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Abstract: This paper proposes a new peer-to-peer (P2P) energy trading method between energy
sellers and consumers in a community based on multi-agent reinforcement learning (MARL). Each
user of the community is treated as a smart agent who can choose the amount and the price of the
electric energy to sell/buy. There are two aspects we need to examine: the profits for the individual
user and the utility for the community. For a single user, we consider that they want to realise both a
comfortable living environment to enhance happiness and satisfaction by adjusting usage loads and
certain economic benefits by selling the surplus electric energy. Taking the whole community into
account, we care about the balance between energy sellers and consumers so that the surplus electric
energy can be locally absorbed and consumed within the community. To this end, MARL is applied
to solve the problem, where the decision making of each user in the community not only focuses on
their own interests but also takes into account the entire community’s welfare. The experimental
results prove that our method is profitable both both the sellers and buyers in the community.

Keywords: peer-to-peer energy trading; multi-agent reinforcement learning; prosumer

1. Introduction

Environmental benefits, financial incentives, energy conservation and emission re-
duction motivate households to install distributed power generation and energy storage
devices [1]. Once users install renewable-based distributed generators, they have a revo-
lutionary change in the role they pay in the electric energy market, that is, they become a
prosumer who possess the capability to generate and consume electric energy and possibly
also has demand response (DR) capacities [2]. As prosumers emerge, the energy infrastruc-
ture of a community should make innovative changes to adapt to the new concept.

An intuitive energy trading model of the community microgrid is directly trading with
the main grid [3]. With this model, each user acts as an individual to independently interact
with the main grid. After meeting daily demand, the user will sell the surplus electric
energy to the main grid at a price lower than the market price to obtain economic benefits.
One shortcoming is that in this model, the individual sells surplus electric energy to the
supplier at a price much lower than the market price, which is fundamentally detrimental
to the user. This model is relatively simple and has a formal operation in practice, but
unfortunately, it fails [4].

The P2P model is widely used for the resource sharing problem in the field of computer
science in which each computer (i.e., peers) located at the edge of a P2P network provides
resources to the network and consumes resources that the network provides [5]. Similarly,
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each prosumer in a community can generate electric energy to the community and also
consume electric energy provided by the community; thus, the community can be naturally
modeled as a P2P network [6]. The only difference is that the main grid will trade the
electric energy with prosumers as a special participant. The P2P energy trading model is
more flexible than the traditional energy trading model. One of the strengths of this P2P
model is that users can choose the amount of energy to be traded according to their actual
load requirements. Moreover, users can choose the transaction price, which allows users to
maintain their own economic profits.

Recently, P2P energy trading has been attracting more and more attention from scien-
tists and engineers. Most of them have primarily considered the model from two different
points of view. One is the game-theoretic models have been proposed to deal with the
P2P energy trading problem [7–9]. The other one is the P2P energy trading formulated
as an optimization model and solved by some gradient-based algorithms [10,11]. In addi-
tion, Ref. [12] introduced blockchain technology to solve the P2P energy trading problem
based on a decentralized platform. For more details, please refer to two recent survey
papers [13,14] and the references therein.

Considering the drawbacks of model-based optimization approaches [15], reinforce-
ment learning (RL) has been recently carried out to deal with the energy trading problem.
The authors in [6] applied learning automaton-based RL algorithms to address energy
trading among prosumers with incomplete information. Subsequently, batch RL algorithms
were proposed to schedule controllable loads [16], which motivated us to explore the idea
of appliance load division in this paper. The authors of [17,18] presented a dynamic pricing-
based DR scheme, and Q-learning was employed for decision making. More recently,
MARL has also dealt with the P2P energy trading problem. The authors of [19,20] proposed
multi-agent deep deterministic policy gradient algorithms to deal with the double-side
auction P2P energy trading problem by combining the technique of parameter sharing. The
authors in [21] presented a long short-term delayed reward method to learn the long-term
trading patterns and the short-term trading patterns at the same time for a better trading
strategy. In addition, the concept of community energy storage was introduced in [22] for
prosumers, and the authors proposed an RL-based algorithm for solving the P2P energy
trading problem.

