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Abstract: The paper is concerned with predicting energy consumption in the production and product
usage stages and searching for possible changes in product design to reduce energy consumption. The
prediction of energy consumption uses parametric models based on regression analysis and artificial
neural networks. In turn, simulations related to the identification of improvement opportunities
for reducing energy consumption are performed using a constraint programming technique. The
results indicate that the use of artificial neural networks improves the quality of an estimation
model. Moreover, constraint programming enables the identification of all possible solutions to
a constraint satisfaction problem, if there are any. These solutions support R&D specialists in
identifying possibilities for reducing energy consumption through changes in product specifications.
The proposed approach is dedicated to products related to high-cost energy use, which can be
manufactured, for example, by companies belonging to the household appliance industry.

Keywords: energy consumption; energy cost; new product development; product design; sustainable
development; systems modeling and simulation

1. Introduction

Nowadays, the reduction of energy consumption is a common trend, having its sources
not only in environmental aspects. In addition, the steadily increasing prices of energy
boost customers’ readiness to save energy usage. This trend is recognized by manufacturing
companies that provide electrical devices. In particular, companies belonging to the house-
hold appliance industry can be interested in reducing energy consumption because their
products usually have high-cost energy use, and consequently, the total savings resulting
from energy reduction can be relatively greater.

The reduction of energy consumption is broadly described so far in the context of
buildings-, transport-, and environment-related issues. Modeling and prediction of building
energy consumption are presented in [1–6]. Evaluation and reducing energy consumption
in the field of transport are considered in [7–11]. The reduction of energy consumption in
transport is often linked to environment-related issues [12–16] that are also considered in
the context of ecological legislation and economic development [17–19].

An aspect of reducing energy consumption in households mainly refers to analyzing
domestic activities and providing models for understanding resident behavior [20–26]. In
turn, research related to energy consumption in a company mainly refers to modeling en-
ergy consumption within manufacturing systems, including machine tools and production
planning and scheduling [27–31]. An aspect of reducing energy consumption in household
appliances through changes at the product design stage has not yet been investigated.
This is a motivation for developing an approach to support the R&D department by pro-
viding information on improvement opportunities in product design, for which energy
consumption could be reduced in both stages: product usage and manufacturing.
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Predicting energy consumption is crucial in energy planning, management, and sav-
ings. Data-driven models provide a practical approach to predicting energy consumption,
and their usage has increased in recent years [32–38]. These models are mainly based
on statistical and machine learning algorithms. Statistical algorithms include multiple
linear regression, ordinary least squares regression, autoregressive models, autoregressive
integrated moving average, Bayesian regression, polynomial regression, exponential re-
gression, case-based reasoning, and k-nearest neighbors [32]. In turn, machine learning
algorithms mainly refer to the use of artificial neural networks, support vector machines,
and evolutionary computations [35,36]. The ability of artificial neural networks (ANNs) to
identify complex nonlinear relationships make ANNs the suitable tool to predict energy
consumption. As a result, ANNs are one of the most commonly used tools dedicated to
predicting and modeling the overall energy consumption [34]. This study also presents
the use of ANNs comparing their results with regression analysis. The selection of these
parametric models results from their ability to provide the relationships between energy
consumption and factors affecting energy consumption. These relationships are needed
not only to predicting energy consumption but also to identifying possible changes of
energy reduction. The latter task is related to simulations that requires the specification of
variables, constraints, and effective techniques to search for a set of solutions in the search
space. The admissible solutions are often sought using the brute-force search [39] or mixed
integer linear programming [40,41]. However, the decision problems related to the vast
search space of possible solutions require techniques that enable the significant reduction
of the search space. One of these techniques is constraint propagation and backtracking
applied in constraint programming, which can be successfully used for solving a problem
specified as a constraint satisfaction problem. So far, there is a lack of using this technique
for simulations of reducing energy consumption, which is a motivation for its application.

This study proposes a method dedicated to the use of parametric models to identify re-
lationships between product parameters and energy consumption. Relationships identified
by regression analysis and artificial neural networks are further used to find possibilities
of changing product specification toward reducing energy consumption. Simulations of
reducing energy consumption are performed using a constraint programming technique.
Before using this technique, the problem of reducing energy consumption should be de-
fined as a constraint programming problem, which is specified by variables, their domains,
and constraints. Moreover, the proposed method estimates the total product cost to identify
the most promising product concept. The novelty of this research is two-fold: specifying
a model of new product development and company’s resources as a set of variables and
constraints, and developing a method dedicated to predicting energy consumption, as well
as identifying improvement opportunities at the stage of product design toward reducing
energy consumption in product usage and its manufacturing. Consequently, the proposed
method allows R&D specialists to obtain information of possibilities, if there are any, for
reducing the cost related to energy consumption in manufacturing and product usage to
the desired level.

The paper is organized as follows: Section 2 presents a literature review, including
description of product life cycle stages, reducing energy consumption in the product
life cycle, and a reverse approach to improve new product performance. A method of
predicting energy consumption and identifying possible changes at the product design
stage are presented in Section 3. The applicability of the proposed approach is illustrated
in Section 4. Section 3 and 4 have a similar structure consisting of three parts: predicting
the cost of a new product, predicting energy consumption of a new product in the stage
of manufacturing and product usage, and simulations for reducing energy consumption.
Finally, the conclusion and further research are presented in Section 5.
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2. Literature Review
2.1. Product Life Cycle Stages

The product life cycle is usually divided into four stages: new product development,
production, usage (including eventual after-sales service), and recycling/disposal [42–45].
Each of these stages generates costs that can be considered from the perspective of company,
users, and society [42,46]. As product design affects the whole product life cycle and the
mentioned costs, new product development is one the most important business processes.

New product development (NPD) consists of activities related to market research,
product concept generation, concept selection, product design, tests of prototypes, and
commercialization. The design process consists of conceptual design, embodiment design,
detailed design, and production systems development [47]. The phase of market research
can initiate the process of new product development or it can be carried out simultaneously
during prototyping and detailed design. After assessing market, customer needs, and
competitors, an R&D team usually creates a set of product concepts that should be evaluated
and reduced to the most promising ideas. Concept selection can base on cost/benefit
analysis, anticipated sales, resources required (including material, labor, and energy usage),
etc. The further activities of NPD refer to product design, prototype creation and tests, trial
production, quality analysis, and market testing. Product launch initiates stages related
to production ramp-up, product usage, and finally, disposal. Commercialization is often
related to appropriate promotional activities such as advertising campaigns that are strictly
linked to product features.

The next stage of the product life cycle is related to production that includes the cost
of materials, labor, and energy. Additional costs in this stage can be referred to defective
products, maintenance, storage, and transportation.

In the stage of product usage, costs can be divided into two groups regarding company
and customer perspectives. The first group includes the warranty cost related to after-sales
service and spare parts. From the customer perspective, the cost of product usage depends
on a product type, and it can be referred to transportation, storage, maintenance, and
energy needed to product usage.

The stage of product recycling/disposal includes costs related to retrieving the product
from the user, disassembling products to separate components, identifying materials of
component parts, and reprocessing materials or disposing waste [46]. These costs are
paid by a company or customer in the form of recycling dues according to environmental
legislation. Nevertheless, product recycling/disposal (including packaging) costs also refer
to society in the aspect of waste, pollution, and health damages.

Figure 1 illustrates the cost related to product life cycle stages for two cases:
(a) a low-cost product usage, and (b) a high-cost product usage. An example of the first
case can be furniture products, for which failure rate is usually low. An example of the sec-
ond case are electronic products, which complexity affects the increase in failure rate, and
for which energy usage is a characteristic feature. This study further considers the second
case, where is reasonable to reduce energy consumption in the stage of product usage.

It is noteworthy that different product life cycle stages are usually controlled by three
actors: suppliers (who provide raw materials), manufacturers (who control the production
process and packaging), and customers (who use the product and are often responsible
for product maintenance, and recycling/disposal) [48]. These actors have the impact on
energy usage and environmental costs.
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2.2. Reducing Energy Consumption in the Product Life Cycle

The increment of ecological awareness in society has forced companies to consider also
an environmental aspect occurring in the product life cycle. Consequently, responsibility of
designers/manufacturers presently refers not only to issues related to manufacturing and
product reliability, but also to environmental issues, including energy needed to product
usage and disposal.

Both product and processes can be sources of environmental damages and costs. Man-
ufacturing processes can introduce harmful residues into the environment [48]. Gaseous,
liquid, and solid residues released in the production process, as well as packaging, and
products themselves (in the stage of their usage and recycling/disposal) increase environ-
mental costs. A need of minimizing these costs is a trigger to improve the new product
development process, particularly by changes in the stage of product design that affects
the further stages, from manufacturing and maintaining, up to recycling/disposal.

The environmental consequences of a product through its whole life cycle can be
identified using a life cycle assessment (LCA) method that can also search for opportunities
to obtain environmental improvements [48]. An entire assessment of extraction and process-
ing of raw materials, manufacturing, distribution, product usage, and its recycling/disposal
(including energy needed in these stages) is extremely time consuming, and many scholars
have used simplified or partial LCA methodologies for obtaining the early forecast of the
environmental impact of a product [45].

Reducing energy consumption is a part of manufacturing sustainability that can be
linked to changes in technology and materials used in the production process. A prerequi-
site for energy reduction is data collection of present energy consumption in an accurately
way, and development of simulation models of manufacturing system energy consump-
tion in order to analyze different production scenarios [49–51]. Production planning for
sustainable manufacturing systems often refers to improvements of daily schedules and
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job sequencing plans in order to minimalize the cost of energy through reducing peak
times, maximize the usage of renewable energy and reducing dependency on the power
grid [52,53], or designing the architecture of a manufacturing system toward reducing its
energy consumption [51].

Customer relationship management (CRM) systems are very useful in identifying
interactions with customers, including their satisfaction with used products [54,55]. CRM
systems register customer complaints, including product reliability, durability, mainte-
nance, and energy usage [56–58]. Then, CRM databases can be used to improve business
processes related to the whole product life cycle, from design (e.g., customer requirements
identification, design scheme configuration and optimization), production (e.g., shop floor
scheduling, quality control), maintenance and service (e.g., fault identification and diagno-
sis, predictive maintenance, spare part service), up to remanufacturing and recycling [59].

