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Abstract: It is of great significance to introduce the conception of a sharing economy into the electricity
industry, which can promote the dispatch of multiple integrated energy systems. On the one hand,
it is difficult to reveal the behaviors of complex players with multi-energy coupling through the
traditional centralized optimization method of single electric energy. On the other hand, the uncertain
fluctuations of renewable energy, such as wind power and photovoltaic, have posed great challenges
to market transactions. First, the relationship and the functions of all stakeholders in the system are
described in this paper, followed by the establishment of flexible resource models such as demand
response and energy storage devices. On this basis, a low-carbon dispatching framework of multiple
regional gas–electric integrated energy systems is then constructed under the guidance of cooperative
game theory. The contribution indexes are established to measure the degree of energy sharing
among the subsystems, and the method of asymmetric Nash bargaining is used to settle the interests
of each subsystem. Second, a robust optimization model of multiple regional systems is established
in response to multiple uncertainties from renewable energy and load. Finally, the numerical example
proves that the proposed mechanism can increase the benefits of each integrated energy system player.
Moreover, it helps the system to yield optimal benefits in the face of uncertainties and provides a
reference on how to realize energy sharing under uncertainties from source load.

Keywords: gas–electric integrated energy system; flexible resource; energy sharing; multiple
uncertainties; low-carbon dispatching; asymmetric Nash bargaining

1. Introduction

An integrated energy system (IES), one of the key energy technologies of the future,
can effectively solve the large-scale distributed power supply to the grid and reduce the
adverse impact on grid operation [1]. However, a traditional stand-alone IES has limited
regulation capacity and cannot further consume renewable energy [2]. Multiple integrated
energy systems (MIES) [3–5] can realize the complementary energy utilization, which has
significant advantages in improving the renewable energy consumption rate [6], cutting
the system operation cost [7], reducing the power interaction to the main grid [8], and
increasing the system’s backup capacity [9]. Due to the role of energy storage devices and
flexible loads in IES [10,11], they can participate in energy trading in the power market.
However, MIES participation in power market trading will face many problems such as
competitive games and trade settlement, and how to build a set of scientific and reasonable
MIES energy trading mechanisms has become a hot spot in the MIES energy market.

Meanwhile, in order to promote the consumption of new energy and realize the low-
carbon economic operation of the power system, domestic and international scholars have
carried out extensive studies on carbon capture and storage (CCS) technology, power to gas
(P2G) technology, and the carbon trading mechanism. The finding of Zhou et al. [12] veri-
fies that the incorporation of the traditional carbon emission mechanism can optimize the
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integrated energy structure and stimulate the carbon emission reduction of the integrated
energy system. Alabi et al.’s research [13] presented an in-depth examination of the internal
energy flow of coal-fired power plants including CCS, used mathematical models to quanti-
tatively analyze the operating range of CCS, and revealed that CCS has a wider regulation
range and a faster response speed. It is indicated that carbon dioxide captured by CCS can
be used as high-quality carbon raw material for the process of P2G in [14]. Hou et al. [15]
proposed the establishment of a coordination and optimization model for P2G-CCS power
plants by taking P2G and CCS as a whole. These references above all point out that P2G
and CCS enhance the wind and solar consumption capacity and improve the flexibility
and economic performance of the system in patching and operation to a certain extent.
Nonetheless, while large-scale new energy is connected to the power grid, the existing unit
maintenance and operation joint optimization fails to fully consider the uncertainty of new
energy output, resulting in difficulty ensuring the economic performance and robustness
of the system at the same time. In [16], the algorithm of Benders decomposition was used
to decompose the unit maintenance and operation joint optimization model into the main
problems, the auxiliary problems and the power flow subproblems, for simplifying the
issue, but the impact of the uncertainty of wind power on unit maintenance and operation
was not taken into account. Ref. [17] proposed a maintenance and operation decision-
making method combining scenario method and collaborative optimization, to seek the
collaborative optimization of maintenance and operation. The results prove the better
economic performance of the patching scheme obtained by the maintenance and operation
collaborative optimization of thermal power units, where the uncertainty of wind power is
considered, but the system does not include a carbon capture device. Moreover, there is no
comparative analysis of the impact of different uncertainty methods on the optimization of
the system, only focusing on the economic performance of the system. The robustness is
not considered, while the uncertainty of wind power is not fully evaluated. The methods
to study the uncertainty of WP mainly include stochastic optimization (SO), a method that
is unable to accurately determine the probability distribution of stochastic optimization.
This paper will use a robust optimization method to improve the robustness of IES.

