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Abstract: At present, the power system has the characteristics of mutual independence but intercon-
nection, and the interconnection between the various subsystems brings certain challenges to the
distributed computing of the power grid. In addition, a substantial amount of naturally uncertain
renewable resources are incorporated into the power system, which will impose volatile dynamics
on the grid. In this paper, an alternating direction multiplier method (ADMM) is proposed for the
power system with real-time renewables to tackle the online optimal power flow (OPF) problem.
Due to the adoption of the Lagrangian duality, the proposed distributed ADMM scheme utilizes
consensus ADMM to solve the dual OPF problem, which only discloses boundary coupling via the
Lagrangian multiplier and further reduces the amount of information communication. Given the
natural uncertainty of distributed energy resources (DER), the algorithm avoids the double-loop
implementation or the uncertainty of traditional distributed methods of using the boundary infor-
mation as equality constraints caused by dynamic DER. It is thus capable of providing a provable
performance guarantee and is inherently developed to cope with the dynamic OPF problem with
renewables in an online fashion. Taking the IEEE 30-bus system as a test feeder, the simulation results
verify the efficiency and robustness of the proposed algorithms in solving both the static and dynamic
OPF problems; in addition, the online method can effectively avoid the violent fluctuations of the
conventional generator output copying with renewables rapid variation in comparison with the
offline algorithms.

Keywords: optimal power flow; alternating direction multiplier method; Lagrangian duality; online
approach

1. Introduction

Since the pioneering work on optimal power flow [1] was presented by Carpentier in
1962, his calculation model containing power flow equality and inequality constraints has
been an important reference paradigm for realizing the reliable and efficient operation of
power systems. This work has attracted attention and obtained a vast amount of research
results; please see [2] and the references therein.

OPF aims to determine the economical operating parameters for power systems, mini-
mizing various costs, such as generation cost, line losses, and even consumer disutility. Due
to the quadratic relation between the power-related quantities and the voltage phasors [3],
the OPF constitutes a nonconvex quadratically constrained quadratic program (QCQP)
problem. To deal with this challenge, some (non)linear programming approaches based on
gradient descent, Newton-Raphson, and interior-point methods [4] have been put forward
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to seek solutions satisfying the Karush–Kuhn–Tucker (KKT) condition for local optimality.
However, these solutions are often sensitive to initialization. By introducing semidefi-
nite programming (SDP) [2,3,5,6], second-order cone programming (SOCP), and other
convex relaxation methods [7] to perform relaxation transformation on the power flow
constraints, the nonconvex OPF can be easily resolved. Specifically, the optimal solution
of SDP relaxation is a lower bound on the optimal value of the original nonconvex QCQP
problem [8].

1.1. Primary Motivations

In the past, solving OPF was usually based on centralized methods [4,6], which as-
sumes that all nodes in the power systems transmit their information to a central operating
unit. Actually, the distribution region in a power grid may belong to different owners, and
some sensitive information intercepted by malicious attackers might cause financial losses
or even security risks. With the wide application of distributed optimization, this situation
will be thoroughly changed. As a distributed algorithm, ADMM is naturally suitable for
distributed convex optimization, especially for area-based large-scale problems, such as
OPF [9–13] and control of reactive power [7,14,15], as well as minimum voltage deviation.
Furthermore, ADMM can effectively reduce information disclosure and further preserve
local privacy [16].

Currently, the share of variable renewable energy resources, such as wind and solar, is
increasing in power systems [17]. Because these DERs are dependent on weather conditions,
a variety of technical challenges, such as unpredictability, uncontrollability, and fluctuations
in voltage and reactive power [18,19], must be overcome to safely connect them to the grid
while maintaining stability and reliability. When integrating DERs into the grid, the power
flow distribution will be changed, and the boundary information of each area will also
be changed along with it [20]; the original static OPF thus evolves into a dynamic OPF
covering multiple continuous time sections [21]. The static OPF finds the optimal solution
at a certain time section, regardless of the interrelation among time sections. In the power
system with renewables, when the output power of DERs changes rapidly, the generator
output in contiguous time sections changes greatly. If continuously adopting the static
OPF, the result may cause the generator output to exceed its regulation rate limit between
two contiguous time sections, which makes the result infeasible in practice. Therefore, it is
imperative to build robustness into power system operation for the dynamic OPF problem
against the uncertainties of DERs. Stochastic and robust optimization techniques have been
employed to cope with this uncertainty and minimize operational costs [22]. However,
these approaches typically require characterizing the uncertainty bounds or the distribution
of the DER’s generation output.

1.2. Related Work and Research Gap

Following the above motivation, we survey some related work with the aim of giving
a clear understanding of how our algorithm and the results relate to and, in many cases,
improve upon it. Our paper is closest to the real-time OPF [23–26] or online OPF [3,27,28].
For the real-time OPF problem, ref. [23] presented an online gradient projection algorithm,
in which the proposed algorithm converges to the set of local optima and an upper bound
on the suboptimality gap of any local optimum is also provided as a sufficient condition to
guarantee the algorithm converges to a global optimum. Subsequently, ref. [24] developed
a real-time algorithm based on quasi-Newton methods, which utilizes second-order infor-
mation to provide suboptimal power flow solutions. Further extensions of this topic were
presented in [25,26] with a look toward the treatment of rapid and economical responses to
the changes in the power system operating state by using a deep reinforcement learning
method. For the online OPF problem, ref. [3] first sought to study this topic by using an
online mirror descent-based algorithm. Besides this, ref. [27] also explored four strategies,
including pure numerical, closed form, and numerical hybrids, as well as a Lagrange
multiplier method, in which the authors further considered the tradeoff between the time-
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cost of the solution and guaranteeing a feasible solution. Recently, ref. [28] developed an
online algorithm based on the second-order Taylor information in a distributed way by
decomposing the sensitivities of the OPF targets among different areas. For more details,
please see Table 1.

Despite these efforts, however, there still exist two significant limitations. First, since
the OPF problem is nonconvex and may be NP-hard in the worst case, some gradient-based
methods, such as [23,24], only guarantee the provision of suboptimal power flow solutions
or a local optimum, and guaranteeing the global optimum requires an extra sufficient
condition. Although Lavaei and Low [6] have invented a zero duality gap approach used in
an SDP optimization for the static OPF problem, it still needs an extra sufficient condition.
Second, although the Lagrange multiplier method has been proven in [27] to achieve the
fastest solution time for a large-size problem, there are still some underlying problems
when applying this method to the real-time or online OPF, such as the decomposition
of the large-size OPF into several subproblems, and providing the global optimum for
the nonconvex OPF model, as well as guaranteeing zero duality gap without any extra
condition, and so on.

1.3. Statement of Contributions

In this paper, inspired by consensus optimization [12,29], we propose an online convex
optimization scheme integrating ADMM and Lagrangian duality for resolving the online
OPF problem. First, for the static OPF problem, the cost-minimization model referring
to [2,11] is built, in which, power flow constraints are constructed via boundary equations
comprising the voltage, the phase angle, and the coupling line parameters (admittance,
etc.) on the boundary nodes among adjacent areas. To implement the distributed ADMM,
we propose a simple area partitioning method based on spectral clustering to provide
an optimal partition of the power system. By introducing the Lagrangian duality on the
original OPF [30], a global consensus variable is employed as the Lagrangian multiplier
for each sub-problem, which is simultaneously copied as a local variable for each sub-area
solution [31]. After doing that, the distributed ADMM applied only discloses the boundary
coupling information rather than the internal node information so as to avoid determining
the coupling equation separately and including the boundary information in the objective
function. For the online OPF with renewables, we propose an online convex optimization
scheme to tackle the uncertainties of DERs. Specifically, at the beginning of each time
slot, the power output of renewable generators must be determined (and fixed) without
knowledge of loads; and at the end of the time slot, the loads are revealed so that the power
output of conventional generators can be determined under the ramp constraints. The main
contributions of the paper are as follows:

• The Lagrangian duality is utilized to couple the power flow equation and boundary
information instead of directly establishing boundary coupling as the ADMM con-
straint, it can be well adapted to the real-time nature of DESs, such as solar energy,
and it can also disclose less boundary information.

• For the SDP relaxation model of the static OPF, the distributed ADMM is compatibly
employed to solve its convex Lagrangian duality problem instead of solving the
iterative sub-problem of ADMM under the original nonconvex OPF model.

• In order to adapt the distributed ADMM to the dynamic OPF with renewables, an on-
line scheme is proposed to cope with the uncertainties of DERs, in which the double-
loop implementation is avoided, thus providing a provable performance guarantee.

Notations: The notation “i” is reversed for the imaginary unit. Re{A}, Im{A}, and A∗

represent the real part, imaginary part, and complex conjugation of a given complex scalar
A, respectively. The notations A>, AH, and rank{A} represent the transpose, Hermitian
transpose, and rank of a given matrix A, respectively. For given the notation |x| of absolute-
value for a scalar x ∈ R, the `p-norm (p ≥ 1) is defined by ‖x‖p := (|x1|p + · · ·+ |xN |p)1/p

for the vector x = [x1, · · · , xN ]
> ∈ RN , which yields the `1-norm when p = 1 and the

Euclidean norm when p = 2, as well as the `∞-norm when p → ∞. Without special
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statement, ‖ · ‖ commonly denotes the Euclidean norm. The notation 〈x, y〉 denotes the
inner product given by 〈x, y〉 := x>y = ∑N

i=1 xiyi, for x, y ∈ RN . Finally, we define the
infimum of a set S as the greatest scalar that is less than or equal to all elements of S ,
abbreviated as infS ; and denote the argument of the minimum and argument of the
maximum for an objective function f by arg min f and arg max f , respectively.

Table 1. Comparisons of the proposed algorithm with the existing distributed online algorithms.

Literature Topic AC/DC Renewables Approach

[30] Dynamic OPF DC N/A Distributed dual consensus ADMM
[23] Real-time OPF AC N/A Online gradient projection
[24] Real-time OPF AC N/A Quasi-Newton methods
[25,26] Real-time OPF AC N/A Deep reinforcement learning
[27] Online OPF DC N/A Lagrange multiplier method
[3] Online OPF AC Wind turbine Online mirror descent
[28] Online OPF AC Photovoltaic Second-order Taylor-based gradient

ours. Online OPF AC Photovoltaic Online ADMM Lagrangian duality

2. Model and Formulation
2.1. Optimal Power Flow Formulation

Considering a power network with the set of buses N := {1, 2, · · · , N}, the set of
flow lines E ⊆ N ×N between the buses. Let Ωn := {n′|(n, n′) ∈ E} be the set of buses
connected to bus n, where n ∈ N is the index. Denote the complex voltage amplitude and
the injected current at bus n by Vn and In, respectively. Each line (n, n′) ∈ E of the network
is modeled as a passive device with an admittance ynn′ , thus the network can be modeled
as a general admittance matrix Y ∈ CN×N whose (n, n′)-entry is formed as

Ynn′ =


yn0 + ∑n′∈Ωn ynn′ , if n = n′

−ynn′ , if n 6= n′, (n, n′) ∈ E

0, otherwise

(1)

where yn0 is the admittance-to-ground of bus n, which is normally not considered for the
OPF modeling. Then, Kirchhoff’s and Ohm’s laws yield

In = ∑
n′∈Ωn

(Vn −Vn′)ynn′ , (2)

which means the complex power injected to bus n can be given by

Sn := Pn + iQn = Vn I∗n = Vn ∑
n′∈Ωn

(Vn −Vn′)
∗y∗nn′ , (3)

where Pn and Qn represent the active power and reactive power injected to bus n, respectively.
We denote the set of buses with conventional generators and renewable generators

by NG ⊆ N and NR ⊆ N , respectively. Let PG
n and QG

n be the active power output and
reactive power output of the conventional generator at bus n ∈ NG, respectively. Similarly,
let PR

n and QR
n be the active power output and reactive power output of renewable power,

such as photovoltaic energy, wind power, and geothermal energy, generated by bus n ∈ NR,
respectively. Finally, let PD

n and QD
n be the active load and reactive load at bus n ∈ N ,

respectively. Then, the power balance condition of each bus n ∈ N can be formed as

Pn = PG
n + PR

n − PD
n , (4a)

Qn = QG
n + QR

n −QD
n . (4b)

It should be noted here that PG
n = QG

n =0, if n ∈ N while n 6∈ NG, and all else follows.
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Ref. [2] has formed four types of line capacity constraints, which are can achieve
various goals in practice, such as avoiding line overheating and guaranteeing the stability
of the network. To simplify the problem, researchers generally select one of them as the
line capacity constraint [3]:

|Vn −Vn′ | ≤ ∆Vmax
nn′ (5)

where ∆Vmax
nn′ represents the maximum voltage difference over line (n, n′), this limitation is

equivalent to the line current magnitude constraint, since each line has been modeled as a
simple admittance and it follows from (2) that Vn −Vn′ is proportional to the line current.

Now, we turn to formulating the OPF problem. We consider the minimization of
system operating cost as the objective function, and the power flow balance, line capacity
limitation, generator capacity limitation, and voltage amplitude limitation as constraints.
Specifically, the mathematical formulation of OPF is given as

minimize
V, PG , QG

∑
n∈NG

fn

(
PG

n

)
(6a)

subject to PG
n + PR

n − PD
n = ∑

n′∈Ωn

Re{Vn(V∗n −V∗n′)y
∗
nn′} (6b)

QG
n + QR

n −QD
n = ∑

n′∈Ωn

Im{Vn(V∗n −V∗n′)y
∗
nn′} (6c)

Pmin
n ≤ PG

n ≤ Pmax
n (6d)

Qmin
n ≤ QG

n ≤ Qmax
n (6e)

Vmin
n ≤ |Vn| ≤ Vmax

n (6f)

|Vn −Vn′ | ≤ ∆Vmax
nn′ (6g)

where V, PG, PR, PD, QG, QR, and QD are the vector forms of Vn, PG
n , PR

n PD
n , QG

n , QR
n ,

and QD
n for n ∈ N , respectively. Equations (6b) and (6c) are the power balance condi-

tions accounting for the conservation of power at bus n, yielded by (3), (4a), and (4b).
Equations (6d), (6e), and (6f) restrict the active power, reactive power, and voltage mag-
nitude at bus n, respectively, for given limits Pmin

n , Qmin
n , Vmin

n , Pmax
n , Qmax

n , and Vmax
n .

Objective (6a) can capture various costs, such as generation cost, line losses, conservation
voltage reduction, etc. Generally, the generation cost is modeled by a quadratic function
form as:

fn

(
PG

n

)
:= αn

(
PG

n

)2
+ βn

(
PG

n

)
+ γn (7)

where αn ≥ 0, βn, and γn represent the cost parameters of the generator at bus n ∈ NG .
In a nutshell, OPF minimizes the total cost ∑n∈N fn over the unknown parameters V, PG,
and QG, for given the known vector PR, PD, QR, and QD, subject to some constraints.

2.2. Convex Relaxation Approach to OPF

It should be noted here that objective (6a) of OPF is convex while the constraints are
nonconvex due to the nonlinear terms |Vn| and VnV∗n′ . Since solving nonconvex optimiza-
tion is pretty hard, ref. [6] suggested a convex relaxation of the OPF problem by defining
W := VVH, then OPF constraints containing the quadratic item VnV∗n′ can be expressed
as a linear function of W. In order to ensure that the nonconvex OPF is transformed
into an equivalent form, it requires that W is Hermitian and positive semidefinite with
rank{W} = 1. Hence, the only source of nonconvexity in the equivalent OPF problem
comes from the ‘rank-1’ constraint. Motivated by the technique of convex relaxation, af-
ter dropping the rank constraint rank{W} = 1, the nonconvex OPF problem has been
formulated as a rank-relaxed semidefinite programming problem:
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minimize
W�0, PG , QG

∑
n∈NG

αn

(
PG

n

)2
+ βn

(
PG

n

)
+ γn (8a)

subject to PG
n + PR

n − PD
n = ∑

n′∈Ωn

Re{(Wnn −Wnn′)y
∗
nn′} (8b)

QG
n + QR

n −QD
n = ∑

n′∈Ωn

Im{(Wnn −Wnn′)y
∗
nn′} (8c)

Pmin
n ≤ PG

n ≤ Pmax
n (8d)

Qmin
n ≤ QG

n ≤ Qmax
n (8e)(

Vmin
n

)2
≤Wnn ≤ (Vmax

n )2 (8f)

Wnn + Wn′n′ −Wnn′ −Wn′n ≤
(
∆Vmax

nn′
)2 (8g)

which can be solved using the interior-point method. Although the convex relaxation
approach has nearly changed the original problem, if the original problem possesses a
certain nice structure and the relaxation is also carefully performed, then the relaxation
gaps are almost absent, i.e., solutions to the relax problem would be optimal for the original
nonconvex problem as well.

2.3. Area Partitioning Based on Spectral Clustering

The scale of actual power grids is usually large, so the overall OPF problem of the
whole power grid is very complex and is hard to solve directly. Fortunately, the voltage
issues are usually regional [11]. Therefore, we can try to partition the whole power grid
into several sub-regions such that the OPF problem can be decomposed into several sub-
problems, thus decreasing the difficulty of solving the overall OPF problem.

In this subsection, we propose a simple partitioning method based on spectral cluster-
ing [32] for providing an optimal partition of the power system. Spectral clustering is a
graph partitioning method that takes into account the affinity between any two nodes in the
target graph, which in our considered problem, corresponds to the computational coupling
between any two buses. Specifically, such coupling relation is reflected in the admittance
matrix, but the admittance matrix cannot be regarded as the Laplacian matrix directly due
to the complex admittance. Hence, modular operation is essential for constructing the
Laplacian matrix. In the proposed method, the k-means algorithm [33] helps to implement
clustering so that the inaccuracy in clustering nonconvex regions can be avoided. First, we
fix the number of sub-regions by K, then find the optimal way to partition the system into
this number of fixed sub-regions. The whole procedure is given by:

(1). Construct the Laplacian matrix L. Denote the nondiagonal entry of L by the negative
modulus of its corresponding complex admittance and the diagonal entry of L by the
sum of the complex admittance modulus, i.e.,

Lnn′ =


∑n′∈Ωn |ynn′ |, if n = n′

−|ynn′ |, if n 6= n′, (n, n′) ∈ E

0, otherwise.

(2). Find the K largest eigenvalues of L and form the matrix U ∈ RN×K by stacking the
corresponding eigenvectors u1, · · · , uK as columns.

(3). Let vn ∈ RK be the vector corresponding to the n-th row of U, n = 1, · · ·, N. Cluster
the points {vn}N

n=1 with the k-means algorithm into clusters C1, · · · , CK.
(4). Assign bus n to cluster Ck if the n-th row of U was assigned to cluster Ck.
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3. Distributed ADMM for Static OPF
3.1. Lagrangian Duality Based on Partition

As described above, the power system can be divided into multiple sub-regions, and a
local OPF problem can be formulated for each sub-region. Assuming that there are a total of
K sub-regions. Denote the set of buses in the k-th sub-region byRk satisfyingRk ∩R` = ∅
if k 6= `, and the number of buses in the k-th sub-region by |Rk|. For region k, define
the variable xk := {(Wn, Pn, Qn) | n ∈ Rk}, which covers the variable xn on each node n,
and represents the original variable of each region, the OPF problem can be re-formulated
by a local sum form based on variable xk as:

minimize
xk∈Xk

K

∑
k=1

Fk(xk) :=
K

∑
k=1

∑
n∈Rk

fn(xn) (9a)

subject to gk(xk) = 0 (9b)

hk(xk) ≤ 0 (9c)

where Xk represents the local feasibility constraint set defined by Xk := {xk | (8b)− (8g)},
the power flow constraint gk(xk) is expressed as equation constraints in the original OPF
problem, i.e., (8b) and (8c), and the line transmission capacity limit hk(xk) is expressed as
inequality constraints in the original OPF problem, i.e., (8d)–(8g).

After the OPF model of each sub-region is given, a common practice is to duplicate
the voltage phase angle or the transmitted power at boundary buses of each region [11].
This approach will remove the tie lines between connected regions, which makes the OPF
problem more easily solved in a decentralized manner. However, it also has one major
disadvantage; it needs to determine more coupling conditions. Especially if renewable
energy integrates into the power grid, which will lead to power flow fluctuations, this
approach may face some difficulties in solving the dynamical OPF problem under multiple
time sections.

In order to avoid the determination of the coupling equations, we define the La-
grangian Dk(xk; λ, µ) associated with the original problem (9), which takes the constraints
in (9) into account by augmenting the objective function with a sum of the constraint
functions. Mathematically, it is given by:

Dk(xk; λ, µ) := ∑
n∈Rk

fn(xk) + λ ∑
n∈Rk

gn(xk) + µ ∑
n∈Rk

hn(xk) (10)

where the global variables λ ≥ 0 and µ are the Lagrange multipliers that are introduced
for the equality constraint and the inequality constraint, respectively. Now we define the
Lagrangian duality Function (LDF) as the minimum value of the Lagrangian over xk:

LDF(λ, µ) = inf
xk∈Xk

K

∑
k=1

Dk(xk; λ, µ). (11)

which aims at solving the Lagrangian (10) with respect to xk by maximizing LDF(λ, µ) with
respect to λ and µ rather than xk. Because the original problem (9) is convex, according
to Slater constraint qualification [34], the duality gap between (9) and its dual problem is
zero. Therefore, we can obtain the solutions to problem (9) by solving its dual problem
max LDF(λ, µ). The advantage of this is that the constraints in (8b), (8c), and (8g) (or
equivalently (9b) and (9c)) are coupled, and it is difficult to decompose these constraints
into several independent subproblems, but the dual function can be easily decomposed
into several independent maximizations based on region partitioning.

3.2. Distributed ADMM for Lagrangian Duality

In order to distributedly solve the Lagrangian duality, this paper adopts ADMM [16],
which can divide a complicated problem into multiple simple sub-problems, and each sub-
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problem can be solved independently and locally by the data provider. Thus it is suitable
for dealing with the Lagrangian duality based on area partitioning. However, the local
Lagrangian (10) contains two global variables λ and µ that are not desired. To this end,
we introduce a local variable zk for the k-th region to copy the global variable y := [λ; µ]>

as an equation constraint, then the Lagrangian duality problem can be transformed into
an equivalent distributed minimization problem with local variable zk := [λz,k; µz,k]

> and
consensus variable y:

minimize
xk∈Xk

K

∑
k=1
−Dk(xk; zk)

subject to y− zk = 0

(12)

which has been suitable for ADMM to solve distributedly. We denote the Lagrangian
multiplier by σ := [σ1, . . . , σK]

> with σk := [λσ,k; µσ,k]
> and the penalty factor by ρ > 0,

one can get the augmented Lagrangian function of problem (12):

L(y, z; σ) :=
K

∑
k=1

[
−Dk(xk; zk) + 〈σk, (y− zk)〉+

ρ

2
‖y− zk‖2

]
.

where z := [z1, . . . , zK]
>. For a given interval ρ ∈ [0, ρ̄], one can evolve the penalty factor ρ

by a similar Logarithmic barrier indicator function, i.e., I(ρ) = −(1/c) log(ρ− ρ̄) with a
constant c = 1/2, 1 or 2. Note that in the method of multipliers, updating the dual variable
uses a step-size equal to ρ. ADMM consists of the following three iterations with index τ:

yτ+1 := arg min
y

L(y, zτ ; στ) (13a)

zτ+1
k := arg min

zk

L(yτ+1, z; στ) (13b)

στ+1
k := στ

k + ρ
(

yτ+1 − zτ+1
k

)
. (13c)

In order to resolve the problem (13), ADMM needs to be rewritten in a more intu-
itive form.

(1). The update of consensus variable y:
Since the constant term cannot change the optimization solution of y, removing the

constant term yields a precise form:

yτ+1 := arg min
y

K

∑
k=1

(
στ

k y +
ρ

2
‖y− zτ

k‖
2
)

. (14)

It is easy to see that (14) is a convex quadratic function of y, which can be solved by
taking the derivative to 0:

yτ+1 =
1
K

K

∑
k=1

(
zτ

k −
1
ρ

στ
k

)
. (15)

(2). The update of local variable zk:
Similarly, removing the constant term yields a precise form:

zτ+1
k := arg min

zk

(
−Dk(xk; zk)− 〈στ

k , zk〉+
ρ

2

∥∥∥yτ+1 − zk

∥∥∥2
)

. (16)
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Substituting (10) into (16) yields

zτ+1
k = arg min

zk

{
−arg min

xk∈Xk

{
∑

n∈Rk

fn(xk) + λz,k ∑
n∈Rk

gn(xk) + µz,k ∑
n∈Rk

hn(xk)

}

−〈στ
k , zk〉+

ρ

2

∥∥∥yτ+1 − zk

∥∥∥2
}

= arg max
zk

arg min
xk∈Xk

{
∑

n∈Rk

fn(xk) +

〈[
∑

n∈Rk

gn(xk); ∑
n∈Rk

hn(xk)

]
+ στ

k , zk

〉

− ρ

2

∥∥∥yτ+1 − zk

∥∥∥2
}

(17)

where we use the denotation zk = [λz,k; µz,k]
>. Since the duality gap between (9) and its

dual problem is zero, there is a saddle point S(x̄k, z̄k) [31] such that

arg max
zk

arg min
xk∈Xk

S(xk, zk) = S(x̄k, z̄k) = arg min
xk∈Xk

arg max
zk

S(xk, zk).

Hence, (17) is equivalent to

xτ+1
k = arg min

xk∈Xk

arg max
zk

{
∑

n∈Rk

fn(xk) +

〈[
∑

n∈Rk

gn(xk); ∑
n∈Rk

hn(xk)

]
+ στ

k , zk

〉

− ρ

2

∥∥∥yτ+1 − zk

∥∥∥2
}

. (18)

For any fixed xk, the maximum on the right-hand side of (18) is uniquely attained by
the following update step:

zτ+1
k =

[
λτ+1

z,k

µτ+1
z,k

]
=

 λτ+1
y + 1

ρ

(
∑n∈Rk

gn(xk) + λτ
σ,k

)
max

{
0, µτ+1

y + 1
ρ

(
∑n∈Rk

hn(xk) + µτ
σ,k

)}
 (19)

where we note that the inequality constraint hn(xk) ≤ 0 is equivalent to max{0, hn(xk)}.
For the determined zτ+1

k , substituting (19) into (18), one has

xτ+1
k = arg min

xk∈Xk

{
∑

n∈Rk

fn(xk) + ρ
〈

zτ+1
k − yτ+1, zτ+1

k

〉
− ρ

2

∥∥∥yτ+1 − zτ+1
k

∥∥∥2
}

= arg min
xk∈Xk

{
∑

n∈Rk

fn(xk)−
ρ

2

∥∥∥yτ+1
∥∥∥2

+
ρ

2

∥∥∥zτ+1
k

∥∥∥2
}

(20)

where the term ρ
2

∥∥yτ+1
∥∥2 in (20) is seen as a constant for xτ+1

k and cannot change the
optimal solution. Hence, xτ+1

k is a solution to the following minimization problem:

xτ+1
k = arg min

xk∈Xk

 ∑
n∈Rk

fn(xk) +
ρ

2

∥∥∥∥∥∥∥
 λτ+1

y + 1
ρ

(
∑n∈Rk

gn(xk) + λτ
σ,k

)
max

{
0, µτ+1

y + 1
ρ

(
∑n∈Rk

hn(xk)+µτ
σ,k

)}

∥∥∥∥∥∥∥

2. (21)

(3). The update of Lagrange multipliers σk:
The Lagrange multipliers are locally stored and updated according to (13c) for each

area k ∈ {1, . . . , K}, where all variables involved in this step have been calculated and
communicated in the update of y and zk.
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After analyzing the intrinsic update procedure of ADMM, it is easy to see that only
the update of zk involves the exchange of information between regions, and once the
updated information is obtained from the adjacent regions, it can also be calculated lo-
cally. The update of y needs to separately solve a quadratic programming problem while
updating the Lagrangian multiplier σk is the simplest to carry out. Therefore, ADMM
can be implemented in a completely distributed manner, requiring only local information
exchange without centralized coordination. The distributed algorithm for the OPF prob-
lem eliminates the steps of separately determining the boundary coupling equation and
coupling information and utilizes the power flow equation to construct the Lagrangian,
which reduces the disclosure of boundary information to a certain extent.

The convergence of ADMM is judged by the original residual rτ and the dual residual
sτ defined as

rτ =[yτ − zτ
1 ; · · · ; yτ − zτ

k ; · · · ; yτ − zτ
K]
>,

sτ =− ρ
[
zτ

1 − zτ−1
1 ; · · · ; zτ

k − zτ−1
k ; · · · ; zτ

K − zτ−1
K

]>
.

When ‖rτ‖2 ≤ ε1 and ‖sτ‖2 ≤ ε2 for given error bounds ε1 and ε2, the iteration stops
and the optimal solutions are obtained.

4. Distributed ADMM for Online OPF

The previous sections investigate the OPF problem in a single gap and its solution;
however, the whole model and solving procedure are based on the assumption that the
power output of renewable sources remains unchanged such that an OPF solution in
a single gap can be obtained. In the actual electric grid, the renewable power sources,
especially the photovoltaic and wind turbine, are usually time-varying and fluctuate due
to their uncertainty and unpredictability, which deduces a dynamic OPF problem. If we
solve the dynamic OPF with a long time scale, the previous approach will lead to a double-
loop implementation.

In order to avoid the double-loop implementation, we present an online ADMM to
address the dynamic OPF problem with the fluctuated renewable energy and real-time
loads. This is a completely distributed algorithm that makes the optimal decision in each
time slot and only needs to know the instantaneous system state.

4.1. Online Convex Optimization

Recent studies showed that many online learning algorithms are designed based
on online convex optimization tools, whose decision set is a convex set X ⊆ RN in N-
dimensional Euclidean space, and costs are a series of bounded convex functions defined
on the convex set X . Online convex optimization can be regarded as a repeated game.
At time t, the player chooses an action xt ∈ X , then the adversary reveals a convex loss
function ct : X → RN . The player’s goal is to minimize the regret Rc(T) on the number of
time slots T, which is defined as:

Rc(T) :=
T

∑
t=1

ct(xt)−min
x∈X

T

∑
t=1

ct(x). (22)

Under the appropriate hypotheses, well-constructed online learning algorithms can
achieve a regret bound that grows sublinearly in T, i.e., limT→∞ Rc(T)/T = 0.

4.2. Online OPF Formulation

The dynamic OPF problem based on online convex optimization can be stated as
follows. At each time slot t ∈ {1, 2, · · · , T}, on the basis of the realizations observed so
far for the renewable sources {PR,τ

n , QR,τ
n }t

τ=1 and the loads {PD,τ
n , QD,τ

n }t
τ=1, find the OPF
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{PR,t+1
n , QR,t+1

n } in the next time slot, so as to minimize the regret. Specifically, the loss
function at time slot t can be formed as

ct(xt) := −
K

∑
k=1

Dt
k(x

t
k; λt, µt) (23)

where Dt
k(x

t
k; λt, µt) is an online version (at time slot t) of the Lagrangian Dk(xk; λ, µ),

defined in (10), associated with the OPF problem in a single gap. Since the dual function (11)
is the pointwise infimum of a family of affine functions of (λ, µ), it is concave, even when
the original problem (9) is not convex [34]. Hence, the loss function ct(xt) is convex,
and then the Lagrangian duality of the dynamic OPF problem can be solved by an online
learning algorithm based on the online convex optimization technique.

4.3. ADMM for Online OPF

Considering the advantage of the ADMM framework and avoid a double-loop implementa-
tion, we adopt the online ADMM approach [35] to solve the following optimization problem

minimize
xk∈Xk

−
T

∑
t=1

K

∑
k=1

Dt
k(xk; zk)

subject to y− zk = 0

(24)

in an online fashion. The augmented Lagrangian is given by

Lt(y, z; σ) :=
K

∑
k=1

[
−Dt

k(xk; zk) + 〈σk, (y− zk)〉+
ρ

2
‖y− zk‖2

]
.

