity, seasonal 
characteristics, and other factors, which results in strong randomness and volatility. 
Driven by the development of technologies, a large number of distributed power sources 
have been connected to the DNs, and the active distribution network is constructed. The 
main problems in the ADN during the operation process can be summarized as follows: 
firstly, the massive installed capacity of DG in the DNs leads to power reversal; secondly, 
affected by weather conditions, the local load cannot be fully met when the power gener-
ation of DG is reduced. Therefore, the energy storage system should be added to the DNs, 
which can suppress the power fluctuation caused by the randomness of DG, as well as 
improve the consumption rate of renewable energy effectively. 

In order to ensure the operational stability of the DNs, a CNN-based method is 
adopted to model the uncertainties of PV and load in the distribution networks. 

2.1. Basic CNN Model 
CNN is a feed-forward neural network with deep convolutional structures. The to-

pology of a typical CNN is shown in Figure 2. The fundamental structure mainly includes 
an input layer, output layer, convolutional layer, pooling layer, and fully connected layer 
[24]. The function of the convolutional layer is feature extraction, and the characteristics 
and distributions of input data are extracted by a convolution calculation. The pooling 
layer is generally located behind the convolutional layer and its role is to reduce the size 
of neurons in the convolutional layer using a down-sampling method. The fully connected 
layer is generally located in front of the output layer, which is mainly used to integrate 
the features extracted by the CNN, and to perform regression analyses based on them. 
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2. Uncertainty Characterization of PV and Load

Distributed power generation mainly contains PV generation and wind power gen-
eration. Compared with traditional generation methods, DG has the advantages of low
carbon emissions and high economic benefits. However, the output of DG is affected
by weather conditions, environmental temperature, wind speed, solar intensity, seasonal
characteristics, and other factors, which results in strong randomness and volatility. Driven
by the development of technologies, a large number of distributed power sources have
been connected to the DNs, and the active distribution network is constructed. The main
problems in the ADN during the operation process can be summarized as follows: firstly,
the massive installed capacity of DG in the DNs leads to power reversal; secondly, affected
by weather conditions, the local load cannot be fully met when the power generation of
DG is reduced. Therefore, the energy storage system should be added to the DNs, which
can suppress the power fluctuation caused by the randomness of DG, as well as improve
the consumption rate of renewable energy effectively.

In order to ensure the operational stability of the DNs, a CNN-based method is
adopted to model the uncertainties of PV and load in the distribution networks.

2.1. Basic CNN Model

CNN is a feed-forward neural network with deep convolutional structures. The topol-
ogy of a typical CNN is shown in Figure 2. The fundamental structure mainly includes an
input layer, output layer, convolutional layer, pooling layer, and fully connected layer [24].
The function of the convolutional layer is feature extraction, and the characteristics and
distributions of input data are extracted by a convolution calculation. The pooling layer is
generally located behind the convolutional layer and its role is to reduce the size of neurons
in the convolutional layer using a down-sampling method. The fully connected layer is
generally located in front of the output layer, which is mainly used to integrate the features
extracted by the CNN, and to perform regression analyses based on them.
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The CNN in this study is trained using the gradient descent method, which searches
for the optimal solution along the negative gradient direction of the parameters during the
iteration process. The update formula is shown in (1): δw(t) =

∂ fobj
∂w

∣∣∣ w = w(t)
w(t + 1) = w(t)− Dtδw(t)

(1)

where ω denotes the set of parameters in the CNN (weight and bias of convolution kernel
and full connected layer), t denotes the number of iterations, fobj denotes the target function
of training, δω(t) denotes the gradient of ω, and Dt denotes the step size of iteration.

In this study, the cross-entropy loss function is used to construct the training objective
function of the CNN. The cross-entropy loss function is shown in (2):

Lossentropy = − 1
n∑

x
[y ln(a) + (1− y) ln(1− a)] (2)

where x denotes the input of the CNN, and a and y denote the real output and expected
output of the CNN.

