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Abstract: A small-scale grid-connected PV system that is easy to install and is inexpensive as a remote
monitoring system may cause economic losses if its failure is not found and it is left unattended
for a long time. