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Abstract: Extensive research demonstrates the importance of user practices in understanding vari-
ations in residential heating demand. Whereas previous studies have investigated variations in
aggregated data, e.g., yearly heating consumption, the recent deployment of smart heat meters en-
ables the analysis of households’ energy use with a higher temporal resolution. Such analysis might
provide knowledge crucial for managing peak demand in district heating systems with decentralized
production units and increased shares of intermittent energy sources, such as wind and solar. This
study exploits smart meter heating consumption data from a district heating network combined
with socio-economic information for 803 Danish households. To perform this study, a multiple
regression analysis was employed to understand the correlations between heat consumption and
socio-economical characteristics. Furthermore, this study analyzed the various households’ daily
profiles to quantify the differences between the groups. During an average day, the higher-income
households consume more energy, especially during the evening peak (17:00–20:00). Blue-collar and
unemployed households use less during the morning peak (5:00–9:00). Despite minor differences,
household groups have similar temporal patterns that follow institutional rhythms, like working
hours. We therefore suggest that attempts to control the timing of heating demand do not rely on
individual households’ ability to time-shift energy practices, but instead address the embeddedness
in stable socio-temporal structures.

Keywords: peak energy usage; energy demand; energy flexibility; district heating; occupant behavior;
energy practices; smart heat meters

1. Introduction

The building sector is responsible for nearly 45% of global CO2 emissions, and the
energy used for domestic hot water (DHW) production and the heating of spaces con-
stitutes the largest share of these emissions [1]. Individual heat pumps and collective
heating systems, also known as district heating (DH) systems, are sustainable, cost- and
energy-effective methods for supplying heat to buildings, especially in densely populated
areas [2]. However, the foundation of the decarbonization process of electrical grids and
DH systems is the growing use of intermittent renewable energy (RE), such as solar energy
and wind [3,4]. Increasing the share of RE challenges the operation of energy systems and
requires greater insight into fluctuations in production as well as demand. Where energy
production previously tended to follow energy demand [5,6], for example, by activating
fossil-fuel boilers during peak-load periods, the demand side now needs to offer more
temporal flexibility to match the variability in RE production [7]. This new approach to
controlling and operating energy systems calls for in-depth insight into the patterns and
mechanisms of energy demand. Demand response tools such as price incentives [8] and
energy scheduling [9,10] depend on an understanding of the energy practices of users in
order to reduce uncertainties as well as align comfort expectations and demand patterns.
Knowing how energy peaks are constituted, and which occupant practices contribute
the most to creating peaks, becomes increasingly important for energy system operators
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seeking to balance energy supply and demand [11–13]. As the building envelope becomes
more energy efficient (a result of stricter requirements in national building regulations),
the share of DHW in total household energy demand is increasing [14–16]. Furthermore,
the timing of DHW usage can cause significant peak demand at very specific periods,
especially in the morning or in the evening when households use a significant quantity
of hot water for baths and showers [17,18]. This may impair the stability and reliability
of energy grids. The metered heat data reflect practices related to space heating, such
as heating and comfort practices [19,20], as well as DHW usage, such as showering and
personal hygiene [18], where the shower and kitchen taps are found to constitute around
90% of the total DHW usage [21]. Thus, the data result from a complex interaction between
occupants, building physics, and heating systems, particularly the components responsible
for the indoor temperature adjustment and the use of DHW (see Figure 1).

Energies 2022, 15, 9505  2  of  23 
 

 

and demand patterns. Knowing how energy peaks are constituted, and which occupant 

practices  contribute  the most  to  creating  peaks,  becomes  increasingly  important  for 

energy system operators seeking to balance energy supply and demand [11–13]. As the 

building  envelope  becomes more  energy  efficient  (a  result  of  stricter  requirements  in 

national building regulations), the share of DHW  in total household energy demand  is 

increasing  [14–16]. Furthermore,  the  timing of DHW usage  can  cause  significant peak 

demand  at  very  specific  periods,  especially  in  the morning  or  in  the  evening when 

households use a significant quantity of hot water for baths and showers [17,18]. This may 

impair the stability and reliability of energy grids. The metered heat data reflect practices 

related to space heating, such as heating and comfort practices [19,20], as well as DHW 

usage, such as showering and personal hygiene [18], where the shower and kitchen taps 

are found  to constitute around 90% of  the  total DHW usage  [21]. Thus,  the data result 

from a complex  interaction between occupants, building physics, and heating systems, 

particularly the components responsible for the indoor temperature adjustment and the 

use of DHW (see Figure 1). 

 

Figure 1. Conceptual representation of interactions between various factors influencing residential 

heat demand. One should note that the share of DHW and space heating in the total building heat 

demand varies significantly from buildings to buildings, depending on the occupants’ habits and 

the energy performance of the building envelope [14,16,21]. 

Recent studies estimate that explanations for variation in residential heating demand 

can  be  found  more  or  less  equally  in  buildings  and  occupants  [16,22].  Household 

characteristics,  such  as  income,  demographics,  and  family  composition,  are  found  to 

explain some of the energy use variations related to occupants [23–29]. The deployment 

of smart meters and the collection of hourly energy use data provide a unique opportunity 

to gain a deeper understanding of energy consumption dynamics during the day. Several 

studies have shown the potential of such high‐temporal‐resolution energy consumption 

data for better understanding temporal patterns in energy demand. For example, various 

clustering techniques have been applied to identify typical groups of load patterns [30–

35] and  to  investigate heterogeneity regarding building and occupant characteristics  in 

daily  load  patterns  [17,36–39]. An  effort was  also made  to make  the  smart  heat  data 

accessible to the research environment [40] and thereby foster an interest in this dynamic 

Figure 1. Conceptual representation of interactions between various factors influencing residential
heat demand. One should note that the share of DHW and space heating in the total building heat
demand varies significantly from buildings to buildings, depending on the occupants’ habits and the
energy performance of the building envelope [14,16,21].