For a training sample set: {Qi = (xi, yi)}
N
i=1, yi = (y1

i , y2
i . . . yR

i ), the training objective
function of the CNN model based on the cross-entropy loss function is shown in (3):

min
w
− 1

N

N

∑
i=1

R

∑
j=1

[yj
i ln(aj

i) + (1− yj
i) ln(1− aj

i)] (3)

where N denotes the total number of samples, R denotes the amount of data contained in
each output, and aj

i and yj
i represent the actual value and expected value of the jth data in

the ith output group of the model.

2.2. CNN-Based Uncertainty Characterization Model for PV and Load

The solar radiation intensity will change due to different seasons and times, and
therefore PV shows the characteristics of periodic changes. In addition, there are many
other factors that will affect the output power of PV, including environmental temperature,
environmental humidity, atmospheric pressure, and the parameters of photovoltaic panels.
As an important part of the DN system, load is mainly affected by the price of electricity,
temperature, humidity, historical load value, date, economic development level, and other
factors. The characteristic information of the load is included in these data. If all influencing
factors are used as the input of the uncertainty characterization model, it will lead to feature
redundancy, increase the complexity of the prediction model, and affect the accuracy of
the scenarios. Therefore, the influence factor screening method based on the correlation
coefficient proposed in [8] is adopted in this paper. For the uncertainty characterization of
PV generation, solar radiation intensity, ambient temperature, and ambient humidity are
selected as the input; for the load uncertainty characterization, historical load value and
electricity price are selected as the input.

The relationship between real PV and real load is influenced by many factors, e.g.,
the dynamic and time-varying nature of weather in the local area, the nonlinear and
bounded power conversion process, and the complex spatial and temporal interactions,
which are hard to simplify. Thus, a CNN-based method is used in this work. As a data-
driven approach, this method does not need to assume that the historical data obey certain
probability distributions in advance, it can spontaneously learn the implicit relationship
between real PV and real load and generate PV and load scenarios with accuracy.

The uncertainty characterization model based on the CNN constructed in this paper
is shown in Figure 3. The input of the model is the influencing factors. The input layer
transmits data to the convolutional layer, which uses multiple convolutional kernels to
extract the deep nonlinear characteristics between the influencing factors and PV and
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load power, then the activation function is used to filter the extracted features. Finally,
regression analysis is conducted on the filtered features through the fully connected layer
to obtain the mapping relationship between the PV generation characteristics and the
corresponding load characteristics and environmental factors. The input data (historical
data) and output data (learning target) of the training model can be composed of the data
from other distribution network data in the adjacent area. The well-trained CNN can use
the existing meteorological and load data to predict the corresponding photovoltaic output
characteristics, so as to obtain the photovoltaic power generation curve associated with the
uncertainty of the local load and form a set of source–load coupling operation scenarios for
optimizing the capacities of PV and energy storage.
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3. Optimal Location and Capacity Configuration Model for PV and ESS in DNs

To improve the carbon emission reduction capacity of the DNs, an optimal planning
model for the location and capacity configuration of PV and energy storage in the DNs is
constructed which fully considers the uncertainties of PV and load demand. This model
can reduce the investment cost of PV and energy storage equipment, reduce the carbon
emissions of the DNs, improve the utilization rate of PV, stabilize the power fluctuation,
and improve the energy supply quality.

3.1. Objectives

Combined with the prediction results, the objective functions of this optimization
model mainly include three indicators: system economic cost; system carbon emission
reduction; and system power supply reliability.

3.1.1. Economic Cost

The life cycle of PV and batteries in the DNs mainly includes three stages: construction;
operation and maintenance; and recycling. In the distribution network planning, the first
two points need to be fully considered:

minCostsum = Cinvestment + Copera−main + Cgrid−buy + Cline (4)

where Costsum, Cinvestment, Copera−main, Cgrid−buy and Cline denote the total economic cost,
investment cost, operation and maintenance cost, power purchase cost from the main grid,
and transmission line construction cost of the system, respectively.

Cinvestment =
ς(1 + ς)n

(1 + ς)n − 1
·
(

cPV
invest

N

∑
j=1

λPV
j PPV

j + cESS
invest

N

∑
j=1

λESS
j PESS

j

)
(5)

where n represents the total planning years, N is the total number of nodes in the distribu-
tion network, ς represents the discount rate, cPV

invest and cESS
invest represent the unit investment
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cost of PV and energy storage (0–1 variable), λPV
j and λESS

j represent whether PV and

energy storage are connected at node j, and PPV
j and PESS

j represent the actual access
capacities of PV and energy storage at node j.