From which we can obtain the update steps of the online ADMM approach:

yt+1 := arg min
y

Lt(y, zt; σt) =
1
K

K

∑
k=1

(
zt

k −
1
ρ

σt
k

)
(25a)

zt+1
k := arg min

zk

Lt(yt+1, z; σt) =

 λt+1
y + 1

ρ

(
∑n∈Rk

gn(xk) + λt
σ,k

)
max

{
0, µt+1

y + 1
ρ

(
∑n∈Rk

hn(xk) + µt
σ,k

)}
 (25b)

σt+1
k := σt

k + ρ
(

yt+1 − zt+1
k

)
. (25c)

At each time slot t, the online ADMM updates multiplier vectors yt and zt
k to solve

variable xt+1
k from the following minimization problem in an online fashion:

minimize
xk∈Xk

 ∑
n∈Rk

fn(xk) +
ρ

2

∥∥∥∥∥∥∥
 λt+1

y + 1
ρ

(
∑n∈Rk

gn(xk) + λt
σ,k

)
max

{
0, µt+1

y + 1
ρ

(
∑n∈Rk

hn(xk)+µt
σ,k

)}

∥∥∥∥∥∥∥

2. (26)

The above procedure can be summarized in Algorithm 1. The iteration complexity
of the online ADMM has been extensively studied in the literature (see [35] and the
references therein). It can be shown that the iterate {xt} achieves a sublinear regret bound,
i.e., Rc(T) = O(T), under some mild conditions on the problem.
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Algorithm 1 Online ADMM for OPF.

Initialize: z0
k , σ0

k , ρ > 0, and T ∈ N
1: for each time slot t = 1, · · · , T do
2: Calculate constraints gn(xt

k) & hn(xt
k) according to online data PD,t

n , QD,t
n , PR,t

n , QR,t
n

3: Obtain yt+1 according to (25a)
4: for each sub-region k = 1, · · · , K do
5: Calculate xt

k via solving (26)
6: Update zt+1

k using (25b)
7: Update σt+1

k using (25c)
8: end for
9: end for

It is worth noting that, at each time slot t, the online data stream will be fed to the
online ADMM based on a single-loop iterative implementation, which strives for faster con-
vergence. Recently, some variants of ADMM were studied that exhibit faster convergence
rates while requiring only a little change in the computational effort of each iteration [36].
Here we adopt a practical, efficient method, the Peaceman–Rachford Splitting Method
(PRSM) [37], to accelerate ADMM. Specifically, by adding an intermediate multiplier and
introducing an underdetermined relaxation factor ξ ∈ (0, 1), the PRSM-ADMM can ensure
strict convergence, and its convergence rate is also faster than ADMM. Mathematically,
the update rule of the intermediate multiplier in PRSM-ADMM is given by

σt+0.5
k := σt

k + ξρ
(

yt+1 − zt
k

)
. (27)

Then, we update zt
k according to the new rule

zt+1
k :=

 λt+1
y + 1

ρ

(
∑n∈Rk

gn(xk) + λt+0.5
σ,k

)
max

{
0, µt+1

y + 1
ρ

(
∑n∈Rk

hn(xk) + µt+0.5
σ,k

)}
. (28)

The final update rule of the multiplier in PRSM-ADMM is

σt+1
k := σt+0.5

k + ξρ
(

yt+1 − zt+1
k

)
. (29)

The whole procedure can be summarized in Algorithm 2.

Algorithm 2 Online PRSM-ADMM for OPF.

Initialize: z0
k , σ0

k , ρ > 0, ξ ∈ (0, 1) and T ∈ N
1: for each time slot t = 1, · · · , T do
2: Calculate constraints gn(xt

k) & hn(xt
k) according to online data PD,t

n , QD,t
n , PR,t

n , QR,t
n

3: Obtain yt+1 according to (25a)
4: for each sub-region k = 1, · · · , K do
5: Calculate xt

k via solving (26)
6: Update σt+0.5

k using (27)
7: Update zt+1

k using (28)
8: Update σt+1

k using (29)
9: end for

10: end for

5. Numerical Tests

In this section, we illustrate the use of the distributed ADMM on static and dynamic
case studies to find the optimal power flow under equation and inequality constraints.
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5.1. Simulation Setup and Area Partitioning

The distributed ADMM algorithms are tested on the IEEE 30-bus system, which
contains 6 motors and 21 loads. The generator and load adopt IEEE 30-bus standard data,
but the load adopts a 24-h spinning reserve, and adding random noise corresponds to
the solar data. The photovoltaic solar panels used in this article as generators produce
electricity in DC, which needs to transform into AC via an inverter for feeding the electric
grid. In this experimental environment, the grid-tied system with the photovoltaic does
not need battery storage because the grid acts as a power reserve. If the grid goes down,
the inverter automatically shuts off and will not feed solar-generated electricity back into
the grid. Therefore, the photovoltaic can be safely incorporated on the designated node to
perform distributed power flow calculation [38], whose access points should be relatively
concentrated and located as close to the reference node as possible so as to reduce the
harmonics caused by grid connection and the impact on the grid. For a typical photovoltaic
module [39], the max power is 300W; the voltage and current at maximum power points
are 50.6 V and 5.9 A, respectively, and the open-circuit voltage and short-circuit current
are 63.2 V and 6.5 A, respectively. The solar data were extracted from an open-source
dataset (https://www.elia.be/, accessed on 20 October 2022). Fifteen-minute-sampled
solar generation data were collected on 18 July 2020, from 00:00 to 24:00. Considering
the power generation capacity and the standard unit value, the data at each time slot
were standardized. For a typical DC/AC inverter [39], the input and output voltages are
354 and 230 V, respectively; the power rating is 10 kW; and the amplitude and frequency
modulation index are 0.92 and 100, respectively.

Section 2.3 introduced the area partitioning approach based on spectral clustering.
The partitioning is chosen such that each load bus is assigned to the same area in line
impedance as its nearest generator bus. After defining the Lagrangian matrix based on
the complex admittance of the IEEE 30-bus system, we simply calculate the K-largest
eigenvalues (here K = 2, 3) and cluster all of the buses into K regions. Among them,
the Optimal (region) Partition by using the spectral clustering-based method proposed
in this paper, is represented by OP(K), and the other partitions based on the electrical
distance between buses [40] or the simpler index clustering are represented by NP(K).
Specifically, in [40], the regions are partitioned in the way that each load is assigned
to the same region as its closest generator in terms of line impedance. After that, we
obtain the coupling parameter, 0.6117 and 0.7532 determine the optimal partitioning plan
{(1− 8, 28); (9− 27, 29− 30)} and {(1− 8, 25− 30); (9− 20); (21− 24)} as the OP(2) and
OP(3) in Figure 1a, and the specific information are shown in Table 2.

(a) (b)

Figure 1. Test case for the IEEE 30-bus system. (a) Area partitioning cases; (b) Solar energy injection.
(NP(2) and NP(3) are from [40]).

https://www.elia.be/
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Table 2. Area partitioning cases for the IEEE 30-bus system.