Recent studies estimate that explanations for variation in residential heating demand
can be found more or less equally in buildings and occupants [16,22]. Household char-
acteristics, such as income, demographics, and family composition, are found to explain
some of the energy use variations related to occupants [23–29]. The deployment of smart
meters and the collection of hourly energy use data provide a unique opportunity to gain a
deeper understanding of energy consumption dynamics during the day. Several studies
have shown the potential of such high-temporal-resolution energy consumption data for
better understanding temporal patterns in energy demand. For example, various clustering
techniques have been applied to identify typical groups of load patterns [30–35] and to
investigate heterogeneity regarding building and occupant characteristics in daily load
patterns [17,36–39]. An effort was also made to make the smart heat data accessible to the
research environment [40] and thereby foster an interest in this dynamic heat data, which
from 2027 will be available for all buildings connected to DH networks [41]. However, to
the authors’ knowledge, no previous studies have investigated daily residential heating
consumption together with socio-economic characteristics. This paper taps into the po-
tential of the hourly smart heat meter data correlated with the socio-economic data of the
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households, delivering an in-depth understanding of how heat consumption is shaped by
household characteristics.

Novelty and Contribution of the Present Study

This paper contributes in the following three ways:
Development of the unique hourly-based dataset combining the household’s dynamic

energy use for heating (readings from smart heat meters) with data from administrative
registers, including building characteristics and socio-economic characteristics of the house-
hold occupants, such as occupation (blue- and white-collar, pensioner, unemployed); age
of the youngest child (no child, pre-school child (0 to 6 years), young child (7 to 12 years),
teenager (13 to 19 years)); age of the oldest adult (18 to 40 years, 41 to 50 years, 51 to
60 years, 61 to 70 years, 71 years or older); household income (DKK <300,000, DKK 300,000
to 399,999, DKK 400,000 to DKK 499,999 500,000 to 599,999, DKK 600,000 to 699,999, DKK
<700,000).

Application of a novel methodological approach to investigate the correlation of hourly
and daily variations in residential heating use for space heating and DHW with the novel
dataset (including smart heat meters readings and detailed information on household and
building characteristics from administrative registers) for each month of the Danish heating
season (i.e., from October to March).

Delivery of new knowledge on what contributes to domestic heating peaks and to
what degree peaks can be explained by household characteristics, specifically the four
features of occupation, household composition, age, and income.

This study builds on the assumption that household categories related to, for example,
occupation and income, reflect variations in household energy practices. This assumption is
supported by previous studies on the temporality of energy practices [42,43], which describe
social-temporal rhythms of showering [18], space heating [44], and family practices [45].

The paper is structured as follows: Section 2 presents a review of relevant studies
previously conducted on the topic. Section 3 continues with a description of the dataset
and methodology used. Section 4 presents the results, with four subsections dedicated to
the socio-economic parameters and a final subsection focusing on morning and evening
peaks. Finally, the results are discussed and related to future policy and research.

2. Background

To what extent variations in residential heating are explained by building characteris-
tics versus occupants’ behavior is a well-established discussion in energy research [19,46]. A
recent study replicating the method of a former study suggests that occupants and buildings
are equally important [16,47]. Other studies support the importance of occupant behavior
and practices in residential heating demand [22,25,27,48–50]. This is especially useful in
attempts to explain the discrepancy between predicted and actual energy use [51–53]. Al-
though the division between occupants and buildings appears simplified, it makes one
point clear: what occupants do and how they interact with the built environment in every-
day household practices are crucial for understanding household energy consumption
patterns [25,46].

Numerous studies have sought to understand how occupant characteristics and their
variations affect the amount of energy used for heating in residential buildings [54]. Several stud-
ies show how energy consumption relates to activities such as opening windows or regulating
thermostats [55–58], and how residential heating consumption is correlated with socio-economic
characteristics, such as income, education, and occupation [23,25,27–29,59], as well as with
household characteristics, such as age, children, and gender [24,60]. The importance of house-
hold characteristics in combination with contextual factors, such as the impact of energy
prices, price subsidies, and weather, is also well-established empirically [61–66]. Analysis
of a national survey conducted among English homes also suggests variation in the timing
of heating among households [67].
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Where the studies mentioned above rely primarily on quantitative methods, there
is a rich social science literature applying qualitative methods to describe how social
conventions of thermal comfort shape heating practices in everyday life [19,20,67–73], or
what could be referred to as home comfort [20,74]. It is also in line with these studies that
the existing primary knowledge on the link between (temporality of) everyday practices
and (timing of) energy consumption is found, for example, related to showering and
DHW use [18,75], laundry routines, and energy use [76–79] or smart home control [69]. In
addition, a range of studies directly addresses the relationship between everyday energy
practices and peak demand [12], for example, by referring to ‘family peak periods’ [45]
or flexibility of everyday activities [80,81]. Together, these studies suggest that temporal
patterns of energy demand reflect what could be referred to as socio-temporal rhythms [42],
which are closely linked to societal or institutional rhythms [11,82].