Copera−main =
ς(1 + ς)n

(1 + ς)n − 1
·
(

cPV
opera−main

N

∑
j=1

nλPV
j PPV

j + cESS
opera−main

N

∑
j=1

nλESS
j PESS

j

)
(6)

where cPV
opera−main and cESS

opera−main denote the unit annual operation and maintenance costs
of PV and energy storage, respectively.

Cgrid−buy = cgrid(t) ·
n

∑
i=1

8760

∑
t=1

N

∑
j=1

[PLoad
i,j (t)− PPV

i,j (t)− PESS_dis
i,j (t) + PESS_char

i,j (t)] (7)

where cgrid(t) refers to the real-time electricity price from the grid at time t, PLoad
i,j (t) and

PPV
i,j (t) refer to the load power and PV power at the node j at time t of the ith year, and

PESS_char
i,j (t) and PESS_dis

i,j (t) refer to the charging and discharge power of the ESS.

Cline =
ς(1 + ς)n

(1 + ς)n − 1
·
(

cline
construct · dline

)
(8)

where cline
construct denotes the unit investment cost of transmission lines and dline denotes the

total length of transmission lines to be constructed.

3.1.2. Carbon Emission Reduction

Carbon emission reduction represents the difference of carbon emissions between the
original distribution network and the improved distribution network with PV generation
and ESS.

maxCreduc
CO2 = τCO2 ·

n

∑
i=1

8760

∑
t=1

N

∑
j=1

∣∣∣∣∣Cgrid−buy

cgrid(t)
− PLoad

i,j (t)

∣∣∣∣∣ (9)

where Creduc
CO2 represents the total carbon emission reduction of the DNs in the planning

period, τCO2 represents the carbon emission coefficient of the thermal power generation,
and PLoad

i,j (t) represents the load power at node j at time t of the ith year.

3.1.3. Power Supply Reliability

For a typical distribution network, it is crucial to meet the load demand. Thus, the
power supply reliability objective function is shown as follows:

maxCreliable =
1

8760 · nN
·

n

∑
i=1

8760

∑
t=1

N

∑
j=1

PPV
i,j (t)

PLoad
i,j (t)− Pgrid−buy

i,j (t)
(10)

where Creliable represents the power supply reliability of the DNs, and PLoad
i,j (t), PPV

i,j (t) and

Pgrid−buy
i,j (t) represent the load power, PV power, and purchasing power at node j at time t

of the ith year.

3.2. Constraints

In the optimization model of the distribution network system considering the source-
and load-side uncertainties proposed in this paper, power flow constraints, investment con-
straints, and operation constraints of PV and ESS are the main constraints to be considered.
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3.2.1. Power Flow Constraints

The power flow constraints of the distribution network are shown as follows:
Pi(t) = Ui(t)

N
∑

j=1
Uj(t) · [Bij(t) sin θij(t) + Gij(t) cos θij(t)]

Qi(t) = Ui(t)
N
∑

j=1
Uj(t) · [Gij(t) sin θij(t)− Bij(t) cos θij(t)]

(11)

where Pi(t) and Qi(t) represent the active power and reactive power of the node i at time
t, Ui(t) and Uj(t) represent the voltage of node i and node j at time t, respectively, Gij(t)
and Bij(t) represent the susceptance and conductivity between node i and j at time t,
respectively, and θij(t) represents the voltage phase angle between node i and j at time t.

3.2.2. Investment Constraints

The maximum investment cost constraints of the distribution network are shown as
follows:

cPV
invest ·

ς(1 + ς)n

(1 + ς)n − 1
·

N

∑
j=1

λPV
j PPV

j ≤ CPV
invest_max (12)

cESS
invest ·

ς(1 + ς)n

(1 + ς)n − 1
·

N

∑
j=1

λESS
j PESS

j ≤ CESS
invest_max (13)

where CPV
invest_max and CESS

invest_max represent the maximum investment limit of PV and ESS
in DNs, respectively.