The articles above are aimed at the optimization of energy suppliers, ignoring the
autonomy of energy consumers (users) and the interest interaction between users and IES
energy suppliers. Up to now, a large number of scholars have studied MIES under the
framework of game theory. Connecting multiple IESs to form MIES can realize comple-
mentary coordination of different energies [18]. With the development of multi-energy
market mechanism, each IES belongs to different operating entities, so it is urgent to clarify
the energy interaction mechanism between IESs and within each IES [19]. At the same
time, it is also necessary to explore the cooperative scheduling mechanism suitable for
MIES, so that each subject can obtain the optimal revenue. In the cooperative game, the
participants generate cooperation surplus through signing a mandatory contract. This
way focuses on the overall benefits of the alliance and essentially belongs to centralized
optimization. From the perspective of MIES cooperation, an MIES trading model was
established in [20] based on a cooperative game, in which MIES were equated to an IES
combination, called IES alliance and the Shapley value was used to distribute the gains of
each IES. This model improves the benefits of the IES alliance, but equating MIES to an
IES alliance fails to consider the constraints from power transmission between different
IESs and ignores the impact of energy storage devices. From the perspective of MIES, the
economic dispatch of MIES for cold, heat, and electricity were examined in [21], through
fully evaluating the impacts of an energy storage battery, a heat and electricity cogeneration
unit, a waste heat boiler, and other devices on the collaborative dispatch of MIES. The
analysis results showed that the total operation cost of the system could be significantly
reduced through interconnection among MIES. In consideration of the influence of demand
response on MIES collaborative operation under various factors, it was further revealed
in [22] that to demand response can effectively reduce the operation cost of the system
and increase the renewable energy consumption rate. It should be noted that Refs. [23–25]
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intended to explore how to improve the overall benefits of the IES alliance. What should
be done in the following stage is only to distribute the cooperation surplus obtained by
the IES alliance according to a specific distribution method (such as the Shapley value
method), so that the benefits of the IES alliance can be higher than the sum of benefits from
independent operation, which meets the condition of cooperative game. However, the
MIES collaborative trading operation models studied in these references cannot reflect the
degree of fairness, and they mostly use the traditional method of Nash bargaining (NB)
and the Shapley value distribution method. In fact, under the collaborative operation of
MIES, some participants sacrifice their own benefits to maximize the benefits of the IES
alliance. Nevertheless, these two distribution methods mean that such participants may
gain more from participating in market competition alone than those in cooperation. The
traditional model of NB mentioned above cannot further characterize the contribution
of each participant, making it difficult to reflect the specific contributions of each partici-
pant. In this regard, the model of asymmetric NB overcomes the limitations of the alliance
game [26]. The optimization method proposed in this paper belongs to the research field of
asymmetric NB.

However, Refs. [27–34] all adopted the centralized solution method, which ignores
the privacy protection of each network and the multi-agent characteristics of IES. The
alternating direction method of multipliers (ADMM) algorithm can solve the distribution
issue of the model in this paper. The computing of each integrated energy system can
reduce the computing pressure and also protect the privacy of different integrated energy
systems [35].

In summary, in terms of modeling, the model built in this paper is different from
the conventional combined heat and power (CHP) model. Considering the requirement
on low carbon operation, this paper constructs a new CHP unit model that couples the
CCS and P2G converters into the CHP unit [36,37]. We considered multiple uncertainties
such as renewable energy output and load forecasting and combined the benefits of each
participant in the trading interaction among different single IESs. We comprehensively
considered flexible resources and proposed an MIES trading mechanism based on the
method of asymmetric NB to improve the benefits of each IES player, providing reference
for the energy trading in MIES.

Therefore, the main contributions of this paper can be listed as follows:

(1) A cooperative game model is established to analyze the potential of cooperation
between multiple gas–electric IESs. Through energy sharing, multiple subsystems
play the role of mutual resource complementation in time and space, thus increasing
the overall benefits of the system;

(2) The method of asymmetric Nash bargaining is used to ensure that each participant
can obtain benefits fairly and to enhance each individual’s willingness to participate.
At the same time, the specific contribution of each participant to the cooperation is
specifically considered, making the distribution mechanism more reasonable and
effective;

(3) In consideration of multiple uncertainties in renewable energy and source load, a
robust optimization model of multiple regional systems is established to provide
a solution for the sharing strategy of the alliance among multiple systems under
uncertain environments.

The results also provide a reference on how to realize energy sharing under the
environment of source-load uncertainty.

2. Basic Framework of the System

The gas–electric IES mainly consists of a photovoltaic electricity generation device,
a carbon capture device, a gas-fired unit, an electric-to-gas converter, an energy storage
battery, a gas storage tank, and other devices. The basic framework of the system is shown
in Figure 1. In this system, if there is still surplus after photovoltaic power and other output
units meet the load demand, the electric-to-gas converter can use this surplus electricity to
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synthesize methane. Part of the carbon dioxide required for the synthesis of methane can be
captured and provided by the carbon capture system. The methane obtained can be directly
used for the supply of gas load or stored. On the one hand, the completion of electric-to-gas
conversion and the coupling relationship between various devices in the system realizes
the conversion from electric energy to gas energy and optimizes the utilization of energy;
on the other hand, the CO2 captured by the carbon capture system can be fully utilized to
realize carbon-to-methane conversion, which improves the overall economic benefits of
the system.
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Figure 1. Framework of the regional gas–electric integrated energy system.

The low-carbon energy sharing framework of multiple regional gas–electric integrated
energy systems built in this paper is shown in Figure 2. In the traditional single energy
system, it is difficult to keep a balance between energy supply and energy demand. Outside
the system, energy can be shared with other subsystems, or energy can be traded with the
electricity grid and the gas grid; within the system, devices of energy conversion are usually
configured to realize the conversion among multiple energy sources such as electricity and
gas, so as to solve the problem of energy mismatch in the time and space of the system.
However, in the process of energy trading, the system also needs to face the challenges
brought about by multiple uncertainties such as load prediction and new energy output.