This paper builds on these qualitative studies’ understanding of energy consump-
tion as reflective of energy practices and combines this understanding with quantitative
measures of timing and intensity of energy demand.

With smart meter data, it is possible to get closer to the actual actions of the oc-
cupants, for example, their daily energy patterns. Several studies have used such high
temporal-resolution data, primarily for studying electricity demand [35,37,83,84] and even
in combination with time-use data [85]. Recent studies also analyze hourly data on heating
consumption using smart meter registrations [31,86,87]. One study uses smart meter data
from district heating systems to investigate the correlation between temporal clusters and
household characteristics (e.g., the presence of multiple adults, teenagers, and children)
and indicates fairly constant load profiles across the different groups [38]. In combination,
these studies underline the usefulness of exploiting high-resolution data to investigate
temporal patterns in energy demand.

To gain further knowledge on which types of households contribute the most to
heating demand peaks, we use detailed information on households to identify groups
according to occupation, family composition, and income. Moreover, we focus directly on
daily load profiles and peak demand.

3. Data and Methods

This paper consists of (1) descriptive analysis of hourly data, where average hourly
heating consumption is used to create daily profiles for various household types, and
(2) multivariable analysis of morning and evening peak heating consumption, where
correlations in use during the two peak periods and household types were modeled using
regression techniques. These two steps were intended to exploit the available data and
communicate the patterns in the best way according to the aim of the study.

The energy monitoring data used in this study have been collected for previous
research projects [30,31]. The data consisted of information on heat usage for 1665 buildings
connected to the DH network in a small town in the northern region of Denmark. The
data were provided by the DH utility company. All installed smart meters gathered the
cumulative heat (combined space heating and domestic hot water) usage. Measurements
were recorded at an hourly rate. The recording period was from 00:00—5 November 2018 to
00:00—7 October 2019. The months from 1 October 2018 to 1 March 2019, which constitute
the Danish heating season, were selected for this study. To focus on everyday patterns in
energy consumption, weekends and Danish holidays were removed from the data (see also
Figure 3 in Section 4).

The smart heat data were combined with data on household characteristics from
Danish administrative registers provided by Statistics Denmark (Description (https://www.
dst.dk/en/TilSalg/Forskningsservice (accessed on 1 November 2022)) and overview (https:
//econ.au.dk/the-national-centre-for-register-based-research/danish-registers (accessed
on 1 November 2022)). Merging these datasets was possible using address codes, which
were anonymized by Statistics Denmark on a secure server to which the authors have
access. This enables statistical analysis of micro-level data on a range of personal and

https://www.dst.dk/en/TilSalg/Forskningsservice
https://www.dst.dk/en/TilSalg/Forskningsservice
https://econ.au.dk/the-national-centre-for-register-based-research/danish-registers
https://econ.au.dk/the-national-centre-for-register-based-research/danish-registers
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household information, for example, from the Civil Registration Register (CPR) [88] and
the Building and Housing Register (BBR) [89], which are provided in an anonymized form
under a range of restrictions for the researchers [90,91].

After merging the different datasets and selecting only households living in single-
family dwellings, the final dataset comprised 803 units. Figure 2 is a flow chart illustrating
the data structure and the analysis process with the different data resolution levels. The
daily profiles (Sections 4.1–4.4) were based on data from 803 households (n) with 2497 time
points (T) each, which resulted in a total of 2,005,091 observations (N). The models on peak
energy demand (Section 4.5) were based on 803 households (n) with an average of 103.8 time
points (T), which resulted in a total of 83,338 observations (N). Finally, the comparison
of the sample of 803 households with the full Danish population of 1,140,419 households
was based on information for the year 2019 (the full population used for comparison was
restricted to single-family homes and townhouses and other minor corrections similar to
the sample).
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The household variables were based on data from the Danish administrative registers,
which contain rich information about household occupants, e.g., income, occupation, and
family composition. The household variables were divided into three groups.

First, the households were categorized according to occupation. The variables are
presented in Table 1. Based on the socio-economic classification in the Danish registers
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(SOCIO13) (https://www.dst.dk/en/Statistik/dokumentation/nomenklaturer/socio (ac-
cessed on 1 November 2022)) and the classification of professions or jobs (DISCO-08
(https://www.dst.dk/en/Statistik/dokumentation/nomenklaturer/disco (accessed on
1 November 2022)), which refers to the International Standard Classification of Occupations
(ISCO-08) [92], the occupation categories were intended to indicate household variations in
morning and evening routines, for example by indicating showering practices and other
practices related to space heating and DHW (see, for example, [18,75] on the temporality of
DHW demand practices).

Table 1. Presentation and description of occupational variables with share (%) of the total sample.
Each household can have several characteristics, so the percentages do not sum to 100%.

Variable Name Description Examples Reference 1 Sample (%) Population (%)

Blue-collar
(physical job)

At least one person in the
household has a job

requiring physical work or
other sorts of manual or

routine labor.

Working with
machinery, maintenance,

construction, crafts,
transport,

manufacturing,
agriculture, or fishery.

DISCO major
groups: 6, 7, 8, 9. 19.7% 24.3%

White-collar
(office job)

At least one member of
the household has a job in
clerical or another type of

office work.

Working with
administrative tasks,
specialized services,

engineering, and
technicians.

DISCO major
groups: 1, 2, 3, 4. 66.6% 56.1%

Pensioner
At least one member of
the household receives

retirement benefits.

Includes senior pension
and early retirement

benefits.