3.2.3. Operation Constraints of PV

The operation constraint of PV in the distribution network is shown as follows:

0 ≤ PPV
j (t) ≤ PPV_max (14)

where PPV_max represents the maximum output power limit of PV generation.

3.2.4. Operation Constraints of ESS

The operation constraints of energy storage in the distribution network are shown as
follows:

ΨESS_min ≤ ΨESS
j ≤ ΨESS_max (15)

PESS_min ≤ PESS
j (t) ≤ PESS_max (16)

SOCESS_min ≤ SOCESS
j (t) ≤ SOCESS_max (17)

where ΨESS_max and ΨESS_min represent the upper and lower limits of the capacity of the
ESS, PESS_max and PESS_min represent the upper and lower limits of the charging and
discharging power of the ESS, and SOCESS_max and SOCESS_min represent the upper and
lower limits of the state of charge of the ESS.

4. Improved Model-Solving Algorithm

Compared with single objective optimization problems, multi-objective optimization
problems generally cannot give a specific solution that satisfies the optimization of all
objective functions. Compromises must be made to make the overall objective function
optimal, so as to obtain multiple groups of parallel solutions, which are presented in the
form of Pareto solution sets. The optimal planning model proposed in this paper contains
three different objective functions; therefore, an improved multi-objective particle swarm
optimization algorithm is used to solve the model to find the best location and capacities
of PV and ESS. The location information carried by each particle is an optional scheme,
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which is constantly updated in the search space until a group of appropriate global optimal
solutions is found.

However, the traditional MOPSO algorithm can have many defects when dealing with
high-dimensional problems, such as the problem of too-fast particle aggregation, which
leads to the lack of diversity of the particle population. Therefore, this paper introduces a
quasi-opposition-based learning (QOBL) strategy in the generation and update process of
the particles. A mixed population is formed by incorporating the obtained quasi-opposite
population into the initial population, and then the first half of the individuals with
high fitness is selected and inputted into the next iteration according to the dominance
relationship and crowding distance of particles. The improved algorithm has simple
parameter settings, a faster convergence speed, and a higher solution quality. The basic
steps of the improved algorithm are as follows:

• Step 1. Input the related data of the distribution network and CNN-based prediction
results;

• Step 2. Set the parameters of the MOPSO algorithm, including learning factors c1 and
c2, weight coefficient w, population size N, maximum number of iterations K, and
upper limit of particle flight speed vmax, etc;

• Step 3. Input initial random particles and record the speed and position of each
particle;

• Step 4. Calculate the fitness of each particle and record its own optimal position and
the global optimal position of all particles;

• Step 5. Update the speed and position of the particles according to (18) and (19). Here,
vi(k) and xi(k) represent the speed and position of particle i in the kth iteration, rand1
and rand2 represent the random number between 0 and 1, xgbest represents the global
optimal position of all particles, and xpbest

i represents the historical optimal position of
particle i;

vi(k + 1) = w · vi(k) + c1 · rand1 · [x
pbest
i (k)− xi(k)] + c2 · rand2 · [xgbest(k)− xi(k)] (18)

xi(k + 1) = xi(k) + vi(k + 1) (19)

• Step 6. According to (20) and (21), a quasi-opposite population is generated, which
is incorporated into the initial population to form a mixed population. Here, xm

i
represents the value of the mth dimension decision variable in particle i, αm

i and βm
i

represent the maximum and minimum values of xm
i , and xm

i and Xm
i represent the

opposite and quasi-opposite values of xm
i , respectively;

xm
i = αm

i + βm
i − xm

i (20)

Xm
i = rand

[
αm

i + βm
i

2
, xm

i

]
(21)

• Step 7. Update the Pareto solution set X;
• Step 8. Determine whether the maximum number of iterations is reached. If yes,

proceed to the next step. Otherwise, repeat Step 4–Step 7;
• Step 9. Output the optimal Pareto solution set.