Despite these efforts, however, there still exist two significant limitations. First, most
work focused on only one kind of appliance, such as thermostatically controlled load, that
did not consider that reducing and shifting the elastically controllable load would trigger
a variation in decision making. Second, to our best knowledge, research on multi-agents
is relatively rare except [19,20] however, in that study, the authors formulated the P2P
trading problem as a multi-agent coordination problem. We believe that in the P2P energy
trading model, each user will decide the sell/buy volume and price of electric energy for
maximizing his own profit, so each user is selfish and competitive with others, rather than
cooperative.

To enrich the research into P2P energy trading, in this paper, we first provide novel
insight into P2P energy trading in which we treat each prosumer in the community as an
agent who interacts with other community members to realize economic efficiency. For
individual users, we try to find a trade-off between comfort level and economic benefits by
adjusting the elastic appliance loads and selling surplus electric energy. At the same time,
from the perspective of the entire community, we need to balance the interests of sellers
and buyers and consume the surplus electric energy locally. The main contributions of this
paper are as follows:

• We build two interactive energy trading models, one is the household energy manage-
ment system (HEMS), which ensures a trade-off between satisfaction and profits. The
other one is the community energy management system (CEMS), which can balance
the interests of sellers and buyers and absorb the surplus electric energy locally.

• We propose a new P2P energy trading model in the community as the interaction
between multiple agents, which can be naturally applied. The decision making of each
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user not only focuses on their own interests but also takes into account the welfare of
the entire community.

• We perform simulated experiments to show that the balance between buyers and
sellers in P2P energy trading is achievable and the energy trading is significant for both
sides. Moreover, experimental results also report the trading behaviour of individual
users in the community for more profits.

2. Preliminary
2.1. Reinforcement Learning and Q-Learning

All MARL frameworks can be described as a standard interaction process in which
each agent interacts with the environment in search of a reward-maximizing policy [15], as
shown in Figure 1. The environment receives the action from the agent and executes this
action; the new state of the environment and a scalar reward are fed to the agent; the agent
uses the information to optimize its policy and choose the next action. This relationship is
modeled by the Markov Decision Process (MDP) via a quintuple (S ,A,P , r, γ):

• S is the set of environment states, each of which is used to describe the real condition
of the environment, maybe a tuple or a big matrix.

• A is the set of actions. An action a ∈ A shows the agent’s behaviour in the en-
vironment. For example, we can control the direction and speed of the car when
we drive.

• r is a scalar denoting the reward that evaluates the impact of the agent’s current action
on the environment.

• P is the state transition distribution that characterizes the rule of environmental
changes, since the environment faces a new state after we take an action.

• γ ∈ (0, 1) is defined as the discounted coefficient/factor.

Figure 1. Reinforcement learning process between agent and its environment.

Focusing on the RL process, at each discrete time-step t, for given the current state
st ∈ S and the policy π : S → A, the agent selects an action at ∈ A and then receives
a reward r(st, at) and the next state st+1 of the environment; the agent chooses the next
action at+1. This process loops until time t is the final time-step. The main aim of RL is
to maximize the cumulative reward in the process, that is to say, to maximize the return
Rt = ∑T

τ=t+1 γτ−t−1r(sτ , aτ), where T is the final time-step, and the return indicates the
priority of long-term rewards.

The most famous algorithm in RL is Q-learning to solve the discrete Markov decision
problem. First, the Q-learning process is based on the action–value function, which de-
scribes the expected reward after selecting an action at in state st and thereafter executing
according to policy π satisfying:

Qπ(st, at) = Erτ≥t ,sτ>t∼E,aτ>t∼π [Rt|st, at] (1)

where E is a stochastic environment. Action–value functions satisfy a recursive relationship
expressed by the Bellman equation:

Qπ(st, at) = Ert ,st+1∼E
[
r(st, at) + γEat+1∼π [Qπ(st+1, at+1)]

]
.