Socio-Economic
Classification

(SOCIO13) 2: 321,
322, 323.

32.3% 38.7%

Unemployed
At least one member of
the household receives

unemployment benefits.

Includes unemployed
receiving sick pay or

social security.

Socio-Economic
Classification

(SOCIO13): 210,
220, 330.

4.6% 7.2%

Number of households 803 1,140,419
1 See https://en.wikipedia.org/wiki/International_Standard_Classification_of_Occupations (accessed on 1
November 2022) for an overview of ISCO major groups. 2 https://www.dst.dk/en/Statistik/dokumentation/
nomenklaturer/socio (accessed on 1 November 2022).

Second, households were categorized according to family composition, i.e., age and
presence of children in the household. The intention was to reflect variations in everyday
practices and temporal rhythms related, e.g., related to ‘family peaks’ [45] and ‘busy spots’
during the day [42,43]. Therefore, the categories were rather detailed, with four types of
households according to the presence of children, and five categories of age based on the
oldest member of the household. Table 2 presents these categories with descriptions.

Third, households were categorized according to income. The variable consists of six
groups representing different degrees of household financial resources (see Table 3). It was
constructed by summing the individual annual disposable incomes of each adult household
member. Disposable income refers to income after taxes for each adult household member.

https://www.dst.dk/en/Statistik/dokumentation/nomenklaturer/socio
https://www.dst.dk/en/Statistik/dokumentation/nomenklaturer/disco
https://en.wikipedia.org/wiki/International_Standard_Classification_of_Occupations
https://www.dst.dk/en/Statistik/dokumentation/nomenklaturer/socio
https://www.dst.dk/en/Statistik/dokumentation/nomenklaturer/socio


Energies 2022, 15, 9505 7 of 23

Table 2. Presentation and description of household composition variables with share (%) of the total
sample. Each household can have several characteristics, so the percentages do not sum to 100%.

Variable Name Description Categories Sample (%) Population (%)

Child
Child in the household,

based on age of the
youngest child

1 No child (Ref.) 54.6 66.7
2 Pre-school child (0 to 6 years) 20.9 10.9
3 Young child (7 to 12 years) 14.1 10.6
4 Teenager (13 to 19 years) 10.5 11.8

Age Age of oldest adult in
the household

1 18 to 40 years (Ref.) 20.4 13.0
2 41 to 50 years 23.4 19.6
3 51 to 60 years 18.3 22.2
4 61 to 70 years 15.3 19.4
5 71 years or older 22.5 25.8

Number of households 803 1,140,419

Table 3. Presentation and description of household composition variables with share (%) of the total
sample. Each household can have several characteristics, so the percentages do not sum to 100%.

Variable
Name Description Categories Sample (%) Population (%)

Income

Six groups categorized
by total annual

disposable household
income (income after

taxes).

1 Less than DKK 300,000 (app. EUR 40,000) 11.5 21.7
2 DKK 300,000 to 399,999 (app. EUR 54,000) 15.1 14.6
3 DKK 400,000 to 499,999 (app. EUR 67,000) 14.1 13.5
4 DKK 500,000 to 599,999 (app. EUR 81,000) 19.3 13.3
5 DKK 600,000 to 699,999 (app. EUR 94,000) 16.2 11.5
6 DKK 700,000 or higher 23.9 25.4

Number of households 803 1,140,419

Finally, the physical attributes of houses, including construction year and house size,
were used to control for the correlations with the household variables in the models in
Section 4.5. The full list can be found in Appendix A. Previous studies have used similar
control variables based on Danish registers [25,37,93].

The last part of the analysis (Section 4.5) aimed to model household variation in the
morning (5:00–9:00) and evening (17:00–20:00) peak heating demand. The models were
based on time-series data, where each household had multiple observations according to
the number of hours. These multiple observations are assumed to cluster and correlate
within households (units) over time, thereby being strongly interdependent and having
serially correlated errors [94]. To account for this serial correlation, a panel regression model
was applied, and as we were in the variation between households, we used the ‘between
estimator’, which refers to an ordinary least square estimator applied to averaged estimates
over time within households [95] (we used the Stata function xtreg with the specification of
between effects (be)).

The data enforced some limitations on the analysis. For example, the sample included
only households with district heating. Therefore, some bias related to the correlation
between the type of primary energy source used for heating and socio-economic groups
might exist. Around half of the Danish households living in single-family homes or town-
houses are supplied with DH (Statistics Denmark, table BOL105), and compared with the
full Danish population, Tables 1–3 show that the sample appears relatively representative
according to occupation, household composition, and income.

4. Results

We start the analysis by looking at how heating load patterns vary according to various
aspects of temporal rhythms. Figure 3 displays daily energy loads based on average values
for each hour across different categories. Thus, it highlights important differences between
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weekends versus weekdays (Monday to Friday), working days versus holidays (Danish
school holidays), and heating season (October to April) versus all-year data.
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As seen in Figure 3, the morning peak occurs much later on the weekend than on
workdays, and the same pattern is found for holidays. Moreover, the general heating load
is lower outside the heating season.

We chose to focus on the most regular heating patterns. Therefore, we limited the rest
of the analysis to the periods when it is expected that the household practices are the most
regular, which we assume to be on working weekdays during the heating season. This
means we choose to analyze weekdays (Monday to Friday) in the heating season (October
to April) exclusive of Danish school holidays.