Sustainable manufacturing aims to positively affect economic and environmental
aspects regarding a product, considering issues related to recycling, remanufacturing,
reuse, and redesign. Improvements of the product development process can then be
proposed using a reverse approach.

2.3. A Reverse Approach to Improve New Product Performance

A reverse approach can refer to many aspects of product development. Some studies
consider a reverse approach from the perspective of reverse engineering or reverse logis-
tics [60–66]. The use of reverse engineering in the design process aims to reduce the time
and costs of manufacturing products, using computer-aided design models [60]. In turn,
reverse logistics is the process of planning, implementing, and controlling backward flows
of materials, in-process inventory, packaging and finished goods, from a manufacturing,
distribution or use point, to a point of recovery or proper disposal [63]. The reverse ap-
proach can also refer to the aspect of cost, and identification of changes, by which the target
cost is obtained. This approach is known as target costing, and it works backward from
the price that customers are willing to pay, to find the product cost, by which the company
reaches the desired profit [48].

Target costing is used most effectively in the design and development stage, in which
the features of the product and its costs can be still fairly easy to adjust. The reverse
approach in the aspect of reducing costs through changes in the design and development
stage has been considered in [67]. The reverse approach requires the use of simulation
toward identifying the possible solutions, if there are any, within the specified model that
includes variables, their domains, and constraints related to the specific problem.

Simulation is widely used in industry to reduce the duration of the design stage, including
physical testing required to ensure product and process reliability [68,69]. Seow et al. [70]
proposed a simulation model to support the modeling of energy consumption within
manufacturing systems dedicated to identifying the impact of various manufacturing
parameters on energy reduction. Rodger et al. [71] combined an LCA and manufacturing
system simulation in the aspect of renewable energy supply and product sustainability.
A review of energy simulation tools dedicated to the manufacturing sector is presented
in [72,73]. Simulations requires specification of several parameters that are used to obtain
the results, and specific techniques for reducing the search space to accelerate calculations,
which is particularly important by the vast search space. The reduction of search space can
be effectively performed using a constraint programming technique [74].

3. A Method for Reducing Energy Consumption in the Product Life Cycle

The proposed method is dedicated to R&D specialists who are responsible for de-
veloping new products, including generating concepts of new products, their evaluation,
selecting the most promising NPD projects, product design, and prototype tests. Especially,
this method supports the R&D department in identifying opportunities to reduce energy
consumption in the production and usage stage of the product life cycle through changes
implemented into a new product during its design stage. Consequently, the proposed



Energies 2023, 15, 9611 6 of 19

method can be useful for products related to a high-cost energy use, particularly in the
stage of product usage that is usually much longer than the production stage (see Figure 1b).
These products are provided, for example, by companies belonging to the household appli-
ance industry. An example of these products can be refrigerators, washer dryers, washing
machines, ovens, air conditioners, irons, water heater, etc.

The proposed method involves a few aspects regarding data acquisition, and tech-
niques related to data analysis and simulations. The data is acquired from enterprise
databases (e.g., enterprise resource planning (ERP), computer-aided design (CAD),
computer-aided engineering (CAE), computer-aided manufacturing (CAM), customer
relationship management (CRM) systems), market research (e.g., information from po-
tential customers about a new product concept, and its functionalities), and employees
(e.g., information from R&D employees about technological limitations). Techniques used
to data analysis are dedicated to three areas. The first area is related to prediction of the
product cost, including the cost of energy consumption. The second area refers to using
different parametric models to predicting energy consumption in the stage of production
and product usage. The third area is addressed to simulations related to reduction of energy
consumption. A framework of the above-mentioned three areas is presented in Figure 2.
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The dotted lines in Figure 2 indicate information addressed to the R&D department
that refers to predictions of the potential of a new product, energy consumption and related
costs in the production and product usage stage, and changes that can be introduce in the
NPD process to reduce energy consumption of a new product.

3.1. Predicting the Cost of a New Product

Predicting the cost of a new product is extremely important at the early stage of
the NPD process to exclude development of products, for which the cost is too high for
accepting by customers. This evaluation can also be used to the comparison of product
concepts, and reducing a project portfolio to the most promising NPD projects.

There are many techniques dedicated to evaluation the product cost. Three of
them—analogical, parametric, and analytical are mentioned most often [75,76]. Analogy-
based techniques predict the cost of new products using similarity to previous products.
Parametric techniques use estimation models (functions) that include a set of variables
that significantly affect the product cost. In turn, analytical techniques evaluate the prod-
uct cost by decomposing product development into elementary tasks with known cost.
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Consequently, the latter technique can be effectively used in the final stage of product
development, in which the product and the manufacturing process are well defined [75].