Q-learning starts with a Q-table composed of all state–action pairs, then updates this table
with the Bellman equation until it converges to the optimal policy [23]. Specifically, the
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optimal policy is obtained by executing a greedy search strategy π∗ = arg maxa Q(s, a)
on each state. Since the update in Q-learning is based on an action–value function, a
convergent Q-table is necessary which decides whether Q-learning can converge to the
optimal policy. Many RL algorithms are presented based on Q-learning to solve some
existing questions [24,25].

2.2. Multi-Agent Reinforcement Learning and Value-Decomposition Networks

Many MARL frameworks have been developed to cooperatively solve the optimal
policy in which each agent observes its own (local) reward and is responsible for seeking the
current optimal action from its own action set only based on local observation. Traditional
RL algorithms such as Q-learning can seldom be used to solve MARL problems. Generally,
each agent has to face a non-stationary situation where the dynamic of its environment will
change as other agents select some different actions. In addition, please notice that from
an individual agent’s perspective, the environment is partially observable; some surplus
reward information may come from other agents’ actions. The literature [26] showed that
independent Q-learners cannot distinguish other agents’ exploration due to stochasticity
and fail to solve a very simple MARL problem.

A value-decomposition network (VDN) was proposed in [27], which solved those two
problems existing in MARL frameworks. MARL is organized as a decentralized partially
observable Markov decision problem (Dec-POMDP); each agent has its local observation oi

and action ai. The core idea of VDN is:

Q(s, a) ≈ Q(o1, a1) + Q(o2, a2) + . . . (2)

which decomposes the global Q-function into additional local Q-functions and verifies the
effectiveness of VDN. For details, refer to [27].

3. Peer-to-Peer Energy Trading Model

In this section, we consider a community energy trading scheme involved with several
household prosumers. Table 1 and Figure 2 show the notations used in the P2P energy
trading model and the graphical model of this paper, respectively.

Table 1. Parameter notations of peer-to-peer energy trading system model.

Notation Description

H Time-step indicating an hour moment in a day
i Index of each household energy management system

Ege Electricity volume of distributed energy generator
Ene Necessary and irreducible appliance load in HEMS
Econ Elastic and controllable appliance load in HEMS
p Unit electricity price of power grids

ene Real consumption of necessary and irreducible appliance loads
econ Real consumption of elastic and controllable appliance loads

U Electricity volume of HEMS sell to peers
P Electricity price of HEMS wish to sell

α, β Parameters of dissatisfaction function
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Figure 2. Peer-to-peer energy trading system model.

3.1. Household Energy Management System (HEMS)

We consider a household is equipped with one HEMS and several appliances, espe-
cially distributed energy generator devices, with the aim of optimizing energy consumption.
HEMS is connected with other users in the community through a two-way transmission
line that enables the exchange of electric energy. Each HEMS can receive information about
energy consumption in the house as well as the price of electricity and decides the amount
U and price P of energy to sell to peers. The electric appliances are separated into two
types based on their characteristics and preferences of users, i.e., necessary load Ene and
controllable load Econ. For simplicity, the following mathematical analysis omits the index
of HEMS.

The necessary load indicates the electric energy that users must consume in daily life.
This part of electric energy guarantees their most basic life needs, such as refrigerators,
lights, etc. Without this part of consumption, users will encounter difficulties in their daily
life. So the real consumption eH

ne of necessary load matches its demand EH
ne, i.e.,

eH
ne = EH

ne. (3)

The controllable load of appliances shows the flexibility of users. They may prefer to
reduce electric energy consumption to reduce their bills. This type of equipment includes air
conditioners and washing machines, which change the electric consumption by adjusting
their working levels or scheduling their operation periods. The real consumption econ of
the controllable load is calculated by

econ = EH
ge − EH

ne −UH (4)

where Ege is the energy generated from a locally distributed energy generator, which is
different at time H. UH is the amount of energy that HEMS decides to sell at time H.

