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Abstract: The combination of an offshore wind turbine and a wave energy converter on an integrated
platform is an economical solution for the electrical power demand in coastal countries. Due to the
expensive installation cost, a prediction should be used to investigate whether the location is suitable
for these sites. For this purpose, this research presents the feasibility of installing a combined hybrid
site in the desired coastal location by predicting the net produced power due to the environmental
parameters. For combining these two systems, an optimized array includes ten turbines and ten wave
energy converters. The mathematical equations of the net force on the two introduced systems and
the produced power of the wind turbines are proposed. The turbines’ maximum forces are 4 kN, and
for the wave energy converters are 6 kN, respectively. Furthermore, the comparison is conducted in
order to find the optimum system. The comparison shows that the most effective system of desired
environmental condition is introduced. A number of machine learning and deep learning methods
are used to predict key parameters after collecting the dataset. Moreover, a comparative analysis
is conducted to find a suitable model. The models’ performance has been well studied through
generating the confusion matrix and the receiver operating characteristic (ROC) curve of the hybrid
site. The deep learning model outperformed other models, with an approximate accuracy of 0.96.

Keywords: renewable energy; artificial intelligence; machine learning; comparative analysis; wind
turbine; energy; deep learning; big data; wave energy; wave power; offshore

1. Introduction

In recent years, a significant part of the energy conversion mechanism in renewable
energy systems (RES) has utilized the ocean’s waves energy. Energy harvesting from
the oceans was an efficient and clean way of producing electricity [1]. This relatively
new energy resource can significantly reduce the pressure on fossil fuel power plants
and positively contribute to reducing carbon dioxide emissions and further pollutants [2].
Recently, there has been a great deal of progress in advancing the energy conversion
mechanisms for renewable energy systems (RESs) [3,4]. Hybrid RESs, e.g., wave–wind
combined systems, have also emerged to improve efficiency and performance [5,6]. Rony
and Karmakar investigated the integrated system’s responses to understand the effects
of the wave energy converter (WEC) in the various operating conditions on the wind
turbine under regular and irregular waves. This study presents a suitable array of these
systems in a hybrid RES site [7]. Another research is implemented on the other aspect
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of these kinds of sites. Si et al. studied the dynamic response and output power of
the float wind turbine and wave energy converter. As a result, the optimum array of
these systems and their best control design are introduced [8]. In order to use a specific
area to generate optimum electricity, researchers have found a way to combine RESs that
can simultaneously generate optimized electricity from multiple energy sources. They
found that the ocean environment could cause a significant amount of electricity from
a combination of wind turbines and wave energy converters due to sufficient wind currents
and naturally occurring waves in these environments [9,10]. It has been well studied that
optimal use of offshore wave–wind energy reduces the emitted amount of CO2 into the
atmosphere and contributes to the region’s economic growth and development [11,12].
Today, the simultaneous use of wind and ocean waves can be considered a well-established
practice and essential for developing the new generation of offshore energy farms [13–15].
The wind–wave hybrid system has also been regarded as a sustainable RES [16] for the
optimal use of clean and free energy sources [17] and low-cost production [18,19] with
lower environmental impacts [20,21]. Related to the importance of increasing the demand
rates of these sites, this study contributes to the optimal design and advancement of
a wave–wind system using a data-driven method [7,22]. Consequently, in this proposed
research, hybrid bladeless wind turbines and wave energy converters, the simultaneous
use of wind and wave energy, is considered as the hybrid site of the bladeless wind turbine
and the wave energy converter (HBWTWEC) [23]. Despite the high installation costs of
these sites, the construction procedure can have many benefits for private and nonprivate
investors, such as reducing construction costs through electrical energy transfer, storage
systems, common infrastructure [24], and increasing the amount of produced energy in
the specified area [25,26]. Hence, it is clear that power plants must have specific guidelines
for operation due to the inherent characteristics of the systems and their performance
in the harsh conditions of oceans [27]. For the mentioned reasons, the main factor for
the technological progress of these sites can be referred to as the global development
of numerical simulations and appropriate cost-effective models [28]. These models can
provide appropriate facilities for evaluating these sites according to the installation area.
The recent studies on hybrid RES can be observed in Table 1.

