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Abstract: Generally, utilities regulate the voltage on the long power distribution line within a
permissible range by using a step voltage regulator (SVR), which is located around the middle of the
line and operates according to the condition of the line current. However, as large-scale distributed
generations (DG’s) are interconnected into distribution lines, it is difficult to maintain the line voltage
properly owing to bi-directional power flow or reverse power flow. Therefore, this paper proposes a
novel SVR tap-changing algorithm to solve the problem, considering line load conditions and reverse
power flow. Its validity is verified through the PSCAD/EMTDC software tool and simulations.

Keywords: distribution system; distributed generation; step voltage regulator; tap changing; voltage
regulation

1. Introduction

According to the UN IPCC 2018 Summary for Policymakers, CO2 emissions from
industry in pathways limiting global warming to 1.5 ◦C with no or limited overshoot are
projected to be approximately 65–90% (interquartile range) lower in 2050 relative to 2010,
as compared to 50–80% for global warming of 2◦C (medium confidence) in preparation for
pre-industrialization by the end of the 21st century. Such reductions can be achieved by
combining new and existing technologies and practices, including electrification, hydrogen,
sustainable bio-based feedstock, product substitution, and carbon capture, utilization, and
storage (CCUS) [1]. Distributed generation (DG) has the environmental advantages of
reducing greenhouse gas emissions and the expansion cost for T & D equipment. However,
as DG is interconnected largely into the electric power distribution system, the direction
of power flow becomes bi-directional or reverse [2–5]. It may make voltage regulation
difficult [6–8].

Voltage regulation in distribution systems is usually performed by on-load tap changer
(OLTC) at distribution substations [9,10]. However, especially in the case of long distribu-
tion lines, step voltage regulator (SVR) locates around the middle of the distribution line and
operates according to line current under line drop compensation (LDC) mode. Generally,
SVR has 32 taps, and adjusts the tap position within ± 10% of the reference voltage.

As mentioned above, when DG’s is interconnected on a large scale behind the SVR
on the long distribution line, SVR perceives the reverse power flow and an inadequate
voltage control may occur. The impact of DG on the operation of SVR may fail in proper
distribution voltage regulation [11–13].

Some methods were proposed to address the above voltage control problem when
DG is introduced into long distribution lines controlled by SVR. Those are bi-directional
mode and neutral mode. The bi-directional mode is to change the control direction of the
SVR according to the power flow direction. The neutral mode is to fix the tap position
of SVR in case of reverse power flow [14–16]. However, these methods cannot solve the
voltage adjustment problem when a large-scale DG is introduced [17]. This is because the
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amount of reverse power flow generated by DG and its location is different from time to
time. For this solution, some methods are proposed based on communication links [18,19].
In addition, some autonomous or coordinated control methods have been proposed until
now [20]. There is a common problem in those. It is difficult to properly adjust the line
voltage because the virtual load center point of the SVR cannot be properly set according to
large-scale DG’s and their reverse power flow.

In this paper, a novel SVR control method is proposed to solve the voltage regulation
problem, which is to decide the virtual load center point for proper SVR operation when
large-scale DG is introduced into distribution systems and reverse power flows.

In Section 2, the existing SVR control methods and their problems are described. In
Section 3, to solve the problem, the novel control method of SVR is proposed. In Section 4,
the proposed method is verified through PSCAD/EMTDC modeling and simulations.

2. SVR Voltage Control Method

In general, there are three methods in SVR voltage control: LDC control method [21];
constant voltage control method [22]; reverse power flow control method [23]. In this
section, some problems are investigated when these methods are applied to distribution
lines with DG.

2.1. LDC Control

LDC control method is applied to the SVR for proper voltage control of long distribu-
tion lines. It keeps the virtual load center point at a constant voltage to minimize voltage
error with the regulated voltage at the entire distribution line under load conditions from
light load to peak load as Figure 1 [21]. The virtual load center is also called the regulating
point and its voltage is denoted by the symbol Vo.
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Figure 1. The concept of LDC control method.

As shown in Figure 2, LDC obtains the real-time voltage and current data measured by
PT and CT at the secondary side of SVR, which are denoted by VSVR and ISVR, respectively.
The voltage Vo of the regulating point with equivalent impedance Zeq can be calculated as
Equation (1).

Vo = VSVR − Zeq × ISVR (1)

Then, according to whether Vo is within the desired value VSet ± deadband, the SVR’s
tap operates up or down with a time delay.

Generally, VSet and Zeq = R + jX are determined by using the secondary side voltage
VSVR,max of SVR at peak load ISVR,max and its power factor cos θmax and the secondary side
voltage VSVR,min of SVR at a light load ISVR,min, which are as follows [2]:

R =
VSVR,max −VSVR,min√
3(ISVR,max − ISVR,min)

× cos θmax

X =
VSVR,max −VSVR,min√
3(ISVR,max − ISVR,min)

× sin θmax (2)

VSet =
ISVR,maxVSVR,min − ISVR,minVSVR,max

(ISVR,max − ISVR,min)
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The Vo calculated from Equation (1) becomes larger than VSet as DG is interconnected
after SVR and ISVR reduces. Then, SVR tap operates to reduce Vo to VSet and the VSVR
becomes to be lower. As such, over-voltage or low-voltage occurs depending on the location
of DG, that is, just after SVR, before the virtual load center, and end of the line.
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2.2. Constant Voltage Control Method

The constant voltage control method keeps the VSVR a constant value regardless of
load change. This method is the case for the LDC method with parameters Zeq = 0 and
VSVR = Vo. In this case, over-voltage and low-voltage problems may frequently occur as
same as the LDC method. It is also complicated to decide a proper value for the Vo to solve
those problems.

2.3. Reverse Power Flow Control

Now LDC operation of SVR during reverse flow is analyzed. Vo is adjusted to a proper
value VSet for forward current ISVR(> 0) as Equation (1), which is set to approximately
1.0 p.u. generally. For reverse power flow ISVR= −ISVR,Reserve(< 0). Vo is calculated as
Equation (3).

Vo = VSVR + Zeq × ISVR,_Reserve (3)

Therefore, Vo of Equation (3) becomes to be larger than the VSet and SVR tap operates
to reduce Vo to VSet and the VSVR becomes to be lower. From this theory, over-voltage
and low-voltage problems may frequently occur in the case of reverse power flow by DG
interconnection. To solve these problems, three methods have been proposed: bi-directional
mode, neutral mode, and co-generation mode [22,23]. The bi-directional mode controls
the Vo on the downstream side, determined by the direction of power flow at SVR. The
neutral mode operates the SVR tap position to be 1:1 at the moment of reverse power
flow. The co-generation mode adjusts the Vo to a certain value decided by the distribution
system operator.

First, for the bi-directional mode, if DG is connected at the secondary side of SVR and
injects enough power to reverse power flow at SVR, the source side has changed to the
other side and SVR becomes to regulate the voltage on the upstream side. When DG is
introduced into after SVR without reverse power at SVR, the calculated Vo is higher than
the set value, the SVR changes its tap to lower the voltage, and the voltage at DG increases
by the reverse power flow at DG location as shown in Figure 3. In this state, if the DG
output continues to increase, SVR will adjust for reducing the secondary voltage by placing
its tap in a 1:1 position to become SVR location to be virtual load center by Equation (1). The
voltage profile of the distribution line is placed between the upper limit and the lower limit
of the permissible range of voltage as the solid line in Figure 3a. However, if numerous
DGs are interconnected to reverse power flow at SVR enough to deviate from the 1:1 tap
position, the source side has changed to the other side and SVR becomes to regulate the
voltage on the upstream side. Then, for the calculated Vo higher than the set value Vset SVR
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changes its tap to a lower voltage and finally reaches the lowest position as the dotted line
in Figure 3a because the other side is the utility source and its voltage always keeps almost
constant. This causes the voltage downstream of the SVR to be outside the upper limit. On
the other hand, if the calculated Vo is lower than Vset, the SVR changes its tap to a higher
voltage. Then, the opposite phenomenon occurs: the SVR reaches the highest position,
which causes even lower voltage downstream of the SVR as the dotted line in Figure 3b.
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Secondly, the neutral mode fixes the tap position of SVR to be 1:1 in the event of
reverse power flow to solve the problems of low-voltage or over-voltage as mentioned
above. For example, the dotted line in Figure 4a shows a stable (normal state) case, which
is the voltage profile under the neutral mode at the instant of reverse flow compared to the
solid line under bi-directional mode. However, depending on load conditions, the voltage
profile under neutral mode may result in over-voltage as Figure 4b.
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The co-generation mode adjusts the Vo to a corrected value derived from the appropri-
ate value for reverse power. However, it is often fixed and uses the first calculated value
because of difficulties in calculating proper voltage settings depending on factors, such as
DG’s output, location, and load conditions. For example, the solid line in Figure 5 shows
the voltage profile based on a voltage setting value calculated with appropriate values.
However, if more DG’s are introduced beyond the proper voltage setting, line voltages
become lower as the dotted line in Figure 5.
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3. SVR Tap-Control Algorithm

As described in Section 2, it is difficult to properly adjust the distribution line’s voltage
within permissible ranges owing to DG’s location and its reverse power flow. Especially,
we consider the three points most likely to be out of voltage range: the secondary side of
SVR, DG’s connection location, and the end of the distribution line. Therefore, this section
proposes an advanced SVR tap-control algorithm that determines a proper Vset so that the
voltage at these three points does not deviate from the permissible range even when DG is
interconnected and reverse power flows.

In Figure 6, we consider a distribution line the voltage of which is controlled by SVR
and its parameters—R, X, Vo, Vset, BW etc. At first, voltage information (VSVR, VDG1, ...,
VDGn, VEnd) for three points is obtained and verified whether these voltages deviate from
the upper limit Vpermissible, high, limit and lower limit Vpermissible, low, limit decided by the load
condition of the distribution line at any time or not. The minimum value is selected as
VMin through Min {VSVR, VDG1, . . . , VDGn, VEnd} among the voltage obtained in real-
time. If VMin is lower than Vpermissible, low, limit, the Vset should be corrected by adding the
(Vpermissible, low, limit −VMin) to VSet as shown in Equation (4).

VSet,new = VSet + (Vpermissible, low, limit −VMin) (4)

In addition, the maximum value VMax is obtained through Max {VSVR, VDG1, ..., VDGn,
VEnd}. If VMax is more significant than Vpermissible, high, limit, Vset should be corrected by sub-
tracting (VMax −Vpermissible, high, limit) from the existing setting VSet as shown in Equation (5).

VSet,new = VSet − ( VMax −Vpermissible, high, limit) (5)

If the voltages at the three points do not exceed the distribution line’s upper and lower
voltage limit, the LDC control for SVR is performed with the present value VSet. Otherwise,
the LDC control for SVR is performed with the new VSet corrected by Equations (4) and (5)
so that the voltage on the distribution line is in the permissible voltage range.
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Figure 6. Proposed SVR tap-control Algorithm when reverse power flows.

This paper also proposes how to obtain Vpermissible, high, limit and Vpermissible, low, limit for
distribution line as shown in Figure 7. It shows a distribution system composed of a high
voltage distribution line, distribution transformer, secondary voltage line, and customer
under distribution line after SVR. In Figure 7 a voltage drop of the distribution transformer
is denoted by4VPtr,pu, the voltage drop of the low-voltage line by4VLV_line,pu, the voltage
drop of customer entrance by4VEnt,pu, and the primary-side voltage of the distribution
transformer by VHigh,pu. Then the voltage of the low-voltage customer just under the
distribution transformer just under the SVR becomes to be VHigh,pu −4VPtr,pu− 4VEnt,pu
and the voltage of the low-voltage customer at the end of the line after the distribution
transformer VHigh,pu −4VPtr,pu −VLV_line,pu− 4VEnt,pu.
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Figure 7. Distribution Line Downstream after SVR.

If the voltage tolerance of a low-voltage customer is±α p.u. and the nominal reference
voltage of a low-voltage customer is VCus,re f ,pu, the voltage of the low-voltage customer
must satisfy Equations (6) and (7) as follow:

VCus,re f ,pu − α ≤ VHigh,pu −4VPtr,pu −4VEnt,pu ≤ VCus,re f ,pu + α (6)
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VCus,re f ,pu − α ≤ VHigh,pu −4VPtr,pu −4VLV_line,pu −4VEnt,pu ≤ VCus,re f ,pu + α (7)

From the above equations, VHigh,pu must satisfy Equation (8) as follows:

VCus,re f ,pu − α +4VPtr,pu +4VLV_line,pu +4VEnt,pu ≤ VHigh,pu
≤ VCus,re f ,pu + α +4VPtr,pu +4VEnt,pu

(8)

Based on Equation (8), Vpermissible,low, limit becomes the left-side and Vpermissible, high, limit
the right-side. They can be obtained depending on load conditions.

Figure 8 explains the voltage profile by the proposed SVR tap-control algorithm when
applied to the DG location at peak load, as in Figure 3. In Figure 8, if SVR setting is
corrected to be VSet,new,uv as Equation (4) considering dead band, all these will be within
permissible voltage ranges illustrated as a red dotted line.
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On the other hand, Figure 9 explains the voltage profile by the proposed SVR tap-
control algorithm when applied to the DG location at a tolerance load, as in Figure 4. In
Figure 9, if SVR setting is corrected to be VSet,new,ov as Equation (5) considering dead band,
all these will be within acceptable voltage ranges illustrated as the red dotted line.
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4. Simulation and Result
4.1. Simulation and Condition