It can be seen from Figure 2 that electricity and gas are the two main types of energy
involved in each IES, and all subsystems are connected to the electricity tie line through
gas pipelines, so that multiple types of energy can be shared. Moreover, each subsystem is
equipped with a communication device, through which information can be exchanged with
adjacent systems. Noticeably, since the research target is the regional IES and multi-IESs
are close to each other in the scenarios under consideration, more attention is paid only to
the constraints from power interaction between subsystems rather than other constraints
from grid power flow security.
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3. System Models

In the context of this article, the three systems are regional, the relationship between
each is relatively simple, and the distance is very close. For this reason, we have made these
assumptions: (1) ignore the changes in the voltage of each system, that is, the normalized
value takes (1); (2) no need to consider the influence of reactive power; (3) only active
power flow constraints are considered. Therefore, there are only three power interaction
constraints between systems in our model.

3.1. Flexible Resource Models

The excavation of flexible resources can effectively reduce wind energy and solar
energy waste of the system and improve the economic performance of system operation.
The flexible resource models considered in this paper mainly include energy storage devices
and comprehensive demand response. The specific models are as follows:

3.1.1. Energy Storage Device

The energy storage system can realize the transfer of energy in time and effectively
boost the flexibility of energy in the system. The connection of electric and gas energy
storage devices is involved in this paper. From the perspective of energy conversion, the
four types of energy storage devices can be represented by a universal and unified model.
When the energy storage device participates in coordinating and optimizing operation,
there are constraints from the energy storage capacity of the energy storage device and the
upper and lower limits of the energy charging and discharging power of the energy storage
device, which are expressed as follows:

Et = Et−1(1− ηloss) + (ηcharPchar,t −
Pdis,t

ηdis )∆t (1)

Emin ≤ Et ≤ Emax (2)
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0 ≤ Pchar,t ≤ αchar,tPchar,max (3)

0 ≤ Pdis,t ≤ αdis,tPdis,max (4)

αchar,t + αdis,t ≤ 1 (5)

E1 = ET+1 (6)

where Et represents the storage capacity of the energy storage device during the period
t; Pchar,t represents the energy storage and charging power of the energy storage device
during the period t; Pdis,t represents the energy storage and discharging power of the energy
storage device during the period t; ηloss, ηchar and ηdis represent the energy storage loss rate,
charging efficiency, and discharging efficiency of the energy storage device, respectively;
Emin and Emax represent the upper and lower limits of the energy storage capacity of the
energy storage device, respectively; αchar,t and αdis,t represent the charging and discharging
state, respectively, which is either 0 or 1, with 1 indicating that the device is in the charging
or discharging state and 0 indicating that the device stops the charging and discharging
state; and Pchar,max and Pdis,max represent the maximum charging and discharging power of
the energy storage device.

3.1.2. Demand Response

The electric–gas integrated energy demand load can be divided into rigid load not par-
ticipating in the demand response and flexible load participating in the demand response.
The electric and gas loads after participating in the demand response are as follows:

Le
t = Le,o

t + ∆Le
t (7)

Lg
t = Lg,o

t + ∆Lg
t (8)

where Le
t and Lg

t, respectively, represent the electric and gas loads after participating in
the demand response; Le,o

t and Lg,o
t, respectively, represent the initial predicted values of

the electric and gas loads before participating in the demand response; and ∆Le
t and ∆Lg

t,
respectively, represent the changes of the electric and gas load response.

The total amount of flexible load remains unchanged during the demand response
process:

T

∑
t=1

∆Le
t =

T

∑
t=1

∆Lg
t = 0 (9)

The percentage of decrease/increase in the electric and gas loads shall meet the
following constraints:

− ∆Le
max ≤ ∆Le

t ≤ ∆Le
max (10)

− ∆Lg
max ≤ ∆Lg

t ≤ ∆Lg
max (11)

where ∆Le
max and ∆Lg

max, respectively, represent the maximum allowable changes of the
electric and gas loads.

3.2. Low-Carbon Energy Sharing Model of Multiple Gas–Electric IESs

An independent IES has problems such as the small capacity of its devices, concen-
tration of various loads, and a low comprehensive utilization rate of its devices. The
interconnection of multiple regional IESs can break the mode in which each region plans
separately and operates independently and improve the economic performance of each
system. Therefore, on the basis of the IES model described above, it is considered important
to establish a sharing model of MIESs to give full play to the functions of devices in each
subsystem.
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3.2.1. Objective Function

The low-carbon economic operation of the gas–electric IES needs to be evaluated from
the perspectives of economic performance and low-carbon. The two objective functions
of minimum operation cost and minimum CO2 emission of the system are analyzed in
this chapter, and the multi-objective problem is converted through weighting into single-
objective ones for research and analysis.

The operation cost of the system includes the cost of purchasing electricity and gas
from external girds, the cost of generating electricity by coal-fired units, the operation and
maintenance cost, and the CO2 emission cost.