Table 1. Recent studies on hybrid RES sites by combining wave energy converter and wind turbine.

Authors Concept Year Method Description

1 Mohammad Hossein
Jahangir, et al. [29]

Zero-emission
PV/Wind

turbine/Wave energy
converter

2020

A techno-economic and
environmental analysis
for a hybrid renewable

energy system

Feasibility study of wave
energy hybridization with solar,

wind, and storage systems

2 Yu Zhou, et al. [30] Wave energy converter
integrated monopile 2020

Hydrodynamic
investigation of hybrid

renewable energy
systems

The hydrodynamic efficiency of
the OWC device decreases with

the wave nonlinearity

3 Yulin Si, et al. [31]

Semi-submersible
floating wind turbine

and point-absorber
wave energy converter

2021

Power take-off controls
are implemented for

hybrid renewable
energy system

A novel hybrid floating wind
and wave power generation

platform is proposed

4
A.H.

SamithaWeerakoon,
et al. [32]

Vertical augmentation
crossflow turbine 2021

ANSYS-CFX optimized
and evaluated both
experimentally and

computationally.

A novel vertical augmentation
channel, with nozzles on both

sides of the turbine, was
designed, and an optimized

configuration was obtained and
evaluated as a wave

energy converter.
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Among the industrial tools for data-driven modeling, different machine learning (ML)
and deep learning (DL) algorithms, such as various types of artificial neural networks
(ANN), in addition to the Internet of Things (IOT) technologies, are found to be efficient for
modeling and forecasting offering an alternative way to solve complex problems [33–35].
In particular, DL algorithms can be trained with the datasets obtained from numerical
simulations by various computational fluid dynamics (CFD) methods, as well as experi-
mental data from laboratories [36]. Deep learning algorithms have been used to predict
essential parameters and achieve gradual and more accurate performance. Furthermore,
they are considered to be an excellent tool for predicting energy systems whose inputs are
variable in nature. The atmospheric parameters are unstable, which can affect the system’s
output [37–40]. Among the applications of this method in wind energy systems, we can
mention research on rapid and accurate forecasting of wind speed during a day, month, and
even over several years as a climate change model [37,39]. These prediction methods were
also mentioned in analyzing the output power of different wave energy converters. Many
studies have been conducted in this field, which is evidence of how artificial intelligence
can present wave height as a function of wind speed and predict the efficiency of these
converters [41,42]. Similarly, ML-based prediction methods have been used in further
hybrid renewable energy systems, and it is expected that the complex characteristics of the
hybrid sites can be easier predicted and improved. Therefore, this study proposes a novel
concept for a hybrid wind-wave energy converter, where the Searaser is considered for
the WEC sub-system integrated with a novel vortex bladeless turbine. Mousavi et al. [41]
investigated the numerical solution model using experimental data and predict the amount
of production power using the LSTM method. Moreover, Dehghan et al. [42] simulated the
prototype turbine built experimentally in laboratory conditions and estimated its produc-
tion power. The research gap is the urge for more evaluations in the real case scenario of a
hybrid wind-wave energy in a marine power plant. This study comprehensively compares
the efficiency of two energy systems with a specific input, which is the experimental data
used to tackle the first part of the development of the hybrid system. Furthermore, two
systems are integrated into an offshore power plant for a specific location. The data-driven
methods are used to predict the power generation of the two cases, which have a vital role
in simultaneously harvesting energy from wind and wave and alleviating investment risk.