The rest of the result section is divided into five parts. Sections 4.1–4.4 use data on
an hourly resolution to describe variations in daily heat profiles across various house-
hold groups. Tables with selected data used for the figures can be found in Appendix B.
Section 4.5 presents the results of panel models on average hourly consumption during
morning and evening peaks to estimate differences in heating use.

4.1. Occupation

The first household groups that we compare relate to occupation. Figure 4 shows
that households with white-collar workers tend to have a higher morning peak, whereas
households with pensioners have the latest morning peak and, in general, the flattest
daily profile. Households with unemployment almost have the same morning peak as
households with blue-collar workers, but the profile during the day is slightly higher. There
seems to be a negligible difference during the evening peak.
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consumption. N = 2,005,091; n = 803.

4.2. Age

The second household category we compare is based on the age of the household. In
Figure 5, we compare the daily heat profiles according to the categorizations of the oldest
occupant represented in the household. The comparison shows that the group aged 41 to
50 years has the most substantial morning peak with 4.5 kWh at 7 h. The younger group
(aged 18 to 40) and the slightly older group (aged 51 to 60) follow with an average peak
demand of just below 4 kWh. As with the pensioner group in Figure 4, the oldest group
(aged 71 or older) has the latest morning peak and highest load during the day, whereas
the group aged 61 to 70 has the flattest and generally lowest load profile.

4.3. Children

The third occupant group we compare reflects the presence of children in the house-
hold. Here, we compare households based on the youngest child in the household. Figure 6
shows that households with no children seem to have a flatter daily profile than other
households. In particular, the morning peak appears much lower, at 3.4, compared to a peak
of 4.6 for the group with young children (aged 7 to 12). The morning peaks of households
with teenagers (aged 13 to 19) and households with pre-school children (aged 0 to 6) as
the youngest in the household are similar. However, the evening peak for households
with teenagers appears slightly different, with a slightly lower peak at 3.1 kWh at 20 h,
compared to 3.3 kWh at 19 h for households with younger children.
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4.4. Income

The fourth and final comparison uses five total household disposable income groups
to identify differences in heating use profiles related to financial consumption capacity.
Figure 7 clearly shows that the higher-income groups tend to consume more during the
morning and evening peaks. The highest income groups (above DKK 500k) have morning
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peaks of around 4 kWh at 7 h and evening peaks of around 3.3 at 19 h. The lowest income
groups (less than DKK 400k) tend to have flatter daily profiles with smaller and somewhat
later morning peaks.
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4.5. Modeling Variation Morning and Evening Peak

In the presentation of the differences in load profiles in Sections 4.1–4.5, the comparison
of one variable does not take a variation on another characteristic into account. In other
words, the average load profiles do not control for other socio-economic or building
variables. Therefore, profiles of lower-income households resemble those of unemployed
and pensioners, which indicates that these categories contain some of the same households.
To distinguish the importance of each of the characteristics, we employ a multiple regression
analysis, which includes multiple variables at the same time and, in addition, controls for
building characteristics.

Table 4 presents the estimates of the regression model. It shows that before controlling
for building variables, blue-collar households tended to consume less during the morning
peak (5:00–9:00), whereas households tended to consume more as their income was higher
(M1). When controlling for building characteristics (M2), the blue-collar estimate was no
longer significant, but the correlation with income persisted, although the impact became
less significant. Instead, the unemployed households now seemed to consume less during
the morning peak at a lower significance level.
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Table 4. Between-effect panel regression model for morning peak (5:00–9:00). Complete table found
in Appendix C. *** p < 0.01, ** p < 0.05, * p < 0.1; standard error in parentheses.

M1 M2

Blue-collar (1 = Yes) −0.191 ** (0.081) −0.092 (0.064)

White-collar (1 = Yes) −0.075 (0.111) 0.020 (0.088)

Pensioner (1 = Yes) −0.132 (0.149) −0.081 (0.119)

Unemployed (1 = Yes) −0.172 (0.144) −0.204 * (0.116)

Child (youngest)

No child Ref. Ref.

Pre-school child (0–6 years) −0.036 (0.124) −0.070 (0.098)

Young child (7–12 years) 0.096 (0.120) −0.037 (0.095)

Teenager (13–19 years) −0.161 (0.118) −0.108 (0.094)

Age (oldest)

18 to 40 years Ref. Ref.

41 to 50 years 0.105 (0.110) 0.118 (0.088)

51 to 60 years −0.050 (0.130) −0.056 (0.104)

61 to 70 years 0.105 (0.157) 0.068 (0.126)

71 years or older 0.349 * (0.185) 0.116 (0.149)

Total income

Less than DKK 300,000 Ref. Ref.

DKK 300,000 to 399,999 −0.014 (0.115) −0.036 (0.093)

DKK 400,000 to 499,999 0.339 *** (0.123) 0.144 (0.101)

DKK 500,000 to 599,999 0.624 *** (0.134) 0.347 *** (0.110)

DKK 600,000 to 699,999 0.599 *** (0.142) 0.274 ** (0.118)

DKK 700,000 or higher 0.741 *** (0.137) 0.395 *** (0.117)

Building control variables included Yes

Constant 2.924 *** (0.170) 3.382 *** (0.186)

R2 (between variance) 0.10 0.45

N (observations) 83,338 83,338

n (households) 803 803

T (avg. observations per household) 103.8 103.8

Table 5 presents the correlations between household characteristics and heating con-
sumption during the evening peak (17:00–20:00). Before controlling for building charac-
teristics (E1), the oldest age group (71 years or older) seemed to consume more, and the
higher-income households again also tended to consume more. When taking variation
due to the building into account (E2), only the correlation with the highest income groups
(above DKK 500,000) remained significant and positive.
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Table 5. Between-effect panel regression model for evening peak (17:00–20:00). Complete table found
in Appendix D. *** p < 0.01, ** p < 0.05, * p < 0.1; standard error in parentheses.