FO = CB + CG + CY + CC (12)

CB =
T

∑
t=1

(Ce,tPin
e,t + Cg,tPin

g,t) (13)

CG =
T

∑
t=1

I

∑
i=1

Cg,t

LHVgas
× Pi,t

ηi,t
(14)

CG =
T

∑
t=1

I

∑
i=1

Cg,t

LHVgas
× Pi,t

ηi,t
(15)

CC = Cg

T

∑
t=1

max(0, ωePin
e,t + ωgPin

g,t + µiPi,t −MCC
i,t ) (16)

where CB, CG, CY, and CC are, respectively, the energy transaction cost, the electricity
generation cost, the maintenance cost, and the CO2 emission cost; T represents the total
operating cycle; Ce,t and Cg,t are the prices of electricity and gas purchased during the period
t; Pin

e,t and Pin
g,t represent the amount of electricity and gas purchased during the period

t; Pi,t is the output power of the coal-fired unit at the time t; CG and YWG, respectively,
represent the coal cost and the operation and maintenance cost of the ith coal-fired unit
at the time t; I represents the total number of coal-fired units; LHVgas is the low heating
value of natural gas; ηi,t is the conversion efficiency of the ith coal-fired unit at the time
t; KYW,i is the maintenance factor of the coal-fired unit; ωe and ωg are, respectively, the
amount of CO2 consumed by purchasing electricity from the electricity grid and gas from
the natural gas grid; µi is the CO2 emission coefficient of the coal-fired unit; Cg is the cost
of CO2 emission in each unit; and MCC

i,t is the mass of the captured CO2.

3.2.2. Constraints

The primary constraints of the low-carbon economic model of multiple regional
gas–electric IESs can be divided into two categories. The first category is the internal
constraints of each gas–electric IES, mainly including unit output constraint, energy pur-
chase constraint, electric-to-gas conversion constraint, and carbon capture constraint in
the gas–electric IES. The second category of constraints includes the constraints from the
interactive coupling of each gas–electric IES, mainly including constraints from electric
power interaction and gas power interaction.

Internal constraints of each gas–electric IES:

(1) Electricity balance constraint:

Pi,t + Pin
e,t + Pw,t − Pin

P2G,t − Pe
char,t + Pe

dis,t − PCC
r,i,t = Le

t (17)

where Pin
P2G,t represents the electric power consumed by the electric-to-gas converter during

the period t within a day, and Pe
char,t and Pe

dis,t are, respectively, the charging and discharging
power of the energy storage battery during the period t.
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(2) Gas energy balance constraint:

Pin
g,t + Pin

P2G,tηP2G − Pg
char,t + Pg

dis,t = Lg
t (18)

where Lg,t represents the original predicted value of the gas load in the period t within a
day; ∆Lg,t represents the change of the gas load demand response in the period t within
a day; Pg

char,t and Pg
dis,t are, respectively, the charging and discharging power of the gas

storage tank in the period t; and ηP2G is the efficiency of the electric-to-gas conversion
process.

(3) Unit power constraint:

Pi,min ≤ Pi,t ≤ Pi,max (19)

where Pi,max and Pi,min are the upper and lower limits of unit output from the i IES.

(4) P2G output constraint:

PP2G,min ≤ PP2G ≤ PP2G,max (20)

where PP2G,min and PP2G,max are the upper and lower limits of P2G output.

(5) Carbon capture device constraint:

MCC
i,t = ηi,tPCC

r,i,t (21)

ηmin ≤ ηi,t ≤ ηmax (22)

where PCC,i,t is the energy consumption by the carbon capture device of the coal-fired unit i
in period t; PCC

r,i,t is the operating energy consumption by the carbon capture device; ηi,t is
the corresponding carbon capture device power; and ηmax and ηmin are the maximum and
minimum carbon capture power, generally with ηmax being 90% and ηmin being 0.

(6) Constraints from power interactive coupling of each gas–electric IES:

Pmin
i−j,e ≤ Pt

i−j,e ≤ Pmax
i−j,e (23)

where Pt
i−j,e is the electric power interaction between the ith gas–electric IES and the jth gas–

electric IES within a day; Pmin
i−j,e and Pmax

i−j,e are, respectively, the lower limit and upper limit of
the electric power interaction between the ith gas–electric IES and the jth gas–electric IES.

Pmin
i−j,g ≤ pt

i−j,g ≤ Pmax
i−j,g (24)

where pt
i−j,g is the gas power interaction between the ith gas–electric IES and the jth gas–

electric IES within a day; Pmin
i−j,g and Pmax

i−j,g are, respectively, the lower limit and upper limit
of the gas power interaction between the ith gas–electric IES and the jth gas–electric IES.