To verify the tap control algorithm of the proposed SVR, this paper considers a general
distribution system with DG composed of 154 kV/22.9 kV transformer and OLTC, four
high-voltage distribution lines one of which is relatively long distribution line with SVR.
The line lengths are 30 km, 20 km, 10 km, and 4 km, respectively, and each line has four
types of load distributions with power factor of 0.8995. This distribution system is modeled
as shown in Figure 10 through the PSCAD/EMTDC software tool. The SVR location
is where the voltage drop of the line is 10% and the voltage tolerance range of the LV
customer is set at 220 ± 6%. A photovoltaic power system with a capacity of up to 13 MVA
on Feeder 1 is considered. For impact analysis, DG interconnection point is considered in
three cases: at the line end (case I), before the virtual load center (case II), and just after SVR
(case III). Detailed data on the distribution system are shown in Table 1.
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Table 1. Specification of the distribution system.

Index Value Remark

154 kV Grid Source

Rated Power 50 MVA

Rated Voltage 154 kV

Rated Frequency 60 Hz

Positive Sequence %Z 0.08 + j0.99 100 MVA
BasedZero Sequence %Z 0.34 + j1.69

3-Winding Transformer (154 kV / 22.9 kV / 6.6 kV)

Rated Power 45/60 MVA

Positive Sequence %X1−2 j15.97
45 MVA
Based

Positive Sequence %X2−3 j6.69

Positive Sequence %X3−1 j25.38

Connection Type Y−Yg − ∆

Distribution Line (1 km, CNCV-W 325 mm2)

Positive Sequence %Z 1.44 + j3.74 100 MVA
BasedZero Sequence %Z 4.46 + j1.56

Distribution Line (1 km, ACSR 160/95 mm2)

Positive Sequence %Z 5.23 + j11.62

Zero Sequence %Z 13.65 + j34.2

Local Load 5.95MW
+ 3.69Mvar Lagging
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Table 1. Cont.

Index Value Remark

Distribution Generation (22.9 kV)

Type of DG PV

DG Capacity 13 MVA

Transformer Connection Yg − ∆

Positive Sequence %X j0.05 MVA
Based

LDC’s Parameters at Substation OLTC

Equivalent Impedance Zeq 1.3262 + j0.8143

Transmission reference voltage Vset 93.1007 V 120 V
Based

LDC’s Parameters at SVR

Equivalent Impedance Zeq 19.1657 + j9.369

Transmission reference voltage Vset 103.8844 V 120 V
Based

At Peak Load

Feeder 1 Load Capacity before SVR 3.3975 MVA

p.f. 0.8995Type 1: Feeder 1 Load Capacity after SVR 2.718 MVA

Type 2: Feeder 1 Load Capacity after SVR 4.077 MVA

Voltage Drop of Distribution Transformer ∆VPtr,pu 1.913

230 V
Based

Voltage Drop of Low-Voltage Line ∆VLVline ,pu 5.739

Voltage Drop of Customer Entrance ∆VEnt,pu 1.913

High-Voltage Line Permissible Range 0.9932 ~ 1.0505 p.u.

At Light load

Feeder 1 Load Capacity before SVR 0.849375 MVA

p.f. 0.8995Type 3: Feeder 1 Load Capacity after SVR 0.6795 MVA

Type 4: Feeder 1 Load Capacity after SVR 0.3885 MVA

Voltage Drop of Distribution Transformer ∆VPtr,pu 0.4783

230 V
Based

Voltage Drop of Low-Voltage Line ∆VLVline ,pu 1.4348

Voltage Drop of Customer Entrance ∆VEnt,pu 0.4783

High-Voltage Line Permissible Range 0.9216 ~ 1.0219 p.u.

Due to the reverse power flow according to introduction of DG’s, a voltage con-
trol problem occurs with the Vset value in conventional LDC control method. Therefore,
this paper proposes a Vset value that controls a voltage within the permissible range
with Equations (4) and (5). The controller as shown in Figure 11 is modeled through
PSCAD/EMTDC. When the controller detects reverse power flow, Vset value is adjusted to
Vset,new value.
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Figure 11. Vset,new Controller for the proposed algorithm.

4.2. Simulation and Verification

After SVR, four types of loads are considered to verify the proposed algorithm for
various load distributions. Type 1 is set as 2.718MVA, Type 2 as 4.077 MVA, Type 3
as 0.6795 MVA, and Type 4 as 0.3885 MVA. The following results are derived using
PSCAD/EMTDC software for each load type and DG introduced location case.