E1 E2

Blue-collar (1 = Yes) −0.063 (0.085) 0.018 (0.062)

White-collar (1 = Yes) −0.089 (0.118) 0.017 (0.084)

Pensioner (1 = Yes) −0.119 (0.158) −0.022 (0.114)

Unemployed (1 = Yes) −0.153 (0.153) −0.102 (0.111)

Child (youngest)

No child Ref. Ref.

Pre-school child (0–6 years) 0.049 (0.131) 0.020 (0.094)

Young child (7–12 years) 0.058 (0.127) −0.084 (0.092)

Teenager (13–19 years) −0.141 (0.125) −0.095 (0.090)

Age (oldest)

18 to 40 years Ref. Ref.

41 to 50 years 0.106 (0.116) 0.157 * (0.084)

51 to 60 years 0.155 (0.138) 0.094 (0.100)

61 to 70 years 0.235 (0.167) 0.094 (0.121)

71 years or older 0.499 ** (0.196) 0.185 (0.143)

Total income

Less than DKK 300,000 Ref. Ref.

DKK 300,000 to 399,999 0.009 (0.122) 0.008 (0.089)

DKK 400,000 to 499,999 0.309 ** (0.131) 0.132 (0.096)

DKK 500,000 to 599,999 0.493 *** (0.142) 0.242 ** (0.106)

DKK 600,000 to 699,999 0.455 *** (0.151) 0.228 ** (0.114)

DKK 700,000 or higher 0.417 *** (0.145) 0.235 ** (0.113)

Building control variables included Yes

Constant 2.600 *** (0.180) 3.031* ** (0.179)

R2 (between variance) 0.04 0.52

N (observations) 83,382 83,382

n (households) 803 803

T (avg. observations per household) 103.8 103.8

In both Tables 4 and 5, the building characteristics explained most of the variation in
heating consumption. For the morning peak, the explained variation between households
increased from 0.10 to 0.43 after adding building variables, and for the evening peak,
the explained variation increased from 0.04 to 0.52. Because we chose to use detailed
occupational categories in this analysis, we also had to accept a few cases of multicollinearity.
This means that the variance inflation factor (VIF) was above five for white-collar and
unemployed households, and the highest age group in both the morning and evening peak
models, as well as the highest income group, were slightly higher than five in the morning
peak model.

5. Discussion

This study investigated the types of households that contribute the most to morning
and evening peaks of space heating and DHW usage. By combining smart meter data on
hourly heat consumption for 803 households with household information from admin-
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istrative registers, the analyses indicate that temporal variations in heating demand are
stable across different types of households. This is in line with previous studies [38], and
it underlines the importance of socio-temporal rhythms, for example, related to working
hours and school hours [11,42,82], for structuring the timing of energy demand.

The results also indicate important variations among household groups. For exam-
ple, white-collar (office jobs) households tend to have higher morning peaks (5:00–9:00)
than blue-collar (physical labor) households and unemployed households, and pensioner
households tend to have later morning peaks and flatter daily heating load profiles. These
tendencies might be explained by variations in morning routines, where for example, the
timing of showering routines relates to the type of work and the need for showering in the
morning (before office jobs) or in the evening (after physically active jobs) [18].

Households with children have strong morning peaks, but households with young
children (7–12 years) seem to have the highest morning peak, compared to households
with teenagers (13–19 years) or pre-school children (0–6 years). This might be explained by
strong institutional rhythms, especially for early-school children, and thereby reflecting
socio-temporal rhythms [11,42,82] or what could be referred to as family peak periods [45].

However, when controlling for building characteristics, these correlations are insignifi-
cant, and only the positive correlation with higher income remains significant. Additionally,
unemployed households now tend to consume less during morning peaks, although at a
lower significance level. This suggests that although variations in daily rhythms across
occupation and family composition exist, these seem less important than the factors of
household income and building characteristics.

The analysis of evening peak demand for heating supports this. In general, the evening
heating demand contained less variation than the morning (i.e., the timing and size of the
peak are remarkably stable across the groups). It should be noted that for all household
groups, the evening peak occurs at 19 o’clock. The evening meal, therefore, seems to occur
around the same time in the 803 households analyzed. Still, higher-income groups seem
to contribute the most to the evening peak, also when controlling for other household
characteristics and building characteristics. Again, this relates to family peak periods [45].

Where previous studies suggest that socio-economic household variation related, for
example, to occupation and family composition, correlates with the amount of energy
used for heating [23,25,59], our results question whether mechanisms explaining levels of
(aggregated) heating consumption also apply to the timing of (hourly) heating consumption,
with the exception of the correlation with household income.

6. Conclusions, Policy, and Research Implications

As the percentage of RE in energy supply increases, energy systems, such as DH
systems, require a greater understanding of household energy demand dynamics. In
particular, the timing of household energy demand seems important, and this study used
high-resolution consumption data to contribute to providing new evidence on the timing
of energy demand across different household types.