Due to the remote coastal location of the experimental test and climate change model-
ing, it is essential to use wind turbines and wave energy converters due to the potential
renewable energy resources of these regions. Alternative renewable energy systems, e.g.,
solar cannot perform efficiently in the region. This study brings novelty by investigating
the combination of a special kind of wind turbine and wave energy converter, namely
vortex bladeless wind turbine (VBT) and Searaser. Numerical simulation was selected as
an input in the case of a prerequisite for providing data, beginning with selecting a location
where the experimental data were collected. For this purpose, the results and experimental
test values are used as the ML method’s input. The main aim is to utilize different ML
methods to accurately predict desired parameters by the most common RES. They are
recurrent neural networks (RNNs), long short-term memory (LSTM), random forest, and
support vector machine (SVM), which were applied to the same input. Hence, the training
procedure of these algorithms requires appropriate data. Moreover, their forecasting per-
formance is compared between these different algorithms. In addition, the output power
for each system in a hybrid power plant is calculated and compared, and finally, the output
power of the hybrid site is calculated, respectively.

2. Materials and Methods

In this section, the introduced hybrid site includes the array of two popular RESs:
a wind turbine and wave energy converter. Due to the importance of solving real-world
problems, the dataset is collected from the experimental test. Then, by utilizing the input
dataset from environmental conditions, different ANN algorithms are developed to predict
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the net produced power of the hybrid site. Figure 1 presents the different steps of this
study.
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Figure 1. Overview of the proposed study.

2.1. HBWTWEC Description

The hybrid site includes a combination of offshore wind and wave energy systems.
The proposed wind turbine of this research is a vortex bladeless wind turbine (VBT), and
the wave energy converter is a Searaser. Using a large number of these systems, the offshore
site can be built to generate a significant amount of electrical energy. In this research, it
consists of ten VBTs and ten Searasers. In the following, the forecasting models are studied
and compared, along with finding the best system among the two proposed RESs in terms
of power generation.

2.2. Experimental Data

In order to make the results more realistic, the experimental data from a climate change
model [43] were used as the ML algorithm’s input to simulate and solve the governing
equations numerically. For this purpose, the proposed parameters are defined as wind
speed and wave height as input conditions. The data variate abruptly because of their
fluctuated nature, which changes with the local weather [43].

2.3. Numerical Simulations

One of the most important points, in order to have accurate artificial intelligence (AI)
prediction modeling, is to have a rich dataset. Two critical parameters are collected from
an experimental test. However, for hybrid site modeling, more input features are required.
In this case, it is necessary to have numerical modeling first.

Governing Equations

To simulate HBWTWEC, numerical solution software (FLOW-3D) was used to analyze
solid and fluid interactions between the structure of a VBT and airflow, as well as Searaser
and ocean waves. This software utilizes the volume fraction technique as a computational
cell to calculate the ratio of open volume to total in a computational volume [44]. The study
is classified into two different systems, where the involved fluids are different, respectively.

A. Searaser and ocean waves interaction equations.

The exerted force from the buoy which makes a torque is explained by Equation (1) [41].

→
F = m

d
→
vG
dt

(1)

where m is the mass of the buoy and d
→
vG
dt represents the acceleration of the buoy, which is

derived from the velocity of the buoy relative to time (t). V indicates the speed at which
the buoy moves along the proportional axis to the ocean’s surface (z). The torque helps
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to produce mechanical power. This motivates a special generator to convert this power to
electrical power [41].

P =
1

64π
ρsg2H2

s T (2)

where ρs is the density of seawater and g is the acceleration of the Earth’s gravity. Hs is the
wave height passed from the Searaser, and T is the torque of the buoy’s rotational movement.

B. Interaction equations of bladeless wind turbine and airflow.

The equation of drag force exerted on the body of the VBT and the generated power
were solved to produce a related dataset. Other governing equations are given in detail
in [43]. Equations (3) and (4) show these two important parameters in this research.