Partitioning Case Subregions

NP(2) [40] {1− 8, 25− 30} & {9− 24}
OP(2) ours. {1− 8, 28} & {9− 27, 29, 30}

NP(3) [40] {1− 10} & {11− 20} & {21− 30}
OP(3) ours. {1− 8, 25− 30} & {9− 20} & {21− 24}

5.2. Static OPF Simulation

In this simulation part, the maximum number of iterations M = 2000 and the original
residual and dual residual iteration stop criteria are set to ε1 = ε2 = 1× 10−4.

First, we discuss the influence of the dual update step size ρ in (13) on the number
of iterations in different area partitioning cases. Figure 2 shows that the optimal dual
update step size corresponding to three partition cases may be different. In that, we
traverse ρ ∈ [1, 100]N to roughly determine the optimal value ρ∗ = 15 for the same residual
accuracy, which will guarantee that the distributed ADMM can converge at the fastest
speed. The figure also shows that OP(3) is more sensitive to the value of ρ, which means
the selection of ρ will profoundly affect the convergence performance in this case.

Figure 2. Iteration number v.s. dual penalty factor ρ for given residual accuracy. (NP(2) and NP(3)
are from [40]).

The number of border branches and the number of global variables correspond to the
Lagrangian multiplier variable y = (λ; µ) in (10), as well as the number of iterations for the
given residual accuracy. Obviously, the more variables are involved, the more iterations are
needed to achieve the same residual accuracy.

When the dual step size ρ = 15, the convergence results of the distributed ADMM are
discussed. Figure 3a,b show the relative error (expressed as a percentage) of the target value
obtained by ADMM at each iteration over a single slot (assuming that the dynamic data of
formula (4a) and (4b) are fixed) with respect to the target value obtained by the centralized
method (the exact value), expressed as the gap in the target value. A set of comparisons is
made between the optimal partition and the conventional partition with the same number
of regions K. Since ADMM gradually converges to the optimal value during each iteration,
the gap between the target value obtained by the centralized method will be narrowed
in the case of convergence. As shown in Figure 3a,b, all four methods have considerable
convergence effects, but ADMM with OP(K) converges faster than that with NP(K) and
achieves a shorter oscillation period. It is worth noting here that there is a clear rise in
Figure 3a,b, which is caused by changes in the penalty parameter. At the beginning of the
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iteration, the subproblems tend to find better local optima with little regard for connections
to other subproblems, which leads to a gap oscillation.

The comparison of public information between the method in [40] and ours is shown
in Table 3, which gives the differences in iteration number and running time for the same
accuracy as well as other parameters, etc. Obviously, our method is significantly superior
to [40] in convergence time. It is worth noting that NP(2) may be superior to OP(2) in
the gap factor, but OP(2) has better accuracy performance for the same iteration number,
which has also been verified by Figure 4. It is clear that the amount of public information
in our method is significantly less than [40]. Moreover, our method only needs the number
of boundary branches between adjacent subsystems to calculate the amount of public
information, while [40] additionally needs to consider the partition strategy on the basis of
knowing the number of boundary branches.

Table 3. Performance comparison among different partitions.

Partition OP(2) Ours NP(2) [40] OP(3) Ours NP(3) [40]

Iterations 52 74 120 153
Time (s) 124 1018 145 1241
Public information 8 16 14 40
Consensus variable 15T 31T 25T 76T
Coupling parameter 0.6117 1.0195 0.7532 1.614
Gap 99.57% 99.89% 99.35% 99.22%

(a) (b)

Figure 3. Convergence of ADMM with different partitions. (a) Two regions, gap in objective value;
(b) Three regions, gap in objective value. (NP(2)-Gap and NP(3)-Gap are from [40]).

(a) (b)

Figure 4. Convergence of Lagrangian multiplier with different partitions. (a) Two regions, iterative
performance; (b) Three regions, iterative performance. (NP(2)-LMC and NP(3)-LMC are from [40]).
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Note that the convergence of the Lagrangian multiplier is also an important criterion
for judging whether the algorithm is optimal. Let LMC = log ‖στ+1 − στ‖∞, where log ‖ ·
‖∞ represents the logarithm of the infinite norm. Figure 4 depicts the iteration of multiplier
σ and shows good convergence performance of the algorithm in three cases, especially
for OP(2) and OP(3), which also verifies the conclusion suggested in Figure 3. In order
to solve the single-slot OPF problem, the proposed SDP relaxation scheme incorporated
into the distributed ADMM can achieve better convergence and robustness, as shown in
Figure 4.

In Figure 5, we evaluate the convergence of the primal residuals of ADMM. We use
PRC to record the convergence process of the primal residual before which the residual
termination condition is defined. Like LMC, OP(K) has a better convergence speed than
NP(K) and reaches the termination condition faster with the same number of partitions.

(a) (b)

Figure 5. Convergence of primal residual with different partitions. (a) Two regions, convergence
performance; (b) Three regions, convergence performance. (NP(2)-PRC and NP(3)-PRC are from [40]).

This section focuses on the performance of the proposed distributed ADMM algorithm
on SDP-OPF. After the test of the indicators, the effectiveness of the algorithm can be seen.
In the four partitioning schemes, the algorithms have high accuracy and fast convergence
performance. The spectral clustering method further shows its effectiveness in improving
the system performance under the same number of regions. However, the modified
algorithm has good adaptability to dynamic online problems because it bypasses the
boundary coupling equation in essence. To better simulate the time-varying DER injected
into the power grid, we introduce an online OPF model, which will be further elaborated
upon in the next subsection.

5.3. Online OPF Simulation

This subsection tests the performance of the online ADMM, which will monitor the
real-time data of solar-power generation and make the best decision due to its intermittency
and uncontrollability. We still adopt the IEEE 30-bus system to be injected photovoltaic
generators, as shown in Figure 1b, where the set of solar power buses is {2, 3, 14, 17, 24},
the set of conventional generator buses {1, 2, 5, 8, 11, 13}, and buses {7, 12, 19, 21, 30}will be
used later. We still use OP(2) as the area partitioning scheme due to its good performance
in the static scene, which is not shown in Figure 1b for considering a more clean picture.

Figure 6 shows the active/reactive load data PD
n,t and QD

n,t, as well as the active/reactive
solar power output data PR

n,t and QR
n,t, which can be found on the same website (https:

//www.elia.be/, accessed on 10 October 2022). Solar-power output is affected by weather
and seasonal variations. The angle of the sun to the solar panel changes with the time of
day and seasonal variations. Cloudy and rainy days also contribute to less effectiveness
of sunlight collection. The sampling period is one day, and the sampling length is 24 h.

https://www.elia.be/
https://www.elia.be/
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Generally, the increase in load will naturally affect the output of generators, and various
DESs may be our best way to offset the instantaneous power difference.