In this study, predicting the cost of a new product is performed using an analogical
technique that is based on the similarity between the past or existing product and a new one.
A similarity analysis requires the selection of a few product features that have a significant
impact on the product cost (e.g., the number of components, functionalities, materials, and
time used in the production process). The similarity function is determined as follows:

SFi = 1 −
∣∣ f N

i − f P
i

∣∣
max( fi)

(1)

where f N
i is the value of the i-th feature for the new product and f P

i is the value of the i-th
feature for the previous product.

The real values of the i-th feature f N
i and f P

i should be normalized within the range
from 0 to 1. The most similar product(s) to a new product is selected using the similarity
value that is calculated as the arithmetic average of similarity functions for i features.

The data from a similarity analysis are acquired from the above-mentioned enterprise
databases, such as ERP, CAD, and CRM systems. Enterprise databases contain the data
related to past or existing products, including their specification, costs, and sales perfor-
mance. Obviously, previous products should belong to the same product line as a new
product to receive reliable results.

A similarity analysis can be used not only to select the most similar products and to
evaluate the potential cost and sales of a new product, but also to retrieve information
from the database about problems that occurred within the development of the past similar
product, and solutions used to tackle these problems. In this context, a similarity analysis
can be referred to case-based reasoning that is widely used in product design, among other
things, to reduce the time needed to complete a new product project [77].

3.2. Predicting Energy Consumption of a New Product

Energy consumption depends on many factors related to product specification. In
the production stage, energy consumption is related to the number of components to
processing and assembling, the amount and density of material used, and technological
processes. In the usage stage, energy consumption can be referred to product features and
its functionalities. For example, energy consumption of a washing machine depends on the
spin speed, wash time, weight of the laundry, water amount for heating, and the number
of washing programs provided by a manufacturer. These product parameters can be used
to identify relationships in the form of parametric models that are further used to cost
estimation and simulations toward reducing energy consumption.

There are many parametric techniques that can be used to identify estimation models,
including regression analysis and computational intelligence [78]. The latter includes
artificial neural networks (ANNs), fuzzy logic systems, and genetic algorithms, as well
as the hybrid systems, for example, neural fuzzy and genetic fuzzy systems. The use of
regression analysis is related to the following advantages: it is relatively easy to implement,
and it requires less computational power compared to computational intelligence [3].
However, regression models can fail in identifying the nonlinear complex patterns among
the data [79]. Therefore, many researchers use computational intelligence techniques
to predicting energy consumption, and compare them with regression analysis [79–83].
ANNs have been trained to overcome the limitation of the traditional methods to solve
complex approximation and classification problems [80]. Their properties included high
generalization capability, robust design, and ability to handle the incomplete data and
to train and tune their parameters depending on a dataset and learning algorithm [84].
The use of ANNs offers advantages over ability to learn and identification of complex
nonlinear relationships. In this study, two parametric techniques are used to predicting
energy consumption: regression analysis and artificial neural networks.
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Regression analysis allows for finding a functional relationship (model or equation)
among dependent (response) variables and independent (predictor) variables [3]. In this
study, the following multiple linear regression is used:

y = α0 + ∑n
i=1 αiXi (2)

where y is the predicted value of energy consumption, α0 is called the y-intercept or
the initial value, αi is related to regression coefficients (parameters), and Xi refers to n
predictor variables.

The results obtained by the linear model are compared with nonlinear models related
to polynomial regression (3) and artificial neural networks (4).

y = α0 + ∑n
i=1 αiXi + ∑n

i=1 βiX2
i (3)

Figure 3 presents a typical structure of a three-layer feedforward neural network that
is used in this study to predict energy consumption. The input nodes are related to the
factors affecting energy consumption at the stage of manufacturing and product usage, and
the output provides the prediction of energy consumption. In turn, hidden nodes process
the information received by the input nodes using nonlinear transfer functions.
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The model of a feedforward neural network can be written in the following form:

y = α0 + ∑m
j=1 αj f

(
∑n

i=1 βijXij + β0j

)
(4)

where n is the number of input nodes, m is the number of hidden nodes, αj are weights
from the hidden to output nodes, βij are weights from the input to hidden nodes, and f is a
sigmoid transfer function that in this study is the logistic function:

f (x) =
1

1 + e−x (5)

The most commonly used learning algorithm is based on error backpropagation that
belongs to the supervised learning method. At the beginning of the learning phase, all
weights in the ANN are initialized as small random values. The dataset is divided into a
training and testing set to check generalization capabilities of the ANN. These sets include
input-output pairs related to historical data that are used by the learning algorithm. The
input-output pairs are used to adjust the weights in the ANN to minimize the sum squared
error (SSE) that indicates the difference between the real and the desired values over all
output neurons and all learning patterns. After computing SSE, the backpropagation
algorithm computes the corrections for updating the weights [85].
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As mentioned above, the dataset is divided into training and testing sets to verify the
quality of estimation models. The results for different estimation models are compared
using the mean absolute percentage error (MAPE) as follows:

MAPE(%) =
1
n ∑n

t=1

∣∣∣∣ xt − pt

xt

∣∣∣∣ (6)

where xt is the actual value, pt is the predicted value, and n is the number of observations
(input-output pairs).