Ff luid(x.y.t) =
1
2

ρu2(Dl)Cd(x.y) sin(ωt + ϕ)î +
1
2

ρv2(Dl)Cd(x.y) sin(ωt + ϕ) ĵ (3)

where ρ is the air density, u is the wind speed, D is the diameter of the turbine oscillator,
and l is the body’s height. The drag coefficient (Cd) depends on the x and y axes, and
sin(ωt + ϕ) is the sine oscillating with angular velocity ω and phase difference ϕ [43]. This
equation indicates that this converted force is a special drag force which is directly related
to the VBT geometry and the flow properties.

P = η
1
2

ρU3(2y + D)l (4)

Since η represents the energy conversion factor of VBT and y is the amplitude of VBT
oscillation, that should be considered as a variable in further calculations. The produced
power of VBT has a drag force nature, too. It highly depends on the flow velocity (wind
speed) and properties and also the VBT geometry, respectively. Unlike the interaction of
these two systems on each other, which has been investigated, this study has neglected this
interaction. Conventional offshore wind turbines not only move the surrounding air with
a rotational movement of blades but also affect the sea waves. As a result, they will affect
the performance of the wave energy converter. On the other hand, VBT has not affected
Searaser performance due to vibrational movement, with only very small amplitudes that
can be ignored at that scale.

2.4. Dataset Preparation

Due to the database nature of ML methods, it is necessary to provide a database for
the algorithms to predict the required parameters. Therefore, to give a large amount of data,
we use simulation and numerical solutions of governing equations and use their output as
a dataset needed for training. The type of experimental training data is segmented by the
splitting method, and its ratio is 90 to 10. The 5% of the dataset is randomly selected for
the evaluation.

2.5. Machine Learning Algorithms

In this study, in addition to examining HBWTWEC and comparing the bladeless wind
turbine with Searaser in the case of production capacity, a comparative analysis using
different ML methods was conducted to find the best method. The best one with the
highest efficiency predicts the total produced power in an RES site in a specific area. The
utilized methods can be LSTM, RNN, random forest, and SVM, which are examined in the
following governing equations of each algorithm.

2.5.1. RNN and LSTM

The Recurrent neural network (RNN) is often used to model the data for identifying
each sample as dependent on previous samples, and the convolution layers extend the
neighborhood to the desired pixels. Despite its advantages, it has problems with gradients
disappearing and exploding during calculations, and the process of teaching this algorithm
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is a bit more complicated than other algorithms. Moreover, during processing, if one of
the “tanh” or “Relu” activation functions is used, it can no longer perform sequential
processing [45]. The optimized LSTM algorithms are a type of recurring neural network
that facilitates the storage of data in memory. On the other hand, this algorithm solves
the problem of gradient disappearance in the RNN algorithm. It should be noted that this
algorithm has excellent performance for different stages of classifying, processing, and
predicting time series.

1. The first gate, as expected, is the input gate, which decides how many inputs should
be used for the algorithm’s memory change operation. The activation function in
these two algorithms is the Sigmoid function, which decides which values to pass
according to the two choices of 0.1. In addition, the “tanh” function is used to weight
the input values, and this function’s output range varies from −1 to 1.

2. The second gateway in this algorithm is the forget-me-not gateway, which argues
which data should be removed from this process within each block and how this
gateway works like an input valve with a sigmoid function. This gateway compares
the data of the previous state and the data recently entered into the block and shows
the number 1 or 0 for each datum in that cell. The zero indicates that the data should
be forgotten there. Additionally, 1 means that the data should be stored and used to
continue the process.

3. The last gate, as expected, is the exit gate. Like the other two gates, the Sigmoid
function decides which values to pass through 0.1. Additionally, the tanh function,
like the input gate, weighs these values from −1 to 1.

The hyper parameters of RNN are 10 hidden layers, with Adam activation and 1 dense
layer. The epoch size is 100 and the batch size is 20. Moreover, for the LSTM algorithm,
the hyper parameters are the same as RNN in order to have a better comparison analysis
between these two algorithms.