Selling surplus electric energy will realize a profit, and at the same time, users may
give up the comfort level in the household to a certain extent. There are many satisfaction
functions to describe satisfaction/dissatisfaction level, among which the most widely used
are the quadratic function and the logarithmic function. In this work, we use the quadratic
function to define the dissatisfaction of household users:

ϕH =
α

2
(EH

con − eH
con)

2 + β(EH
con − eH

con) (5)

where α and β are constants defined in Table 1.

3.2. Constraints of HEMS

The constraints are mostly focused on the amount and price of the electric energy to sell,
namely U and P. Back to Equation (4), it should at least satisfy that econ = EH

ge− EH
ne−UH ≥

0, so that we have UH ≤ EH
ge − EH

ne. Now, considering the case that EH
ge − EH

ne − EH
con > 0,
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the HEMS should sell the surplus energy to peers because there are no energy storage
devices in the house. So, we attain the range of U:

EH
ge − EH

ne − EH
con ≤ UH ≤ EH

ge − EH
ne. (6)

At time H, when UH > 0, it means that HEMS is selling electric energy to the P2P
trading system and vice versa.

About P, we make the following assumption to illustrate constraints on it.

Assumption 1. Peers are always the first choice.

At time H, the electricity price of the power grid is pH , the electricity price that the
user directly sells to the power grid is pH − k, where k is the residual constant. Therefore,
a constraint to PH is pH − k < PH < pH . This assumption essentially encourages sell-
ers/buyers to participate in the P2P energy trading system instead of directly interacting
with the power grid.

3.3. Community Energy Management System (CEMS)

In the previous part, we mainly focused on a single HEMS. Its most important function
is to determine the amount and electricity price at which the user wants to sell. We
introduced the dissatisfaction function for a household and explained the constraints on
its decision. With this subsection, we illustrate the energy dispatch after all households
have their decisions on UH and PH . From Figure 2, we see that each HEMS decides to sell
energy UH , but how the sold energy is dispatched to other users still needs a strategy to
solve this problem. Given this problem, we solve it with the following process.

Step 1. Classification: Dividing users into two sets, namely a buyer set B and a seller set F,
according to UH . When UH > 0, the user belongs to the seller set F and vice versa.

Step 2. Sorting and Allocation: Denote an energy tuple (UH
i , PH

i ) of a user i. First, we sort
the seller set F in ascending order by PH

i . Then, beginning allocation, we take out
the user with the lowest price from the seller set and dispatch the electricity to
each buyer in proportion. Therefore, the electric energy allocated to each buyer
with PH

i is:

Dispi =
UH

i_buy

∑i∈B UH
i_buy

×UH
i_sell . (7)

After the electricity with the lowest price is allocated, the user with the second-
lowest price is taken from the seller set B to continue the above process until
alternatively the seller set or the buyer set is empty.

Step 3. Fixing the Result: As mentioned in Step 2, the allocation process will end when
the seller set or the buyer set is empty. However, there may still be unmet needs of
some users; so in the end, users who have demand will directly interact with the
power grid after the P2P trading process ends.

After the above three steps, we can compute that the income obtained by each seller in
the seller set B is:

Utilityi = PH
i ×∑

i∈B
Dispi +O (8)

where O shows the profit at which the user sells the remaining energy to the power grid.
The cost of the each buyer in buyer set F is:

Costi = ∑
i∈F

(PH
i × Dispi) +O. (9)

So, the objectives of seller and buyer at time H, respectively, are:

Objectiveseller = Utilityi − ϕH , (10)
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Objectivebuyer = Costi + ϕH . (11)

Now, we know that the goals of the entire P2P community energy trading model are
maximizing Equation (10) and minimizing Equation (11). Since the goal of reinforcement
learning is to maximize the reward function, we write the objective function of the P2P
energy trading community as:

Objective = ρ ∗Objectiveseller − (1− ρ) ∗Objectivebuyer (12)

where ρ is a mixed parameter.