4. Model and Solution of Asymmetric Nash Bargaining

Cooperative game theory is an important solution to fair income distribution among
multiple players and can be divided into two parts: alliance and distribution. For alliance,
the total income is greater than the sum of the income of each participant’s independent
operation; for each participant, the distributed income shall not be less than the income
of its independent operation. Distribution is an important part of the game, of which the
essential goal is to improve the income of each individual after participating in cooperation,
so as to maintain the stability of the cooperative alliance.
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The method of NB is not affected by the number of participants and is applied to
multiple cooperation scenarios. The specific model is as follows:

max
N

∏
i
(F0

i − Fi) s.t.Fi ≤ F0
i (25)

where Fi and F0
i , respectively, represent the overall operation cost (including risk cost) of

the cooperative operation and noncooperative operation of the ith IES, and N is the number
of participants in the cooperative game.

However, the traditional model of NB above cannot further characterize the contri-
bution of each participant. Hence, it is difficult to reflect the specific contribution of each
participant. Therefore, the modified method of NB, named the model of asymmetric NB
model, is used in this paper for distribution. The model of asymmetric NB is specifically
expressed as follows:

max
N

∏
i
(F0

i − Fi)
di s.t.Fi ≤ F0

i (26)

where di is the bargaining power of the ith integrated energy system, which is specifically
expressed as follows:

di = e
Es

i
max(Es

1,Es
2,...,Es

m) − e
Er

i
max(Er

1,Er
2,...,Er

m) (27)

where Es
i and Er

i are, respectively, the power provided by other participants and the power
obtained from other participants when the ith IES is participating in the cooperative game,
which can be further expressed as:

Es
i =

T

∑
t=1

(Pexport
i,t + Hexport

i,t ) (28)

Er
i =

T

∑
t=1

(Pimport
i,t + Himport

i,t ) (29)

Equation (26) is mathematically converted, and the two convex subproblems after
conversion are shown in Equations (30) and (31), respectively:

min
N

∑
i

Fi (30)

max
N

∑
i

di ln(F0
i − F∗i + Gi) (31)

where F∗i is the optimal value for the operation of the ith gas–electric IES after solution, and
Gi is the cost paid by the ith gas–electric IES after bargaining with other subsystems.

ADMM is suitable for solving a large and complex optimization problem that is
composed of multiple convex subproblems. It can realize the coordination and unification
of all subproblems through the exchange of a small amount of coupling information. It has
advantages in protecting the privacy of subsystems and reducing the burden of large-scale
computing.

The ADMM algorithm is used to solve the bargaining model above, thus realizing the
distribution calculation of the model. The solution using the algorithm is as follows:

The convex optimization problem in the following form is considered:

min f (x) + g(y)
s.t.Ax + By = b

(32)
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Through the method of multipliers, the dual variable z is introduced to construct the
augmented Lagrangian function:

Lβ(x, y, z) = f (x) + g(y)+
zT(Ax + By− b) + β

2

∣∣∣∣∣∣Ax + By− b
∣∣∣|22 (33)

where β > 0 is the penalty function. The basic idea of the ADMM algorithm for solving
optimization problems is similar to the method of dual ascent: the Lagrangian penalty
function is obtained first and then, used to solve the subproblems of x and y alternately
to obtain the solution of the original problem, specifically involving the iterative update
of the original variables x and y, and the dual variable z. The specific update strategy is
as follows: 

xk+1 = argminxLβ(x, yk, zk)

yk+1 = argminyLβ(xk+1, y, zk)

zk+1 = zk + β(Axk+1 + Bxk+1 − b)
(34)

5. Robust Optimization Model of Multiple Regional IESs and the Process of Solving

In view of the randomness and volatility of renewable energy output, multiple uncer-
tain factors, such as renewable energy output and load prediction, need to be considered in
the dispatching of multiple regional gas–electric IESs.

The uncertainty set model of new energy output prediction error is established; the
adjustment factor is introduced to characterize the new energy output prediction error
power; and the uncertainty deviation zij, the polyhedron uncertainty parameter set U, and
the uncertainty deviation set Z are defined.

dt ∈
[
dt − d̂t, dt + d̂t

]
, dt > 0, d̂t > 0 (35)

zt =
dt − d̂t

d̂t
∈ [−1, 1] (36)

U = {dt |dt =dt + d̂tzt, ∀t ∈ T
}

(37)

Z =

{
zt

∣∣∣∣∣∑t
|zt| ≤ Γ, |zt| ≤ 1, ∀t ∈ T

}
(38)

where dt represents the predicted value of renewable energy output and load during the
period t within a day; d̂t represents the maximum deviation of renewable energy output,
that is, the precision of renewable energy output and load; zt represents the degree of
deviation of actual renewable energy output and load from the predicted renewable energy
output and load; and Г represents the uncertain budget, which can be understood as
the extent to which uncertainties affect decision-making at the same time. There is no
deviation if Г = 0 and the corresponding robust optimization model is equivalent to the
deterministic model.

5.1. Algorithm 1: Outer Layer Algorithm

(1) Parameter setting: relevant parameters are set in the modified particle swarm opti-
mization algorithm. The parameters of the system are initialized;

(2) Upper layer optimization: encoding is conducted to form the initial groups of uncer-
tainty sets, that is, to randomly generate N groups of uncertainty scenario sets; the
uncertainty scenario sets are transferred to subproblems at the lower layer;

(3) Turning to Algorithm 2;
(4) Returning to upper layer optimization: the current optimal solution (i.e., the worst

scenario) is updated and replaced with the minimum f *; new uncertainty sets are
generated using algorithm 1; the next step is to return to (4);
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(5) Optimum seeking: if convergent f * is obtained through calculation, the worst scenario
and the optimization strategy results of problems at the lower layers are saved and
the program is ended; otherwise, it is necessary to return to (4);

(6) Finishing optimum seeking.