The results of this study support well-described theories suggesting that the timing of
household energy demand (i.e., at which time household activities are performed) reflects
societal rhythms, for example, school hours, opening hours, and working hours. This
study suggests a strong convergence between societal rhythms and daily load patterns of
diverse types of households. For example, the different characteristics of households did
not affect daily patterns of heat demand very much. Based on this, we suggest focusing on
collective energy practices rather than individual customers. This means focusing on what
people generally do in their homes (and when) rather than relying on specific assumptions
about consumers and their behavior. The timing of energy demand practices seems largely
determined by external factors that the household cannot change. These factors could also
be referred to as collective norms of energy practices, for example, when morning and
evening peaks fit regular school and work hours. In other words, there might be little room
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for occupants to change their daily rhythms deliberately and thereby time-shift heating
demand.

New evidence on how peak heat demand reflects occupant practices might be valuable
for utility companies’ energy demand management. In this case, income level and job type
reflect variations in user practices, which for example, influence energy demand patterns
and choices made by the households.

A recent study comparing temporal aspects of everyday practices in several European
countries during the COVID-19 lockdown suggests strong similarities across cultural
contexts [96]. Like this study, we suggest that efforts to promote energy demand flexibility
should focus on the intersection of everyday practices, institutional time structures, and
societal temporal rhythms rather than individual behaviors and occupants’ ability to change
the timing of their everyday practices.

This study is based on one case in the northern part of Jutland in Denmark. This
approach needs to be replicated in other contexts to collect better evidence on the relation
between occupants (characteristics) and peak heat demand (timing). Furthermore, the
effect of opening hours or office hours could be tested by comparing cases where these
variables already differ. Further research is needed to better understand the mechanisms
suggested in this study.
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Appendix A

Variable Name Description Categories Sample (%) Population (%)

Construction year

Five group
categorization of year of

construction, which
partly reflect energy

efficiency [93,97]

1 Built before 1961 (Ref.) 6.6 38.3
2 Built 1961 to 1972 35.1 24.6
3 Built 1973 to 1978 33.6 13.9
4 Built 1979 to 2006 12.2 17.5
5 Built after 2006 12.5 5.8

Area
Three groups of house
sizes are based on the
residential area (m2).

1 Area less than 130 m2 24.4 39.2
2 Area 130 m2 to 160 m2 (Ref.) 44.0 30.7
3 Area more than 160 m2 31.6 30.1

Rooms
Categorization of the

number of rooms.

1 Fewer than 5 rooms 38.4 45.9
2 5 rooms (Ref.) 40.5 27.9
3 More than 5 rooms 21.2 26.2

Townhouse The building is a townhouse (1 = Yes), and not a single-family home 8.1 13.4

Multiple
bathrooms

The building unit has more than one bathroom installed (1 = Yes) 34.3 31.6

Multiple toilets The building unit has more than one toilet installed (1 = Yes) 68.5 55.9

Renovation
The house has a

registered renovation or
extension.

1
No registered

renovation/extension (Ref.)
65.8 64.2

2 Until 1978 10.5 12.5
3 After 1978 23.8 23.3

Attic floor The building unit has a registered attic floor area (1 = Yes). 11.8 36.5

Basement The building unit has a registered basement area (1 = Yes). 9.2 28.3

Number of households 803 1,140,419

Appendix B

Blue-Collar White-Collar Pensioner Unemployed

5–9

Peak (kW) 3.7 4.1 3.3 3.5

Energy (kWh) 13.3 14.4 12.4 13.2

% of daily use 18.6 19.5 17.1 18.0

17–20

Peak (kW) 3.2 3.2 3.1 3.1

Energy (kWh) 9.2 9.3 9.1 9.1

% of daily use 12.9 12.6 12.4 12.5

18–40 y 41–50 y 51–60 y 61–70 y 71 y+

5–9

Peak (kW) 3.9 4.5 3.8 3.4 3.4

Energy (kWh) 13.8 15.3 13.6 12.7 12.7

% of daily use 19.3 20.4 18.8 17.9 17.0

17–20

Peak (kW) 3.2 3.3 3.1 3.1 3.2

Energy (kWh) 9.1 9.4 9.2 8.9 9.3

% of daily use 12.7 12.6 12.7 12.5 12.5
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No Child
Pre-School Child

(0–6 y)
Young Child

(7–12 y)
Teenager
(13–19 y)

5–9

Peak (kW) 3.4 4.0 4.6 4.2

Energy (kWh) 13.0 14.2 15.6 13.9

% of daily use 17.8 19.6 20.3 19.5

17–20

Peak (kW) 3.1 3.3 3.1 3.1

Energy (kWh) 9.1 9.4 9.6 8.9

% of daily use 12.5 12.9 12.5 12.5

Less than
DKK 300K

DKK 300K to
DKK 399.999

DKK 400K to
DKK 499.999

DKK 500K to
DKK 599.999

DKK 600K to
DKK 699.999

DKK 700.000
or higher

5–9

Peak (kW) 3.1 3.1 3.4 4.6 4.0 4.6

Energy
(kWh)

12.0 11.7 13.0 14.0 11.2 15.5

% of daily use 17.1 17.2 17.9 18.8 15.0 20.5

17–20

Peak (kW) 2.9 2.9 3.1 3.1 3.2 3.3

Energy
(kWh)

8.7 8.6 9.2 9.5 9.4 9.5

% of daily use 12.4 12.6 12.6 12.7 12.6 12.5

Appendix C

M1 M2

Blue-collar (1 = Yes) −0.191 ** (0.081) −0.092 (0.064)

White-collar (1 = Yes) −0.075 (0.111) 0.020 (0.088)

Pensioner (1 = Yes) −0.132 (0.149) −0.081 (0.119)

Unemployed (1 = Yes) −0.172 (0.144) −0.204 * (0.116)

Child (youngest)

No child Ref. Ref.