4. Multi-Agent Reinforcement Learning for P2P Energy Trading

In this section, MARL is used to solve the problems formed in the previous section;
that is to say, the ultimate goal is to let each user make the correct decision based on
its own information. This correct decision can benefit both the buyers and the sellers
in the community. Below, we first establish an MARL environment for the P2P trading
model, and then we solve the optimal decision-making problem of each agent based on the
VDN algorithm.

4.1. Establishing MARL Environment

Before starting this subsection, we need to launch an assumption that the future
is predictable, which is reasonable. First of all, the electricity price can be divided into
the static electricity price and dynamic electricity price. When our model uses the static
electricity price, the power grid will release the corresponding electricity price one day in
advance. For the dynamic electricity price and the electricity volume of distributed energy
generators, the assumption is accomplishable relying on the current predictive technology
based on deep neural networks [28–30].

Reinforcement environment for HEMS
Observation: o = (Ege, Ene, Econ, pH)

Action: a = (UH , PH)

Reward: r = Objective in (12)

For each agent, the RL environment is the same, as listed in the above table. Please no-
tice that each agent does not have separate reward information, and the reward information
is total for the entire community. From the above table, we view the tuple (Ege, Ene, Econ, pH)

as the user’s local observation information oi. Here, HEMS is implemented by a neural net-
work that uses oi as input, and its output is the value function Q(oi, ai) of each action. There
is no reward information for individual HEMS, meaning the network cannot be trained. So,
we superimpose the Q-function of each user and obtain the global Q-function of the entire
community. That is to say, we suppose the global action value function Qglobal(S, A) can be
decomposed into a local action value function:

Qglobal(S, A) = Qglobal((o1, o2, . . . ), (a1, a2, . . . ))

≈ Qlocal(o1, a1) + Qlocal(o2, a2) + . . . . (13)

With this assumption, we can use the reward information of the community to achieve
end-to-end training for the local network. The whole architecture of our networks is shown
in Figure 3.
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Figure 3. Architecture of neural networks used in the MARL environment.

It can be seen that the single-user HEMS architecture mainly uses the multi-layer
perceptron (MLP) networks [31] and the gated recurrent unit (GRU) network [32]. MLP
networks have been widely used in classification and nonlinear prediction. GRU is a new
architecture of the recurrent neural network, which was proposed in 2014. Compared
with long-short term memory (LSTM) neural network, GRU uses less training parameter
and therefore uses less memory and executes faster on simple datasets. For the activation
function of the network layer, we uniformly use the rectified linear unit (ReLU) nonlin-
ear activation function [33], i.e., ReLU(x) = max{0, x}. The backpropagation gradient
algorithm Adam [34] is used to train the networks.

4.2. Training and Executing

Centralized training and distributed execution (CTDE) have almost become the stan-
dard paradigm for multi-agent reinforcement learning [35]. In the training process, calculat-
ing the global reward must use the information of each agent. If the training is distributed,
then training each agent requires other agents to transmit data to it, which will increase the
cost. Distributed execution is completely feasible. For each agent, after the training, we can
take a greedy strategy on the trained Q-network to obtain the optimal strategy, which only
requires local information oi as input.

In order to simplify training, we use the method of sharing parameters. Since the
network structure of each agent (HEMS) is exactly the same, only a local network Qlocal is
needed to approximate the action–value function for each agent. It is worth noting that
we add the additional input feature to this network for identifying which user is using
this network. Specifically, we increase the input dimension and use the one-hot encoding
to form the data to indicate the user index. In this way, the training process will become
relatively simple because there is actually only one action–value network Q that needs to
be trained.