5.2. Algorithm 2: Inner Layer Algorithm

In the issue of energy sharing, the coupling variable in each system is the electric and
gas power interaction. The optimization objective function of the ith gas–electric IES under
the penalty function is considered to be as follows:

minLi = Fi + ∑
j=1,j 6=i

T
∑

t=1
λt

j,e(Pt
i−j,e − Pt

j−i,e)+

∑
j=1,j 6=i

T
∑

t=1

ρj,e
2 (Pt

i−j,e − Pt
j−i,e)

2+

∑
j=1,j 6=i

T
∑

t=1
λt

j,g(Pt
i−j,g − Pt

j−i,g)+

∑
j=1,j 6=i

T
∑

t=1

ρj,g
2 (Pt

i−j,g − Pt
j−i,g)

2

(39)

The iterative calculation process shown in Equation (40) is repeated until the electric
and gas power interaction of each subsystem reaches convergence.

Pt
i−j,e(k) = argminOi(Pt

i−j,e(k), Pt
j−i,e(k), λt

j,e(k))
Pt

i−j,g(k) = argminOi(Pt
i−j,g(k), Pt

j−i,g(k), λt
j,g(k))

Pt
j−i,e(k + 1) = argminOi(Pt

i−j,e(k + 1), Pt
j−i,e(k), λt

j,e(k))
Pt

j−i,g(k + 1) = argminOi(Pt
i−j,g(k + 1), Pt

j−i,g(k), λt
j,g(k))

λt
j,e(k + 1) = λt

j,e(k) + ρj,e(Pt
i−j,e(k) + Pt

j−i,e(k))
λt

j,g(k + 1) = λt
j,g(k) + ρj,g(Pt

i−j,g(k) + Pt
j−i,g(k))

(40)

In the issue of bargaining, the coupling variable is the bargaining cost. The optimiza-
tion objective function of the ith gas–electric IES under the penalty function is considered
to be as follows:

minOi = − ln(C0
i − C∗i + Gi)+

∑
j∈i

[λj(Gi−j + Gj−i) +
ρj
2 ‖(Gi−j + Gj−i)‖2

2]
(41)

The iterative calculation process shown in Equation (42) is repeated until the bargain-
ing cost interaction of each subsystem reaches convergence.

Gi−j(k + 1) = argminLi(Gi−j(k), Gi−j(k), λj(k))
Gj−i(k + 1) = argminLi(Gi−j(k + 1), Gj−i(k), λj(k))
λj(k + 1) = λj(k) + ρj(Gi−j(k) + Gj−i(k))

(42)

6. Example Analysis

The first thing to explain is that the three subsystems belong to the regional integrated
energy system. The types of energy mainly include electric energy and natural gas. They
are interconnected with each other through power lines and natural gas pipelines and
can share energy at various times of the day. They operate together and trade energy
with the superior distribution network. Specifically, for each system, there are mainly
renewable energy, gas turbines, carbon capture devices, power-to-gas, energy storage and
other equipment in the system. Among them, the carbon capture devices and power-to-
gas belong to low-carbon technology equipment, which can reduce the carbon dioxide
generated by power generation in units or power plants. Gas turbines mainly supply
power to users in the system, and energy storage realizes flexible transfer of electric energy.
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The scenarios considered in this paper cover three kinds of gas–electric IES. The
specific parameters are: the upper and lower limits of P2G output are 800 kW and 0,
respectively, with the efficiency being 60%; the upper and lower limits of carbon capture
output are 100 kW and 0, respectively, with the carbon dioxide capture rate being 90%
and the emission intensity being 0.2; the electric and gas loads can be adjusted within a
certain range, with the total amount of electric and gas loads before and after adjustment
remaining unchanged, and the maximum allowable adjustment proportion of electric and
gas loads in each period within a day being 5% and 3%, respectively; the rated capacity and
upper limit of charging and discharging power of the energy storage battery are 300 kWh
and 60 kW, respectively, with the maximum and minimum values of the state of charge
being 0.9 and 0.1, respectively, with the initial value of the state of charge being 0.2, and the
charging and discharging efficiency coefficients both being 0.95; and the rated capacity and
upper limit of gas storing and discharging power of the gas tank are 60 kWh and 12 kW,
respectively, with the maximum and minimum values of the state of charge being 0.9 and
0.1, respectively, with the initial value of the state of charge being 0.5, and the charging
and discharging efficiency coefficients both being 0.95. The predicted values of renewable
energy output and load in the three subsystems are shown in Figures 3–5.
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in this paper to call CPLEX for a solution.



Energies 2022, 15, 9604 13 of 20

Energies 2022, 15, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 3. Predicted values of renewable energy output and load in system 1. 

 
Figure 4. Predicted values of renewable energy output and load in system 2. Figure 4. Predicted values of renewable energy output and load in system 2.