5.3.1. Performance Comparison

This subsection investigated the performance comparison of the proposed online
algorithm with the closest literature [30]. In [30], the authors solved the static DC-OPF
problem by ADMM and Lagrangian duality, while our paper addressed the static and
dynamic AC-OPF problem. In order to perform the comparison, we develop a quasi-static
distributed OPF problem to reduce the difference, in which we need to rewrite the cost
function as the minimum economic operation index; then convex relaxation can be carried
out. The resulting optimization problem can continue to perform the comparison with our
algorithm in distributed OPF calculation.
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Figure 6. Active/reactive load and solar power output data during 24 h (sampling every 15 min).

For coming into use of the offline algorithm [30], at the end of time slot t − 1, we
assume that the solar power generation of time slot t is the same as that of time slot t− 1
(persistence prediction), the active power output is determined by solving a distributed
OPF problem. Specifically, it is to solve the following problems:

minimize
W�0, PG,t , QG,t

∑
n∈NG

αn

(
PG,t

n

)2
+ βn

(
PG,t

n

)
+ γn (30a)

subject to PG,t
n + PR,t−1

n − PD,t−1
n = ∑

n′∈Ωn

Re{(Wnn −Wnn′)y
∗
nn′} (30b)

QG,t
n + QR,t−1

n −QD,t−1
n = ∑

n′∈Ωn

Im{(Wnn −Wnn′)y
∗
nn′} (30c)

Pmin
n ≤ PG,t

n ≤ Pmax
n (30d)

Qmin
n ≤ QG,t

n ≤ Qmax
n (30e)(

Vmin
n

)2
≤Wnn ≤ (Vmax

n )2 (30f)

Wnn + Wn′n′ −Wnn′ −Wn′n ≤
(
∆Vmax

nn′
)2 (30g)

In time slot t, after the actual solar power generation is realized, OPF is solved again.
The total cost of the static algorithm is also ∑n∈NG αn(PG,t

n )2 + βn(PG,t
n ) + γn. Note that this

offline scheme needs to solve the distributed OPF problem twice in each time slot, while the
online scheme proposed in our paper only solves the OPF problem once in each time slot.

Figure 7 shows the evolution of total cost between the offline [30] and online algo-
rithms for solving the distributed OPF, in which we still use solar power generation in
Figure 6. As a whole, it can be seen that the overall online scheme is smoother than the
offline scheme. In particular, when the solar power generation capacity suddenly drops
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or increases, the cost of the online scheme is much lower than the offline scheme. This is
because the offline scheme fully trusts the prediction of renewable energy power generation
and significantly reduces or increases the conventional power generation that has been
invested, while the online scheme in our paper considers the impact of time-scale, which
has a better performance in long-range dependence. Therefore, the online scheme can avoid
the power output of conventional generators instantaneously surging when the power
generation of renewables drops sharply. This conclusion has been confirmed in Figure 8,
which describes the conventional power generation submitted by the offline [30] and online
schemes in each time slot. It is known from Figure 6 that solar injection basically affects the
power grid from the period 04:45–19:30; thus Figure 8 only intercepts the power generation
in this period.

Figure 7. Cost comparison between the offline [30] and online algorithms solving the distributed OPF.

Figure 8. Conventional generation comparison between the offline [30] and online algorithms solving
the distributed OPF.

5.3.2. Online Performance Analysis

Under the time-varying load and solar power output given in Figure 6, we adopt the
distributed online ADMM to solve the real-time optimal power flow. Figure 9 describes the
convergence of the optimal value of OPF obtained by the algorithm over time under the
background of no solar power access, 5 solar access points and 10 solar access points, as
given in Figure 1b. The calculation example starts from 00:00. It is worth noting that within
the initial hour, the algorithm needs to reach convergence within a certain period of time,
that is, the optimal running state. In Figure 9, an obvious rising phase can be obtained.
Obviously, due to the access of the high load side, the power input needs to climb to reach
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the balance with the load. After that, the algorithm performance reaches the optimum
at this time in the configuration without solar energy access, which is the blue curve in
Figure 9. Since the objective function is a linear function of active power, it will change
with the load, as shown in the load curve in Figure 6. In the configurations with 5 solar
access points and 10 solar access points, the power output is obviously constrained by the
solar access point.
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Figure 9. Real-time optimal value of distributed ADMM under different solar configurations.

Finally, we evaluate the convergence performance of our distributed online ADMM
for solving the real-time OPF problem. The algorithm makes the optimal decision for each
time slot t to understand the instantaneous system state and minimizes the regret given in
(22), as shown in Figure 10. In that, two versions of ADMM show very fine distinctions;
PRSM-ADMM can approach convergence on a shorter time slot t and may play a greater
advantage in solving online problems. It is particularly easy to see the algorithm has an
obvious convergence lower bound on the time series, which verifies the good performance
of the algorithm in the online case.
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Time
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Regret: PRSM-ADMM

Regret: ADMM

Figure 10. Regret bound of distributed online ADMM.

As a summary, we discuss the results and performance of the algorithm on online
data. The algorithm has real-time calculation results for online data and can quickly reach
the lower bound of regret.

6. Conclusions

This paper proposes a distributed control method for the OPF with renewables, which
relies on SDP relaxation due to its nonconvexity. In summary, this work is split into two
parts. First, based on the Lagrangian duality and ADMM, the method proposed is realized
by solving the dual problem of the original OPF, in which the Lagrangian multipliers of
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the power flow equation are copied to each sub-area instead of the boundary coupling
equation. Second, this distributed control method is extended to solving the dynamic OPF
with renewables in an online fashion, which determines the current OPF value in each
time slot, and achieves a regret bound within a limited time. Finally, the simulation results
on the IEEE 30-bus system verify the high efficiency of the proposed distributed control
method in solving both the static and dynamic OPF problems, and the online method can
effectively avoid the violent fluctuations in conventional generator output coping with
renewable’s rapid fluctuation in comparison with the offline algorithms.

Future works will mainly focus on addressing the two limitations of this study. First,
since the algorithm of this paper considers the SDP based on AC power flow, it may be an
interesting problem to extend to the large-scale AC-DC hybrid power model [41]. Second,
for the dynamic, distributed OPF problem, although the experience proved that the SDP
relaxation method has good interpretability for large-scale power grids, this method may
not be the best match; it becomes an important task to seek new and more effective methods
of analysis and design.
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