The complete training process is shown in Algorithm 1, which is divided into two
parts: interacting with the environment to obtain data and training a neural network. In
the process of collecting data, we first select the action of each agent according to the
ε-greedy strategy. That is to say, we randomly select the action with the probability of ε
and choose the greedy action ai = arg max Qi(oi, ai) with probability 1− ε; ε-greedy policy
actually expresses the balance between exploration and exploitation in our training process.
Randomly selecting actions for exploration may encounter relatively low rewards, but at
the same time, it is possible to seek the actions that have not been selected before. The
greedy policy would obtain a relatively high reward, while it means there will never be an
improvement. The parameter ε will decrease as the training episodes are increasing.
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Algorithm 1 Training Process of RL Algorithm

Initialize: Action value network Q(o, a|θ) and Q′(o, a|θ′)
Initialize: Replay buffer R size M

for episode = 1, 2, · · · , N do
Initialize an environment state (o1, o2, . . . ) for begin exploration
for time H = 1, 2, · · · , do

for each agent i = 1,2, . . . , do
Select a random action ai

H with probability ε

Otherwise select ai
H = maxa Q(oi

H , a)
Execute the action aH and observe the next oi

H+1
end for
Get global reward rH and store transition (oi

H , ai
H , rH , oi

H+1) in R
Sample random minibatch of transitions (oi

H , ai
H , rH , oi

H+1) from R
Compute target yH with (14) and (15)
Using (16) as loss to update the network Q

end for
Every T episodes, copy parameters of Q to Q′

end for

When we have collected enough data, we will start training. Our training process is
similar to the deep Q-learning (DQN) algorithm [36] because both of them are to train the
action–value function network until it converges. The difference is that our environment
has only one global reward r; we train the network through the following process. First,
we calculate the target value yH

yH =

{
rH , H is the terminal
rH + γ max Qglobal(SH , AH), Otherwise

(14)

where H represents the time, and γ is the discount coefficient. We substitute (13) into (14)
to obtain the target value when the current time is not the terminal

yH = rH + γ max(Qglobal((o1
H , o2

H , . . . ), (a1
H , a2

H , . . . )))

≈ rH + γ max(Qlocal(o1
H , a1

H) + Qlocal(o2
H , a2

H) + . . . )

= rH + γ max(Q(o1′
H , a1

H) + Q(o2′
H , a2

H) + . . . )

≈ rH + γ max(Q′(o1′
H , a1

H) + Q
′
(o2′

H , a2
H) + . . . ) (15)

where Q′ is the target network whose structure is exactly the same as the network Q. If we
use the network Q to calculate the target value, it may make the training process unable
to converge. So, we use the target network Q′ to replace the network Q to approximately
calculate the target value, where o1′

H and o2′
H are input data that contain features to identify

the user index. This training technique has proven its effectiveness in DQN [36] and the
deep deterministic policy gradient (DDPG) algorithm [37].

After calculating the target value yH , we employ the following loss function and
Adam [34] optimization algorithm to train the network.

Loss = (yH − (Q(o1′
H , a1

H) + Q(o2′
H , a2

H) + . . . ))2. (16)

When the training process is completed, we will obtain a convergent network to
approximate the action–value of each agent. The network can be executed in a distributed
manner. For each agent, its local state o and user index are the input data, and the output
is the result of the action–value function for each action. Here, we use a greedy policy to
obtain the optimized action; that is, the action with the largest action–value is taken as the
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decision for the user at this time-step, which includes the amount of energy to be traded
and the transaction price.

5. Experiment Detail
5.1. Experiment Setting

This subsection first gives the parameter setting in a small-scale CEMS environment
and the RL training process as shown in Tables 2 and 3.

Table 2. Parameter setting of CEMS environment.

Notation Value Notation Value

Time interval ∆H 1 h α 20
Number of users in community 5 β 0.1

Table 3. Parameter setting of RL training process.

Notation Value Notation Value

Episodes N 6000 Minibatch size 512
Experience replay size M 1500 Reward decay coefficient γ 0.9
ε 1 ε reduce every episode 2.5× 10−4

Target network update interval T 100

In the previous section, we assumed that the grid-side electricity price, user load, and
electricity volume of the user’s distributed power generation devices are known. Now,
we generate these data to simulate the real scenario. For the electricity volume data of
the user’s distributed generation devices, we randomly sample data from the Poisson
distribution [38], while at the same time limiting its maximum size to 12. In 1 day, we
divide 24 h into 4 regions, where each region has different Poisson distribution parameter
λ, as shown in Table 4. For the user’s different loads, we acquire the user’s necessary load
Ene and controllable load Econ from the two sequences [3, 4, 5, 6] and [2, 3, 4, 5] with different
probabilities, respectively, as also shown in Table 4.