2.5.2. Random Forest

One ensemble method of ML can be introduced as random forests (RF) or random
decision forests, which are often trained for regression and classification, which works by
building a large number of decision trees during training. In this study, the regression
prediction of this algorithm is considered more than its classification, and this is such that
the average prediction of each tree in the whole forest, which is a set of decision trees, is
returned. After several rounds of training, random decision forests accustom the existing
trees according to the data and their change tags to perform better [46].

2.5.3. SVM

This algorithm is used to categorize and regress data. In this study, because the data
are scattered and not necessarily linear, it is better to use this algorithm to predict values.
In the algorithm, we plot each datum as a point in multidimensional space, the number
of dimensions of which is equal to the number of properties in the problem under study.
Then, the algorithm performs the classification by finding a surface that connects the
two features well, and the abundance of data on that page is higher [47]. One of the most
important equations in the study [38] is the equation of applied force to the buoy and the
produced power of the Searaser. Equations (1) and (2) are used in order to achieve one of
the goals [42].

3. Results

Since this study is conducted to promote the view of the ML application based on
estimating the production capacity of a hypothetical power plant, the material presented
as a simulation and numerical solution has been used in the previous two studies. Fur-
thermore, valuation of results has been performed in previous articles. Figure 2 shows
the evaluation and validation of the results by comparing the amount of buoyancy in the
vertical axis. The value of the difference between the two graphs is due to the difference in
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the simulation input. In a former study by Babajani et al. [46], this value was a maximum
of 0.75 m, but in this study, the maximum height of the input wave is 1 m.
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Figure 2. Validation of recent work with the former study.

As it is observed in Figure 2, results are so close to another study, which is evidence of
verification. As a matter of fact, the vertical displacements of the buoy fluctuate 3 m. It is
moved up to 2 m up and 1 m down from its origin. These periodic movements happen
during simulation time. The periodic nature of buoy movement is because of the periodic
behavior of inlet waves.

3.1. Comparative Analysis between Different Machine Learning Algorithms

Since one of the most important issues in the analysis of RESs for the construction of
hybrid sites is to predict the amount of produced power of these systems, in this study,
we have tried to find the best one among the four mentioned algorithms. Therefore, this
study was conducted to find the best ML algorithm in the most practical parameters
used in system analysis as key parameters in maintaining systems and selecting them to
build an RES site, the force exerted on each of the systems, and their produced power.
Figures 3 and 4 show the ML algorithms predicted results for these two parameters.

Figure 3 presents the converted force of the VBT (Figure 4a) and WEC (Figure 4b). The
nature of the exerted force in VBT is drag force. So, it varies with power law. However,
WEC profiles fluctuated as a sine function because they are completely depended on ocean
waves as an inlet of this system. The VBT maximum forces are 4 kN, and for the WEC are
6 kN, respectively. Moreover, the values predicted by various machine learning methods
(LSTM, SVM, RNN, RF) are compared with the amount of exerted force on the bladeless
wind turbine (a) and Searaser (b). It can obviously be seen that the best algorithms among
them are LSTM and RNN, which have the closest prediction values to the simulation ones.
Moreover, it shows that the mentioned algorithms are more reliable than others. However,
it can be realized that the best one is the LSTM algorithm. The advantage of this method
over RNN is expected to be the solution to the sudden disappearance problem of gradients
during code execution.

Figure 4 also presents a comparative analysis, considering that the LSTM algorithm is
the best way to predict the output power of these two systems. In these predictions, the
only algorithm that did not work accurately is the random forest algorithm.
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3.2. Statistical Analysis for Evaluating Model Performance

One of the most important things in ML implementation is to evaluate these algorithms
with the ROC curve. Furthermore, it is another tool to examine the accuracy of their
performance. Three commonly utilized ML algorithms for estimating the power and
also converted force were assessed, and the model performances are reported in Table 2.
Statistical analysis was then assessed using mean absolute error (MAE), root mean square
error (RMSE), ACC, FPR, TPR, PPV, and TNR. Furthermore, ROC curves and the confusion
matrix of different values related to each parameter are shown in Figure 5.
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Table 2. Evaluation of machine learning parameters.