Pre-school child (0–6 years) −0.036 (0.124) −0.070 (0.098)

Young child (7–12 years) 0.096 (0.120) −0.037 (0.095)

Teenager (13–19 years) −0.161 (0.118) −0.108 (0.094)

Age (oldest)

18 to 40 years Ref. Ref.

41 to 50 years 0.105 (0.110) 0.118 (0.088)

51 to 60 years −0.050 (0.130) −0.056 (0.104)

61 to 70 years 0.105 (0.157) 0.068 (0.126)

71 years or older 0.349 * (0.185) 0.116 (0.149)
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Total income

Less than DKK 300,000 Ref. Ref.

DKK 300,000 to 399,999 −0.014 (0.115) −0.036 (0.093)

DKK 400,000 to 499,999 0.339 *** (0.123) 0.144 (0.101)

DKK 500,000 to 599,999 0.624 *** (0.134) 0.347 *** (0.110)

DKK 600,000 to 699,999 0.599 *** (0.142) 0.274 ** (0.118)

DKK 700,000 or higher 0.741 *** (0.137) 0.395 *** (0.117)

Construction year

Before 1961 Ref.

1961 to 1972 −0.223 * (0.117)

1973 to 1978 −0.450 *** (0.120)

1979 to 2006 −0.888 *** (0.132)

After 2006 −1.096 *** (0.148)

Area

Less than 130 m2 −0.243 *** (0.069)

130 m2 to 160 m2 Ref.

More than 160 m2 0.335 *** (0.062)

Rooms

Fewer than 5 0.020 (0.060)

5 (Ref.) Ref.

More than 5 0.216 *** (0.067)

Townhouse (1 = Yes) −0.508 *** (0.100)

More bathrooms (1 = Yes) 0.065 (0.063)

More toilets (1 = Yes) 0.115 * (0.066)

Renovation

No registered renovation Ref.

Until 1978 0.207 ** (0.087)

After 1978 0.062 (0.061)

Attic floor (1 = Yes) −0.199 ** (0.091)

Basement (1 = Yes) 0.463 *** (0.084)

Constant 2.924 *** (0.170) 3.382 *** (0.186)

R2 (between variance) 0.10 0.45

N (observations) 83,338 83,338

n (households) 803 803

T (avg. observations per household) 103.8 103.8

Note Between-effect panel regression model for morning peak (5 h to 9). *** p < 0.01, ** p < 0.05, * p
< 0.1; standard error in parentheses.
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Appendix D

E1 E2

Blue-collar (1 = Yes) −0.063 (0.085) 0.018 (0.062)

White-collar (1 = Yes) −0.089 (0.118) 0.017 (0.084)

Pensioner (1 = Yes) −0.119 (0.158) −0.022 (0.114)

Unemployed (1 = Yes) −0.153 (0.153) −0.102 (0.111)

Child (youngest)

No child Ref. Ref.

Pre-school child (0–6 years) 0.049 (0.131) 0.020 (0.094)

Young child (7–12 years) 0.058 (0.127) −0.084 (0.092)

Teenager (13–19 years) −0.141 (0.125) −0.095 (0.090)

Age (oldest)

18 to 40 years Ref. Ref.

41 to 50 years 0.106 (0.116) 0.157 * (0.084)

51 to 60 years 0.155 (0.138) 0.094 (0.100)

61 to 70 years 0.235 (0.167) 0.094 (0.121)

71 years or older 0.499 ** (0.196) 0.185 (0.143)

Total income

Less than DKK 300,000 Ref. Ref.

DKK 300,000 to 399,999 0.009 (0.122) 0.008 (0.089)

DKK 400,000 to 499,999 0.309 ** (0.131) 0.132 (0.096)

DKK 500,000 to 599,999 0.493 *** (0.142) 0.242 ** (0.106)

DKK 600,000 to 699,999 0.455 *** (0.151) 0.228 ** (0.114)

DKK 700,000 or higher 0.417 *** (0.145) 0.235 ** (0.113)

Construction year

Before 1961 Ref.

1961 to 1972 −0.153 (0.112)

1973 to 1978 −0.391 *** (0.115)

1979 to 2006 −0.875 *** (0.126)

After 2006 −1.609 *** (0.142)

Area

Less than 130 m2 −0.220 *** (0.066)

130 m2 to 160 m2 Ref.

More than 160 m2 0.340 *** (0.060)

Rooms

Fewer than 5 0.052 (0.055)

5 (Ref.) Ref.

More than 5 0.167 *** (0.065)

Townhouse (1 = Yes) −0.575 *** (0.095)

More bathrooms (1 = Yes) 0.054 (0.060)

More toilets (1 = Yes) 0.085 (0.064)
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Renovation

No registered renovation Ref.

Until 1978 0.291 *** (0.083)

After 1978 0.040 (0.059)

Attic floor (1 = Yes) −0.135 (0.087)

Basement (1 = Yes) 0.482 *** (0.080)

Constant 2.600 *** (0.180) 3.031 *** (0.179)

R2 (between variance) 0.04 0.52

N (observations) 83,382 83,382

n (households) 803 803

T (avg. observations per household) 103.8 103.8

Note Between-effect panel regression model for evening peak (17:00–20:00). *** p < 0.01, ** p <
0.05, * p < 0.1; standard error in parentheses.
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