Table 4. Poisson distribution parameter and load choosing probability for different users and regions.

User Poisson Distribution: λ for Region Index Probability: Pro. for Region Index

Index 1 2 3 4 1 2 3 4

1 2.667× 10−7 0.541 6.5965 4.3712 0.5 0.2 0.2 0.1
2 8.8281 10.2997 9.8301 9.7514 0.2 0.5 0.1 0.2
3 8.8281 10.2997 9.8301 9.7514 0.2 0.1 0.5 0.2
4 2.667× 10−7 0.541 6.5965 4.3712 0.1 0.2 0.2 0.5
5 8.8281 10.2997 9.8301 9.7514 0.4 0.5 0.1 0

In order to illustrate this further, we list the load and the electricity volume of the
distributed generation devices of “User 1” in one day, as shown in Figure 4. From the
picture, we can see that at some specific time-slots, the user would have surplus electricity
after the user meets the necessary load, such as H = 18. In contrast, the user has no surplus
electricity to sell at time H = 4 and may buy energy from other users. For the model
adapted to electricity price, we use the square electricity price model [39] which belongs
to the static price model. When the time H > 7, the price is 20, otherwise the price is 15.
Finally, we set the parameter of Assumption 1 as k = 5.
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Figure 4. Necessary load and energy generation of “User 1”.

Now, we set the parameters for the neural network of our single agent. We actually
train only one neural network when we use the method of sharing parameters; its architec-
ture is exactly the same as that of the single network in Figure 3. The number of hidden
layer neurons is set in Table 5. The input dimension of the network is nine, where the data
dimension of the local state is four and the dimension of user identification is five. For the
output of the network, we will make a specific description in the next subsection.

Table 5. Neuron number of our network.

Hidden Layer Number of
Neurons Hidden Layer Number of

Neurons

Linear layer 1 256 Linear layer 2 128
GRU layer 128 Linear layer 3 128

5.2. Experimental Results

This paper employs an optimized policy to a convergent action–value function net-
work. Now, we verify its convergence properties. In the training process, we use the
ε-greedy strategy to achieve the balance between the exploration and exploitation of the
action space in which, with the increase of training episodes, ε will gradually decrease to
make the agent prefer choosing the greedy action to obtain the large reward. At the same
time, choosing the appropriate environmental reward function has a decisive effect on RL
performance. The reward function in (12) contains the mixed parameter ρ, which means dif-
ferent ρ may have have an impact on the convergence of loss and reward. Here, we evolve
the loss and reward by choosing different values in [0, 1], as shown in Figure 5, where we
record the loss value for each episode and test the total reward every 50 episodes. From the
figure, we can see that for all of ρ, the loss will eventually reach a stable convergence, but
ρ has a greater impact on the final reward. When ρ = 0.3, the network can obtain a more
expected final reward than other values of ρ.

We choose ρ = 0.3. Even so, we still need to verify in the environment whether this
decision is beneficial for both the sellers and buyers in the community. The base situation
we compared with is that users in the community are always directly trading with the grid
side. We compute the seller’s profits and the buyer’s costs under different ρ in one day, as
shown in Figure 6. Thanks to using the MARL guided P2P trading strategy, the total profits
of all sellers in the community are higher than the base situation. At the same time, the total
cost of buyers is less than when the user directly trades with the grid side. Therefore, the
P2P energy trading model is profitable for both the buyer and the seller, which will always
be of benefit to sellers and buyers in comparison with the base situation and also guide the
users to sell/buy appropriate electricity to reach a better balance in the community.
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Figure 5. Evolution of loss and reward in training process.

Figure 6. Profits/costs with different ρ.