Parameter Method TNR PPV TPR FPR ACC RMSE MAE

WEC Force RNN 0.950 0.951 0.924 0.050 0.937 32.057 0.066

LSTM 0.978 0.980 0.942 0.022 0.959 16.422 0.064

SVM 0.980 0.981 0.903 0.020 0.938 25.874 0.069

RF 0.913 0.918 0.874 0.087 0.892 31.984 0.067

BWT Force RNN 0.960 0.961 0.933 0.040 0.946 24.885 0.032

LSTM 0.980 0.980 0.916 0.020 0.946 37.526 0.068

SVM 0.966 0.969 0.896 0.034 0.928 15.425 0.071

RF 0.951 0.950 0.941 0.049 0.946 27.344 0.036

WEC
Power RNN 0.959 0.960 0.941 0.041 0.950 15.535 0.032

LSTM 0.970 0.970 0.906 0.030 0.936 16.422 0.064

SVM 0.978 0.979 0.901 0.022 0.937 15.874 0.069

RF 0.987 0.988 0.898 0.013 0.939 31.984 0.067

BWT
Power RNN 0.942 0.942 0.915 0.058 0.928 24.885 0.032

LSTM 0.961 0.961 0.907 0.039 0.933 37.523 0.068

SVM 0.968 0.969 0.931 0.032 0.949 15.420 0.071

RF 0.982 0.983 0.897 0.018 0.937 27.340 0.036

Figure 5 shows that the most accurate algorithm, as it can be considered, is LSTM.
When tested for four proposed ML algorithms, the significant accuracy is for the LSTM
algorithm in four measured parameters. The true positive rates of this algorithm are in the
highest level in power and exerted forces for both proposed renewable energy systems.
Moreover, the false negative rates are the least in predicting these desired parameters.
However, RNN is another accurate algorithm for predicting these parameters, but related
to this study’s aim, the most accurate one should be introduced.

3.3. Comparison between WEC and BWT

Another purpose of this study is to conduct analyses in order to select the best energy
system from VBT and WEC in specific locations with proposed geographical conditions.
Analyses include measuring the amount of applied force to each system and their output
electrical power. Figure 6 compares the force from the waves with the WEC and the ocean
airflow with the VBT.

Figure 6 shows the diagram of drag force from the airflow to the moving part of the
VBT and the total force on the Searaser during the simulation time. Moreover, by fitting
the curves of both graphs, the force on each system can be estimated separately. The drag
force can be introduced as a quadratic function (Equation (5)), but the exerted force on the
Searaser can be the summation of five sine functions (Equation (6)). Equations (5) and (6)
represent the equation obtained from the curve fitting.

y = 0.0039x2 − 0.13x + 1 (5)

f (x) = a1 sin(b1x + c1) + a2 sin(b2x + c2) + a3 sin(b3x + c3) + a4 sin(b4x + c4) + a5 sin(b5x + c5) (6)

Different parameters of Equation (6) are shown in Table 3.
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Table 3. Values of curve fitting parameters related to Equation (6).

Parameter Value

a1 3921

a2 2063

a3 1585

a4 2061

a5 1779

b1 1.418

b2 1.255

b3 0.9509

b4 1.643

b5 0.8553

c1 2.8888

c2 −0.2617

c3 9.099

c4 0.2676

c5 2.915

Another investigation is to find the related mathematical equations of the proposed RES-
produced power. Figure 7 presents the generated electrical power in each RES, respectively.

Moreover, Figure 7 shows the electrical power of each system with respect to energy
conversion. For this diagram, curve fitting was performed to provide relationships to
estimate their production power in terms of wind speed. The difference between the
two diagrams in Figure 6 is due to the nature of the points drawn in the figure, no relation
can be introduced to Searser’s productivity. Equation (7) presents the produced power
of VBT.