The specific algorithm flow chart is shown in Figure 4.
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5. Case Study
5.1. Parameter Settings

In this study, a standard IEEE-33 bus system is adopted to verify the effectiveness of
the proposed optimal planning solution in the distribution network, as shown in Figure 5.
The reference voltage of the distribution network system is 10 kV, the reference capacity is
8 MW, the total active load in the system is 4.125 MW, and the load access points are {13, 16,
19, 21, 27, 31}. The related data of PV and load used in this paper are from the NREL data
set [25], and their characteristic profiles are shown in Figure 6.
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The parameters of various equipment in the optimization model and the parameters
of the improved PSO algorithm are shown in Table 1; the time-of-use price of electricity
from the grid is shown in Table 2.

Table 1. Basic parameter settings in the proposed solution.

Parameter Value

Investment cost of PV ($/kW) 4200
Investment cost of ESS ($/kWh) 2000

Investment cost of transmission line ($/km) 80000
Operation and Maintenance cost of PV ($/(kW·year)) 800

Operation and Maintenance cost of ESS ($/(kWh·year)) 620
SOC of ESS 0.1–0.9

Energy efficiency of ESS 0.88
Total planning years (year) 10

Discount rate 0.06
Carbon emission coefficient of thermal power generation

(kgCO2/kWh) 1.05

Carbon trading price ($/t) 60
Per-unit value of node voltage 0.82–1.16

Maximum transmission power of transmission line (kW) 600
Learning factors c1 and c2 1.58, 1.63

Weight coefficient w 0.9
Number of particles N 100

Iterations K 1000

Table 2. Time-of-use price of electricity from the grid.

Time Price ($/kWh)

Valley Period 0:00–8:00 0.2823:00–24:00

Normal Period
8:00–10:00

0.5515:00–18:00
21:00–23:00

Peak Period 10:00–15:00 0.8418:00–21:00

For PV and load forecasting, this paper selects the data from January 2020 to December
2020. The first 25 days of each month are selected as the training sample and the remaining
days of each month are selected as the test sample; the sampling interval is 10 min. The
144 power points in one day is reconstructed into a 12 × 12 matrix. The specific parameter
settings of the CNN-based prediction model adopted in this paper are shown in Table 3. The
convolutional kernel dimensions of the convolutional layers are 3 × 3 × 4 and 3 × 3 × 16,
respectively. The activation function of the fully connected layer is Re_lu.



Energies 2022, 15, 9639 11 of 15

Table 3. The specific parameter settings of the CNN-based prediction model.

Layer Type Dimension

1 Input (12,12)
2 Convolution (12,12,4)
3 Convolution (12,12,16)
4 Flatten (2304)
5 Fully connected (144)
6 Output (144)

The hardware environment in this paper is as follows: Intel (R) Core (TM) i5-3550;
8 GB RAM; and NVIDIA GeForce GTX 1060. The software environment is as follows:
Matlab 2019a; and Matpower 6.0.

5.2. Forecasting Results of PV and Load

After training, the CNN model is used to predict the PV generation and load power on
typical days in four different seasons, and the specific results are shown in Figures 7 and 8.
It can be seen that the prediction model can effectively track the changes of PV and load,
the prediction performance is ideal, and the needs of the subsequent planning model can be
basically met. According to the calculation results, the maximum value of the mean absolute
percentage error (MAPE) is 6.673% in PV forecasting and 5.421% in load forecasting.
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5.3. The Optimal Location and Capacity Configuration Results

Based on the scenario generation results of PV and load, the access location and
configuration capacity of PV and ESS in the distribution network system are planned, and
the improved MOPSO algorithm is used to optimize the model. Finally, the effectiveness of
the proposed method is proved by comparing the following planning strategies:

• Strategy I: PV and ESS collaborative planning in the distribution network, without
considering carbon emissions and multiple uncertainties (traditional configuration
method);

• Strategy II: PV and ESS collaborative planning in the distribution network, in which
multiple uncertainties are considered while carbon emissions are not;

• Strategy III: PV and ESS collaborative planning in the distribution network, in which
carbon emissions and multiple uncertainties are considered (planning method pro-
posed in this paper).

The optimization results and various indicators of the system under different planning
strategies are shown in Tables 4 and 5, respectively.
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Table 4. The optimal location and capacity configuration results of PV and load in DNs.