From Figure 6, when ρ > 0.3, although the buyer’s cost has been flat and falling as ρ
increases, at the same time the seller’s profit will be falling more and flat as ρ gradually
increases. In this case, the total rewards will gradually decrease in comparison with the
peak (ρ = 0.3) as ρ increases from 0.3. When ρ < 0.3, not only does the seller’s profit
decrease as ρ decreases, but also the buyer’s cost increases as ρ decreases, whether trading
with the main grid or the seller. In this case, the total rewards will gradually decrease in
comparison with the peak (ρ = 0.3) as ρ decreases from 0.3. In summary, we can conclude
that the parameter ρ = 0.3 is the best choice. Therefore, the following experiments will be
conducted with ρ = 0.3.

In the P2P energy trading, there are three states: demand over supply, supply over
demand and balance between supply and demand in the community. Now, we will show
the decision-making process for an agent under those three states. As depicted in Figure 7,
we can see that when CEMS is in the state of demand over supply or balance, the electricity
price of sellers will be higher, even approaching the grid price. For example, when H = 21,
the electricity price of the grid is 20, the transaction price given by the seller is 17.5. It is
understandable because as long as the price the seller charges is less than the grid price,
the buyer’s actual cost will be lower than directly trading with the grid. At the same time,
referring to Figure 4, we see that when “User 1” is at H = 21 and H = 4, the electricity
generated by its own distributed devices is not enough to support the operation of the
controllable load, so “User 1” buys energy to meet the demand of the controllable load for
increasing its satisfaction. When the system is in the state of supply over demand (H = 18),
the transaction prices “User 1” and “User 3” charge are lower than those of “User 2” and
“User 4”. We have the following interpretation according to our previous distribution rules.
Sellers with low prices preferentially sell energy to other users; sellers need to compete to
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sell energy to buyers when the system is in the state of supply over demand, so “User 1”
and “User 3” charge lower prices, ensuring participation in the P2P trading. Those results
prove that the agent’s policy obtained by MARL works in the P2P energy trading model.

(a) (b) (c)

Figure 7. Agent’s decisions at different time-slots: (a) demand over supply (H = 4); (b) supply over
demand (H = 18); (c) balance state (H = 21).

The output dimension of the network is actually the discretization size of the action
space of the RL agent, defined by the notation ‘DS’ for short. In the above experiment,
we employ DS = 8, which means that the output dimension of the network is 8. Below,
we try to find the best action discretization size for training our network. Figures 8 and 9
show the training process and test results under different action–discretization scales,
respectively. We can see that for the same training episodes (6000), the reward is almost
stable when DS = 8, but when DS = 16 or DS = 32, the model has the potential to surpass
the performance of the model with DS = 8. This is reasonable because the fine-grained
dispersion of prices will cause the seller’s agent to sell its surplus electricity at a level closer
to the grid-side electricity price. When DS = 16 or DS = 32, however, the seller’s profits in
one day will increase, but at the same time, the buyer’s costs will also increase. Therefore,
we conclude that DS = 8 is enough to solve our current problem as well as reduce the
amount of calculation.

Figure 8. Evolution of loss and reward in the training process with different discretization size.
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Figure 9. The performance of different action discretization size.

6. Conclusions

In this article, we propose a new perspective based on MARL to solve the P2P energy
trading among prosumers in the community. In such a community, each prosumer, who
aims at maximizing his own profit and increase his sense of well-being, can generate and
consume electric energy. Hence, the P2P energy trading mechanism designed in this paper
is based on people’s feelings and needs. The developed MARL algorithm tries to address
two problems at once: (1) for an individual user, it tries to balance the satisfaction and
cost-saving (if buyer) or profit (if seller); (2) for the entire community, it also cares about the
balance of interests between the sellers and buyers. Experimental results demonstrate that
the method based on MARL can successfully solve the P2P trading model among members
of the community.

Future works will mainly focus on addressing two limitations to this study. First,
instead of generating the synthesized data with specific mean and deviations, we hope to
apply real-world energy transaction data of prosumers in the P2P community. Second, the
community energy storage is the development trend of the future [22]; we will consider the
community energy storage integrated into the P2P energy trading, which implies the agent
in RL algorithms will add an extra role that focuses on the profit only.
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