P = 0.0006v4 − 0.00002v3 − 0.0013v2 + 0.0009v + 0.0048 (7)
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3.4. Total Energy of HBWTWEC

Another important goal of this study is to obtain the total produced power in
an HBWTWEC. Due to the nature of the generated electrical power of Searaser in terms
of wind speed, a definite mathematical equation cannot be provided. Figure 8 shows the
production capacity for each system, as well as the total produced power of HBWTWEC in
a considered location.
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This diagram helps to estimate the desired values completely, which can be used in
order to construct a hybrid site according to the wind speed from upstream of the ocean
(Figure 8a). Due to the scatter values of Searaser-produced power (Figure 8c), when it is
summed by the VBT-produced power (Figure 8d), which has a specific equation (Figure 8b),
it cannot be introduced as an obvious mathematical equation for modeling. For having
a comparison between two RESs, it can be noticed that the highest value of power belongs
to the Searaser. On the other hand, the minimum order of produced power is related to the
VBT. For the future research, exploring the applications of the metaheuristics and further
deep learning e.g., [47–49] methods are proposed.

4. Conclusions

In this study, HBWTWEC simulations consisting of ten VBTs and ten Searasers during
the FETCH experiment are performed by Flow-3D software. Partial climate change models
are used to simulate the region’s local climate as an input of mathematical solution of
governing equations. Then, not only the force on each system and the produced power are
calculated separately but, also, they are compared to select the most suitable one according
to the weather conditions of the selected region. The maximum and minimum values of
the produced power belong to the Searaser and VBT, respectively. One of this study’s most
significant achievements is introducing a mathematical equation for two essential variables:
the exerted force and produced power of introduced systems. These are measured by
best fitting the output graphs from the numerical simulations. The drag force, which is
exerted by the wind blowing across the VBT, is introduced as a quadratic function, and
the total exerted force from the ocean’s waves on Searaser is modeled as a summation
of five sinusoidal functions. However, there has not been any known function for the
produced power of HBWTWEC due to the scattered nature of Searaser’s output power.
Since the most important issue in the hybrid site development is the estimation of produced
power by RESs installed in that area, high-precision algorithms must be evaluated in order
to introduce the best of them. The most accurate algorithm can be introduced as LSTM.
However, RNN is another accurate algorithm, but related to the significant goal of the study,
the most accurate one is presented. These key predictions in the hybrid site’s industry
include the two parts of measuring the forces exerting on systems and their produced
power, which are carried out by methods based on ML. Due to the instability of this type of
system, ML methods are used because the input of these systems are the weather conditions
in the selected region. Due to their dependence on climate change, they have variable
values and are not steady parameters. The utilized methods, like other extensive studies
in estimating the produced power of RESs, have a reliable assessment of the stability. The
most noticeable limitation of this study is the uncertainty of the VBT results. It is the most
novel type of wind turbine, and its commercial versions are not used yet. So, the results are
compared with the demo version. Furthermore, numerical solution and ML prediction are
performed for comparison; in future studies, we will provide methods in order to estimate
a produced power for the next few years as a climate change modeling.
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Abbreviations

Abbreviations Description
ACC Accuracy
AI Artificial intelligence
ANN Artificial neural network
CFD Computational fluid dynamics
CO2 Carbon dioxide
FPR False positive rate
HBWTWEC Hybrid site of the bladeless wind turbine and the wave energy converter
IOT Internet of things
LSTM Long-short term memory
MAE Mean absolute error
ML Machine learning
PPV Positive predictive value
RESs Renewable energy systems
RMSE Root mean squared error
RNNs Recurrent neural network
ROC Receiver operating characteristic
SVM Supported vector machine
TNR True negative rate
TPR True positive rate
VBT Vortex bladeless turbine
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