Moreover, the results are obtained using k-fold cross-validation and presented as the
average of k-folds. Cross-validation is a resampling method in which the different subsets of
data are used to train and test an estimation model within k iterations. Energy consumption
is predicted using a parametric model with the least error in the testing set. The identified
relationships can be further used for simulations for reducing energy consumption.

3.3. Simulations for Reducing Energy Consumption

The main aim of simulations is to identify the possibilities of changes at the early stage
of product development, by which energy consumption can be reduced. In this study, a
constraint satisfaction problem (CSP) formalism is used to create a simulation environment.
The CSP can be specified as the following triplet:

(V, D, C) (7)

where:

V is a set of n variables {V1, V2, . . . , Vn};
D is a set of discrete domains {D1, D2, . . . , Dn} related to V;
C is a set of m constraints {C1, C2, . . . , Cm}.

In the CSP formalism, a finite and discrete domain of values is associated with each
variable, and a constraint is specified as a relationship related to a subset of the set of
variables. The CSP formalism allows the user to find a solution, if there is any, to produce
one solution or all solutions, and membership of a value of the variable in a given solution
or all solutions. The solution of the CSP refers to a task in which all constraints are satisfied.
This task is performed by learning mechanisms that solve the CSP by storing information
deemed useful for pruning the search space [86]. Originally, the CSPs belonged to the
field of operational research, but currently, they are closely related to artificial intelligence,
improving algorithmic techniques for their better suited to real-life problems [67].

The problem of reducing energy consumption through incorporating changes in the
product design stage can be formulated in terms of the CSP. A set of input variables has
been specified in an arbitrary way, according to a literature review [44,87] and the authors’
experiences. The selection of input variables for evaluating energy consumption in the
production process is related to two criteria: their significant impact on energy consumption,
and their controllability. The latter feature refers to possibilities of changes that could
be incorporated at the product design stage toward reducing energy consumption in
the production stage. A set of solutions of the CSP (i.e., possible changes in product
specification) depends on the number of variables, their domains, and constraints. The
latter can refer to limitations regarding the technological process (e.g., the minimal density
of material used in manufacturing), scarce resources (including the R&D budget that
limits the number of NPD projects), and relationships between input variables and energy
consumption (specified as parametric models). Constraints link variables and limit a set of
admissible solutions.

The problem formulation in terms of a CSP allows the company to obtain answers to
the following questions:

• What will the energy consumption be for a new product in the stage of production
and product usage?
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• Is there a possibility for incorporating changes in product design to reduce energy
consumption, and if yes, what changes are admissible?

In this study, the CSP is solved using a constraint programming (CP) technique that
employs constraint propagation and search algorithms. There is much easier to find a
solution to a CSP after constraint propagation or to show that the CSP does not have
a solution [88]. Constraint propagation enables repeatedly reducing domains and/or
constraints during its performance. As a result, the constraint propagation algorithm
reduces a given CSP to an equivalent form that satisfies some local consistency notion [89].
The CP technique is particularly effective in comparison to an exhaustive search that finds
a solution if one exists, but its performance is proportional to the number of admissible
solutions. Consequently, an exhaustive search tends to grow very quickly as the size of the
problem increases, which limits its usage in solving many practical problems [90].

The reliability of the developed method for predicting and reducing energy consump-
tion can be considered from the dataset and knowledge discovery perspective. The dataset
perspective embraces access to past product specifications, including the data related to
energy consumption in the stage of manufacturing and product usage. The knowledge
discovery perspective refers to the selection of suitable input variables and a technique of
data preprocessing, data mining, and presentation of the results. If a company registers the
product and manufacturing specifications in its databases and hires a knowledge engineer
who manages the knowledge discovery process, then there is high reliability in using the
proposed method. The proper selection of input variables improves the quality of predic-
tions of parametric models compared to the analogy-based technique. The effectiveness
of the developed method has been verified by comparing the parametric model results
with the average value of energy consumption. Moreover, the proposed method uses the
identified relationships to simulations toward searching for improvement opportunities in
product design to reduce energy consumption. The effectiveness of using the developed
method could also be considered from a cost-benefit perspective, in which the cost of
acquired information would be compared with benefits, for example, in the economic
aspect. However, this aspect has not been verified in this study.

4. An Illustrative Example of the Proposed Approach

An example consists of three parts: predicting the total cost of a new product (including
the cost of energy needed to manufacture the product), predicting energy consumption
in the single product usage, and simulations of reducing energy consumption through
possible changes in the design product stage. To illustrate the utility of the proposed
method, this study considers the product line related to a washer-dryer combo.

4.1. Predicting the Cost of a New Product

The unit cost of a new product is calculated using an analogical method of cost
estimation. The analogical method is based on the data related to the specification and
performance of existing products that are stored in enterprise databases. The product
specification includes parameters related to product design, material properties, and the
production process. In turn, product performance includes figures regarding costs, sales
volume, and profits related to the specific product.