Device
Location Capacity (MW, MWh)

I II III I II III

PV

3 3 4 0.85 0.97 1.48
6 8 10 0.86 1.04 1.75

15 13 16 1.72 1.88 1.87
30 20 20 1.34 1.53 0.92

28 24 - 0.24 0.83
- - 29 - - 0.16

Energy storage
8 6 4 1.27 1.32 1.45

20 15 13 0.96 1.09 1.82
- 28 31 - 0.42 0.66

Table 5. The various indicators in the model under different strategies.

Objectives I II III

Investment cost (106 $) 24.49 29.43 37.30
Operation cost (106 $) 5.19 6.28 8.04

Electricity purchase cost (106 $) 24.83 20.07 13.19
Transmission line cost (106 $) 0.96 0.96 0.96

Total cost (106 $) 55.48 56.74 59.49
Carbon emission (t/CO2) 3056.67 2776.03 2310.39

Reliability 1.622 1.936 2.563

Compared with strategy I, strategy II fully considers the uncertainties of PV and load
in the distribution network, and a CNN-based scenario generation model is adopted to
characterize their uncertainties; in strategy III, carbon emission constraints are added to
the optimization model. It can be seen from Table 4 that the total configured capacities of
PV and ESS are 4.77 MW and 2.23 MWh in strategy I, 5.66 MW and 32.83 MWh in strategy
II, and 7.01 MW and 3.93 MWh in strategy III, respectively. The configured capacities
in strategy I, II, and III are increasing, and it can be concluded that: (1) Compared with
strategy I, the uncertainties of PV and load are fully considered in strategy II. In order to
ensure the power supply reliability of the system, the configuration capacity of the PV
generation equipment is increased, which results in the enhancement of the power supply
stability and the improvement of the PV utilization rate. (2) Compared with strategy II,
carbon emission constraints have been added to the optimization model in strategy III;
thus, more PV generation and ESS equipment are installed to reduce the carbon emissions
in the system.

Table 5 compares the economic indicators, carbon emissions, and power supply stabil-
ity of the system under different optimization schemes. It can be seen that, when compared
with Strategy I, the investment cost and operation cost in Strategy II increased by $4.94 M
and $1.09 M, respectively, and the power purchase cost decreased by $4.76 M; the total
cost of the system increased by 2.27%, but the reliability of the power supply is greatly
improved, and the importance of uncertainty characterization is fully proved through this
comparison. In addition, compared with Strategy II, the investment cost and operation cost
in Strategy III increased by $7.87 M and $1.76 M, and the power purchase cost decreased by
$6.88 M; the total cost of the system increased by only 4.85%, but the carbon emissions of
the system decreased significantly (465.64 t CO2); therefore, the impact of the carbon emis-
sion constraints on the DN planning is presented through this comparison. In conclusion,
the optimal planning model for PV and ESS that accounts for the multiple uncertainties
proposed in this paper can effectively reduce the carbon emissions of the system, improve
the utilization rate of PV, and mitigate the impact caused by the massive connection of PV
on the distribution network. The optimal location results for PV and ESS are shown in
Figure 9.
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6. Conclusions and Future Work

This paper proposes a novel optimal location and capacity configuration model for PV
and ESS in a DN. Multiple uncertainties are considered and the following conclusions can
be made: the CNN-based uncertainty characterization model can capture the probability
characteristics of PV and load data effectively and fully characterize their uncertainties.
Thus, the impact of the uncertainties of PV and load on the distribution network planning
can be solved. Then, taking the minimum total economic cost of the system, the maximum
carbon emission reduction, and the optimal power supply reliability as the objective
functions, an optimal location and capacity configuration model for PV and ESS that
considers multiple uncertainties in the DN is formulated. Finally, an improved MOPSO
algorithm is used to solve the model, and the effectiveness of the proposed solution is
proved through a comparative case study on the IEEE-33 bus system.

For future work, there still remain several crucial issues that are worthy of further ex-
ploration: the renewable source in the distribution network used in this paper only includes
PV, and the energy storage is battery energy storage; however, in the actual distribution
network, a single type of energy storage cannot fully meet the demand. Therefore, a variety
of different types of DGs and energy storage equipment should be added to make the
distribution network planning more comprehensive and reasonable.
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