Energies 2022, 15, x FOR PEER REVIEW 14 of 21 
 

 

 
Figure 5. Predicted values of renewable energy output and load in system 3. 

Under the compiling environment of MATLAB 2021a, the Yalmip language was used 
in this paper to call CPLEX for a solution. 

To verify the effectiveness of the model proposed in this paper, the following four 
scenarios were set: 

Scenario 1: each integrated energy park operates independently, without a carbon 
capture device and electric-to-gas converter. 

Scenario 2: each integrated energy park operates independently, with a carbon cap-
ture device and electric-to-gas converter. 

Scenario 3: all integrated energy parks operate cooperatively, with a carbon capture 
device and electric-to-gas converter. 

Scenario 4: the robust optimization model of multiple regional IESs is considered 
based on Scenario 3. 

Table 1 shows the total cost of the system, the cost of system operation, and the cost 
of carbon emission under the four scenarios, and Table 2 shows the costs of the three gas–
electric IESs. 

Table 1. Total cost of the system, the cost of system operation, and the cost of carbon emission under 
four scenarios. 

Scenario Cost of System Operation/Yuan Cost of Carbon Emission/Yuan Total Cost/Yuan 
Scenario 1 24,662.07 46,820.99 71,483.01 
Scenario 2 22,837.84 0 22,837.84 
Scenario 3 22,422.13 0 22,422.13 
Scenario 4 23,438.66 0 23,438.66 

It can be seen from Table 1 that the total cost of the system, the cost of system opera-
tion, and the cost of carbon emission show a decreasing trend from Scenario 1 to Scenario 
3, while these costs increase under Scenario 4 compared with Scenario 3. The reason is 
that under Scenario 1, the lack of energy conversion devices such as an electric-to-gas con-
verter and a carbon capture device in each gas–electric IES leads to the poor energy con-
version and carbon dioxide absorption capacity of the system and the highest costs under 
this scenario; the incorporation of an electric-to-gas converter and carbon capture device 
under Scenario 2 improves the energy utilization rate in each system and, thereby, reduces 
the cost of each system; under scenario 3, all subsystems can share electric and gas energy, 

Figure 5. Predicted values of renewable energy output and load in system 3.



Energies 2022, 15, 9604 14 of 20

To verify the effectiveness of the model proposed in this paper, the following four
scenarios were set:

Scenario 1: each integrated energy park operates independently, without a carbon
capture device and electric-to-gas converter.

Scenario 2: each integrated energy park operates independently, with a carbon capture
device and electric-to-gas converter.

Scenario 3: all integrated energy parks operate cooperatively, with a carbon capture
device and electric-to-gas converter.

Scenario 4: the robust optimization model of multiple regional IESs is considered
based on Scenario 3.

Table 1 shows the total cost of the system, the cost of system operation, and the cost
of carbon emission under the four scenarios, and Table 2 shows the costs of the three
gas–electric IESs.

Table 1. Total cost of the system, the cost of system operation, and the cost of carbon emission under
four scenarios.

Scenario Cost of System
Operation/Yuan

Cost of Carbon
Emission/Yuan Total Cost/Yuan

Scenario 1 24,662.07 46,820.99 71,483.01
Scenario 2 22,837.84 0 22,837.84
Scenario 3 22,422.13 0 22,422.13
Scenario 4 23,438.66 0 23,438.66

Table 2. Costs of three gas–electric IES.

Scenario IES 1/Yuan IES 2/Yuan IES 3/Yuan

Scenario 1 27,497.96 21,226.30 22,758.74
Scenario 2 9993.15 6276.47 6568.21
Scenario 3 7576.17 7779.87 7066.09
Scenario 4 7938.73 8096.70 7403.22

It can be seen from Table 1 that the total cost of the system, the cost of system operation,
and the cost of carbon emission show a decreasing trend from Scenario 1 to Scenario 3,
while these costs increase under Scenario 4 compared with Scenario 3. The reason is that
under Scenario 1, the lack of energy conversion devices such as an electric-to-gas converter
and a carbon capture device in each gas–electric IES leads to the poor energy conversion
and carbon dioxide absorption capacity of the system and the highest costs under this
scenario; the incorporation of an electric-to-gas converter and carbon capture device under
Scenario 2 improves the energy utilization rate in each system and, thereby, reduces the
cost of each system; under scenario 3, all subsystems can share electric and gas energy,
and the energy coupling utilization among subsystems further enhances the overall energy
utilization rate of the system. Because the uncertainties of the system in renewable energy
and load are considered under Scenario 4, each cost under the worst scenario is higher than
that under Scenario 3, showing the impact of extreme natural scenarios on the dispatching
cost of the system.

Table 2 shows that the systems are independent of each other under Scenario 1 and
Scenario 2. Compared with Scenario 1, the costs of the subsystems are lower under Scenario
2; compared with Scenario 2, the costs of Subsystem 1 and Subsystem 2 are lower under
Scenario 3, but the cost of Subsystem 3 is higher. The reason is that the subsystems are in
a cooperative mode under Scenario 3 and Scenario 4. In this case, the objective function
is to minimize the total operating cost of the system, resulting in the increase in the costs
of some subsystems. For this reason, the method of asymmetric Nash bargaining is used
in this paper to reallocate and adjust the cost of each subsystem. Tables 3 and 4 show the
process of each subsystem bargaining under Scenario 3 and Scenario 4, respectively.
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Table 3. Process of each subsystem bargaining under Scenario 3.