The similarity between a new product and existing products is calculated according
to (1) using product parameters such as the number of washing programs, the number of
components, the amount of materials, and the time needed to process and assemble. The
selected cases related to existing products belong to the same product line as a new product,
i.e., the washer-dryer combo. Table 1 presents the parameters chosen for calculating
the similarity function (SF) and similarity value (SV), which is the average of similarity
functions for all parameters.

SV = (93% + 87% + 83% + 91% + 97%)/5 = 90.2% (8)
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Table 1. The values of similarity functions.

Parameters fP fR SF (%)

Number of programs 0.83 0.76 93
Number of components 0.65 0.52 87

Amount of materials 0.89 0.72 83
Time needed to process 0.57 0.66 91

Time needed to assemble 0.78 0.81 97

The similarity value is calculated for each existing product that belongs to the same
product line as a new product. Table 2 presents a few existing products that are the
most similar to a new one and that are sorted in descending order with respect to their
similarity values.

Table 2. Cost projections using an analogical method.

Product SV (%) Material Cost Production Cost Energy Cost Overhead Cost Total Cost

WD_16914 90.2 78.1 44.4 8.8 24.8 156.1
WD_17213 86.2 81.3 43.8 8.9 25.2 159.2
WD_21715 81.4 69.3 40.4 8.5 27.9 146.1
WD_20117 80.2 73.7 41.3 8.7 22.4 146.1

. . . . . . . . . . . . . . . . . . . . .

The cost of a new product is projected by assuming the costs for the most similar
existing product. The use of the above-presented approach allows the decision maker to
receive information not only about the costs but also about the sales volume and potential
problems that can occur during the design and testing of a new product.

4.2. Predicting Energy Consumption of a New Product
4.2.1. The Production Stage

Energy consumption in the production stage depends on factors regarding product
features (e.g., the density of materials), technological processes, and energy effectiveness of
machines used in the production process. It is assumed that the following factors affect the
energy consumption of manufacturing the product (V1, in kWh):

V 2 — amount of material used per product (in kg);
V 3 — density of material used per product (in kg/m3);
V 4 — time needed for material processing per product (min);
V 5 — time needed to assemble the product (min);
V 6 — number of defective products (per 1000 manufacturing products).

The relationships between energy consumption in manufacturing a single product
and the number of defective products have the following form:

V1 = f (V2, V3, V4, V5, V6) (9)

V6 = f (V2, V3, V4, V5) (10)

The above relationships were identified using multiple linear regression (MLR),
nonlinear regression (polynomial model, NLR), and artificial neural networks (ANNs).
Artificial neural networks were trained using gradient descent with momentum and
adaptive learning rate backpropagation (ANN-GDX) and Levenberg–Marquardt
(ANN-LM) backpropagation.

The dataset consists of 22 existing products belonging to the same product line as a
new product. The data were divided into a training set (18 cases) and a testing set (4 cases)
to evaluate the quality of an estimation model. The experiments were performed using
5-fold cross-validation, and the results were calculated as the average of these folds. The
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results of the above-mentioned linear and nonlinear estimation models were compared to
the average (AVG) of an output variable (energy consumption). The quality of an estimation
model was measured using the mean absolute percentage errors (MAPEs). The optimal
number of hidden neurons in ANNs was selected using the trial-and-error approach. The
MAPEs were calculated as the average of 20 simulations for each structure of an ANN with
a number of hidden neurons from 5 to 20. Table 3 presents the MAPEs in the learning set,
testing set, and mean for different estimation models.

Table 3. The results of experiments (in %).

Estimation Model Learning Set Testing Set Mean

MLR 13.74 14.56 14.15
NLR 11.96 13.18 12.57

ANN-GDX 10.11 11.41 10.76
ANN-LM 7.97 14.06 11.02

AVG 19.13 21.09 20.11

The results of experiments indicate that quality estimation for all linear and nonlinear
models outperforms the average of an output variable. Moreover, nonlinear models have
fewer MAPEs than linear regression models, and they reach a similar level of MAPEs. In the
learning set, the least MAPE was generated for the ANN-LM model. However, this model
generated a larger MAPE in the testing set, which can result from the overlearning effect of
ANN-LM, leading to worse generalization ability and, consequently, to decreasing quality
estimation. The best result of estimation in the testing set was reached using the ANN-GDX
model, which particularly outperforms the results for the average and linear regression
models. As a result, the ANN-GDX model was used to estimate energy consumption in the
production stage.

Estimating energy consumption of manufacturing a new product reaches 37.8 kWh,
which is calculated using Formula (9) and the following values of input variables: V2 = 85,
V3 = 210, V4 = 80, V5 = 20, V6 = 3. The energy cost of manufacturing the product (V8, in €)
is calculated using the energy consumption of manufacturing the product (V1) and the unit
price of electricity (V7), which reaches €0.23 per 1 kWh.

4.2.2. The Product Usage

Energy consumption during product usage depends on many factors that can be
referred to as product features (the range of functionalities, materials, and components
used) and user behavior (chosen parameters related to product usage). In the case of a
washer-dryer combo, energy consumption of the single product usage (V9, in kWh) is
related to the following factors:

V 10 —time of the wash cycle (spinning time);
V 11 —water amount used per wash cycle;
V 12 —rotating speed (revolutions per minute);
V 13 —temperature of heating water;
V 14 —temperature of drying clothes;
V 15 —load capacity;
V 16 —motor power;
V 17 —weight of the drum and counter.