Figure 12 shows the distribution voltage profiles in Type 1 before and after applying
the proposed algorithm. As shown in Figure 12a, before applying the algorithm, the voltage
profile does not reach the lower voltage limit of 0.9932 p.u. To solve this problem, the
proposed algorithm is applied and the Vset value at the virtual load center is added as
1.0681 V. Therefore, it is confirmed that the voltage is within the permissible voltage range
at the end of the line. As shown in Figure 12b, a voltage does not reach the lower voltage
limit of 0.9932 p.u. Therefore, by adding the Vset value at the virtual load center as 0.945 V,
the voltage is within the permissible range. As shown in Figure 12c, before applying the
algorithm, a voltage does not reach the lower voltage limit of 0.9932 p.u. Similarly, the Vset
value at the virtual load center point is added as 0.9005 V. All cases are confirmed that the
voltage is within the permissible range.

Figure 13 shows the distribution voltage profiles in Type 2 before and after applying
the proposed algorithm. In this case, the voltage profile is similar compared to Figure 12,
however, voltage occurs more quickly. In case I, the line voltage is regulated within the
permissible range by adding the Vset value as 1.1429 V. In case II, the low-voltage problem
is solved by adding a Vset value as 1.0106 V. In case III, it is confirmed that the line voltage
is within the permissible range by adding the Vset value as 1.0327. Therefore, it is verified
that the proposed algorithm solves low-voltage problem due to the introduction of loads.

Figure 14 shows the distribution voltage profiles in Type 3 before and after applying
the proposed algorithm. As shown in Figure 14a, the voltage problem occurs beyond
the voltage upper limit of 1.0219 p.u. in conventional method. To solve this problem, by
applying the proposed algorithm, the Vset value at the virtual load center is subtracted
as 2.8454 V. Therefore, it is confirmed that the voltage is within the permissible voltage
range at the end of the line. As shown in Figure 14b, the voltage is beyond the upper limit
of 1.0219 p.u. in conventional method. The Vset value is subtracted as 3.0547 V to control
within the permissible range. Figure 14c shows conventional method, the voltage is beyond
the upper limit. Therefore, it is confirmed that the voltage is within the permissible range
by subtracting the Vset as 3.7598 V in the proposed algorithm.
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Figure 15 shows the distribution voltage profiles in Type 4 before and after applying
the proposed algorithm. Compared to Figure 14, critical over-voltage occurs due to small-
scale loads. In case I, over-voltage problem is adjusted by subtracting Vset value as 4.2005 V.
In case II, the voltage is regulated within the permissible range by subtracting Vset value
as 3.3742 V. In case III, it is confirmed that the voltage is within the permissible range by
subtracting Vset value as 2.7903 V. It is verified that when large-scale DG is introduced, the
problem of critical over-voltage is regulated through the proposed algorithm.
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The proposed algorithm is to adjust the Vset value at the virtual load center point to
solve the over or low-voltage problem when large-scale DG’s are introduced. By the Vset,new
in Figure 6, the voltage profiles as shown in Figure 12 to Figure 15 are within permissible
voltage range. Therefore, it is known that our algorithm is effective to properly regulate the
distribution voltage.

5. Conclusions

As energy transition takes place around the world, the interconnection of large-scale
DG into distribution systems is increasing and bi-directional power flow occurs more. This
causes over or low-voltage problems. Generally, there are three types of conventional
operation methods for SVR installed on long distribution lines: LDC, constant voltage
control, and reverse power flow mode. In those methods, it is difficult to control the line
voltage within permissible ranges when reverse power flows by DG introduction. This
problem will continue to increase according to the DG capacity and load connected to the
distribution line. Therefore, a new control method of SVR is required.

Therefore, this paper proposed a novel tap-change algorithm of SVR considering large-
scale DG introduced into distribution systems with long distribution lines. The proposed
algorithm can solve over or low-voltage problems.

To verify this algorithm, typical distribution systems were modeled through PSCAD/
EMTDC software tool, and the proposed tap change algorithm was applied. Then, it was
confirmed that the voltage profile of the 22.9 kV distribution line at peak load and light load
is within permissible voltage ranges when large-scale DG is introduced. Consequently, our
proposed method improved the conventional LDC voltage control method in distribution
systems with long distribution line and large-scale DG.

As a result, the tap change algorithm of SVR proposed in this paper is expected to
be applied and solve the voltage problem in distribution systems with large-scale grid
interconnection of DG. However, if faults occur and circuit breaker opens, all DG’s are
disconnected. The breaker recloses after fault elimination and then voltage profiles become
to be beyond permissible voltage range. The LDC controller at substation and the SVR
operate simultaneously, and their operation is hunting so that voltage regulation cannot be
performed properly. This is to be solved in a future study.
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