Mode Subsystem 1/Yuan Subsystem 2/Yuan Subsystem 3/Yuan

Prebargaining 7576.17 7779.87 7066.09
Bargaining transfer +2325.38 −1711.09 −614.28

Postbargaining 9901.55 6068.78 6451.81

Table 4. Process of each subsystem bargaining under Scenario 4.

Mode Subsystem 1/Yuan Subsystem 2/Yuan Subsystem 3/Yuan

Prebargaining 7938.73 8096.70 7403.22
Bargaining transfer +1541.62 −641.57 −900.05

Postbargaining 9480.35 7455.13 6503.17

It can be seen from Tables 3 and 4 that after the process of bargaining transfer, the cost
of each subsystem has been reduced compared with the cost under independent operation,
so that the stability of the alliance and cooperation of gas–electric IESs is enhanced. In
addition, the contribution of each subsystem is specifically considered in the process of
redistributing the cost of each subsystem. For Scenario 3, the cooperation surpluses of
Subsystem 1, Subsystem 2, and Subsystem 3 are CNY 91.6, CNY 207.69, and CNY 116.4,
respectively. This shows that Subsystem 2 contributes the most in the process of energy
sharing, followed by Subsystem 3 and Subsystem 1. For Scenario 4, the cooperation
surpluses of Subsystem 1, Subsystem 2, and Subsystem 3 are CNY 812.8, CNY 21.34, and
CNY 1665.04, respectively. This shows that Subsystem 3 contributes the most in the process
of energy sharing, followed by Subsystem 1 and Subsystem 2.

In summary, the adopted method of asymmetric Nash bargaining makes each gas–
electric IES more profitable than that under independent operation. Meanwhile, the contri-
bution of each IES to energy sharing is evaluated in the distribution process, so that the
scheme proposed is more scientific and reasonable.

The iterative convergence of the robust optimization model under Scenario 4 is shown
in Figure 6:
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It can be seen from Figure 6 that after eight iterations of the upper intelligent algorithm,
the total operating cost of the three systems converges to CNY 23,438.66. In other words,
the extreme scenario set that leads to the worst economic performance of the three systems
is found through iteration, which further illustrates the effectiveness of the algorithm.
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Due to the word limit, the results of dispatching under Scenario 4 are taken as the main
results. Figures 7–9 show the electricity and gas balance diagrams of the three subsystems
under Scenario 4.
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Figures 10–12 show the worst source load robust scenario sets of the three IESs:
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The rationality of the selection of uncertainty sets: Generally, for renewable energy
or load, the selection of uncertainty sets is mainly based on the historical data of previous
years to roughly draw its fluctuation range, so as to determine its upper and lower bounds.
Based on the historical data of the three systems, this paper roughly draws the boundary
between positive and negative 20% fluctuations.

For the elaboration of the robust model: The robustness of an uncertainty model is
mainly determined by the composition of its polyhedron uncertainty set. In this paper, the
construction of the polyhedron fully considers the upper and lower bounds, and sets the
uncertain parameters to adjust and further control the degree of uncertain fluctuation, so
as to ensure the robustness of the model.

It can be seen from Figures 10–12 that under the worst robust scenario set, each of the
three IESs has the highest level of resistance to uncertain risks. This scenario has the highest
degree of damage to the economic performance of the system. This provides a solution
for the dispatchers of the three IESs on how to share energy and reasonably coordinate
resources in each IES under the worst scenario.

7. Conclusions

An energy sharing model of multiple gas–electric IESs was proposed based on cooper-
ative game theory in this paper, in which flexible resources such as an energy storage device
and the demand response and multiple uncertainties in the source load were considered.

On the one hand, a cooperative game model was established to analyze the potential
of cooperation between multiple gas–electric IESs. Through energy sharing, multiple
subsystems play the role of mutual resource complementation in time and space, thus
increasing the overall benefits of the system. The method of asymmetric NB is used to
ensure that each participant can obtain benefits fairly and to enhance each individual’s
willingness to participate. At the same time, the specific contribution of each participant
to the cooperation is specifically considered, making the distribution mechanism more
reasonable and effective.

On the other hand, in consideration of multiple uncertainties in renewable energy and
source load, a robust optimization model of multiple regional systems was established to
provide a solution for the sharing strategy of the alliance among multiple systems under
uncertain environments. In terms of algorithm, the ADMM algorithm can solve the distri-
bution issue of the model in this paper. The computing of each integrated energy system
can reduce the computing pressure, and also protect the privacy of different integrated
energy systems.

The gas–electric IESs examined in the model proposed in this paper belong to regional
IESs, which are close to each other, so that the constraints from power flow are ignored.
However, this method is too simplified. In future research, it is necessary to consider the
constraints of these subsystems from grid power flow in the energy trading process.
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