Energy consumption of the single product usage is identified as follows:

V9 = f (V10, V11, V12, V13, V14, V15, V16, V17) (11)

The R&D department acquires the data about energy consumption for a new product
during the stage of testing products. The dataset consists of 22 products belonging to
the same product line as a new product. The experiments were performed by the same
assumptions and estimation models as in the previous subsection for estimating the energy
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consumption of manufacturing a new product. Table 4 presents the MAPEs in the learning
set, testing set, and mean for different estimation models.

Table 4. The results of experiments (in %).

Estimation Model Learning Set Testing Set Mean

MLR 17.42 20.42 18.92
NLR 10.59 13.29 11.94

ANN-GDX 9.45 10.70 10.08
ANN-LM 8.90 13.04 10.97

AVG 28.87 35.36 32.11

The results of the experiments are similar to the example from the previous subsection.
The quality estimation for all linear and nonlinear models outperforms the average of an
output variable. Similarly, nonlinear models have fewer MAPEs than linear regression
models, and they reach a similar level of MAPEs. Moreover, the least error of estimation in
the testing set was reached using the ANN-GDX model, and it was chosen for estimating
energy consumption.

The R&D department evaluates parameters of a new product (V10, . . . , V17) that are
further used to predict energy consumption. For example, the energy consumption of the
single product usage reaches 3.2 kWh for the following values of input variables: V10 = 60,
V11 = 55, V12 = 1200, V13 = 40, V14 = 55, V15 = 6, V16 = 1200, V17 = 12. The energy cost of
the single product usage (V19, in €) is calculated using energy consumption within product
usage (V9) and the unit price of electricity (V18) that reaches €0.25 per 1 kWh. In the next
section, the possibility of reducing energy consumption is sought.

4.3. Simulations for Reducing Energy Consumption
4.3.1. The Production Stage

Simulations were performed using a CP technique that requires the specification of
domains related to variables and constraints. The latter includes relationships identified
by parametric estimation models. The aim of simulations is to check the possibility of
reducing energy consumption through changes within the following controllable variables:
material density (V3) and time needed for material processing per product (V4). Especially,
material density can be easily controlled in the production process, reducing the number of
defective products through increasing product quality. Consequently, the smaller number
of defective products reduces energy consumption and the overhead cost that includes,
among others, the cost related to defective products.

The results of experiments indicate that the increment of material density decreases the
number of defective products. The strength of this relationship was determined according
to (10). Domains for the above-mentioned variables are as follows: D3 = {210, . . . , 220},
D4 = {75, . . . , 85}. Table 5 presents a few possibilities for changes that reduce energy
consumption and the costs related to manufacturing.

Table 5. Simulations of changes in energy consumption and related costs.

Variables V6 Energy Consumption Material Cost Production Cost Energy Cost Overhead Cost Total Cost

V3 = 210, V4 = 75 3 37.5 78.1 43.5 8.6 24.6 154.9
. . . . . . . . . . . . . . . . . . . . . . . .

V3 = 210, V4 = 85 3 38.1 78.1 45.3 8.8 24.9 157.1
. . . . . . . . . . . . . . . . . . . . . . . .

V3 = 211, V4 = 75 3 37.5 79.7 43.5 8.6 24.8 156.6
. . . . . . . . . . . . . . . . . . . . . . . .

V3 = 211, V4 = 85 3 38.1 79.7 45.3 8.8 25.1 158.8
. . . . . . . . . . . . . . . . . . . . . . . .

V3 = 220, V4 = 75 2 35.9 82.0 43.5 8.3 22.8 156.6
. . . . . . . . . . . . . . . . . . . . . . . .

V3 = 220, V4 = 85 2 36.4 82.0 45.3 8.4 23.1 158.8
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The results of simulations presented in Table 5 indicate that the increment of material
density from 210 to 220 kg/m3 influences reducing the number of defective products (from
3 to 2) and, consequently, reducing energy consumption on average at 1.65 kWh (from 37.5
to 35.9 kWh), the energy cost at €0.35, and the overhead cost at €1.8. Moreover, the material
cost increases at €3.9 after the increment of material density, and the production cost differs
depending on the time needed for material processing. It is noteworthy that the increment
of the total cost is the same for the increment of material density from 210 to 211 and from
210 to 220 kg/m3. The presented simulations can be a starting point for further analysis
toward identifying conditions by which the desired energy consumption or the total cost of
manufacturing a new product is reached. The additional analysis can also refer to changes
in the time needed for material processing depending on material density.

4.3.2. The Product Usage

The aim of simulations refers to checking the possibility of reducing energy consump-
tion within product usage. Simulations are performed using two variables related to the
temperature of heating water (V13) and drying clothes (V14) in the washer-dryer combo.
Domains for these variables are as follows: D13 = {35, . . . , 40}, D14 = {50, . . . , 55}. Table 6
presents a few simulations related to changes in values of the above-mentioned variables
that can lead to the reduction of energy consumption.

Table 6. Simulations of changes in energy consumption for the product.

Variables Energy Consumption

V13 = 35, V14 = 50 2.88
. . . . . .

V13 = 35, V14 = 55 3.11
. . . . . .

V13 = 36, V14 = 50 2.90
. . . . . .

V13 = 36, V14 = 55 3.12
. . . . . .

V13 = 40, V14 = 50 2.97
. . . . . .

V13 = 40, V14 = 55 3.20

Simulations presented in Table 6 indicate that the change in the temperature of drying
clothes at one grade has a stronger impact on energy consumption than the change in
the temperature of heating water. The presented simulations can be a starting point for
further analysis toward identifying conditions by which the desired energy consumption
of the product is reached. For example, in the case of the reduction of energy consumption
at 15% (below 2.72 kWh), the first admissible result has the following values: V13 = 33,
V14 = 47. Another direction of analysis can refer to the use of a new line of heat pumps in
the washer-dryer, which have higher energy effectiveness measured through the rate of
temperature change and energy consumption.

It is noteworthy that there can be an enormous number of admissible solutions that
influences the time needed to find all solutions. The application of constraint programming
can significantly reduce the computational time compared to an exhaustive search, which
is especially useful in a vast search space of possible solutions [67].

5. Conclusions

The presented approach supports R&D specialists in identifying opportunities for
changes in product design toward reducing energy consumption in product life cycle
stages regarding product usage and its manufacturing. Predicting energy consumption
was performed using parametric models related to regression analysis and artificial neural
networks. Input variables include product specification and its manufacturing process,
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whereas an output variable refers to energy consumption. The results indicate that non-
linear models improve the quality of estimation compared to linear models. In particular,
ANNs provide the most reliable predictions of energy consumption. On the other hand,
the build of an ANN and its training and testing is more complex than the use of regression
analysis. The identified relationships were used not only to predict energy consumption
but also to search for improvement opportunities at the stage of product design toward
reducing energy consumption in product usage and manufacturing. These relationships
can be complex and include many factors affecting energy consumption, for example, the
increase in material density can reduce the number of defective products and after-sales
service regarding complaints, and as a result, it can reduce energy consumption related to
manufacturing defective products.

The main contributions of this study include the specification of the proposed energy
consumption model in terms of a constraint satisfaction problem that facilitates finding
all admissible solutions (if there are any) to the energy reduction problem. This specifi-
cation enables using a constraint programming technique for a time-effective reduction
of the search space size and, consequently, supports the interactiveness of the proposed
approach. Moreover, a CSP formalism facilitates the development of a knowledge base
that includes facts, constraints, and relationships specified, for example, as if-then rules.
Another advantage of the proposed approach refers to the possibility of specifying other
problems in terms of a CSP. For instance, a project selection problem can be formulated as a
CSP. The project portfolio selection can then refer to factors related not only to financial
product performance but also to energy consumption in the whole product life cycle and
other environmental issues.

Solving a constraint satisfaction problem of reducing energy consumption, R&D
specialists obtain information about all possible improvement opportunities in product
design. These opportunities can be surprising for them, particularly in the case of new
directions of research. On the other hand, the enormous number of solutions can exceed
human abilities to the interpretation of the results. The direction of future research can then
be addressed as a way of specifying domains toward reducing the number of admissible
solutions, for example, through the specification of granularity. Another direction of future
research includes the use of information obtained from potential customers about their
purchasing preferences. The information about desirable product features, functionalities,
energy consumption, and acceptable cost allows R&D specialists to satisfy customers’
expectations and increase the probability of success of a new product. Identifying customers’
needs could be performed using online reviews [91]. From the perspective of energy
consumption, customers could indicate functionalities that could be removed or reduced
and the cost that they are able to accept by energy-reducing solutions incorporated into a
new product.

The managerial implications include not only support for R&D specialists in identify-
ing possible improvements of a new product toward reducing energy consumption but also
top management support in identifying possible changes within the production process
that could reduce the energy cost. Moreover, the proposed approach provides information
for policymakers about the range of reducing energy consumption, which can affect a com-
pany’s strategy regarding environmental issues. Policymakers’ awareness of environmental
concerns can result in reducing environmental burdens associated with the production
process and increasing positive customers’ perception of corporate social responsibility.

The use of parametric modeling requires collecting enough amounts of data related to
similar products, which can be seen as a limitation of the proposed approach. Moreover,
the specification of parameters to build and learn ANNs, as well as the implementation
of constraint programming techniques, can also be seen as an additional limitation. This
limitation can be an incentive to develop a decision support system that could reduce
the difficulties of using the proposed approach by decision makers. The decision support
system should facilitate the user to select an appropriate dataset and data mining technique,
visualize and interpret the results, and enable changes of parameters for the simulation.
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The future applications of the proposed approach can be extended to research in other
fields. Firstly, in various areas of energy consumption, for example, in residential, transport,
and environmental-related applications. Secondly, in the field of solving decision problems,
for example, the selection of the most promising product line, market segmentation, and
company strategy.
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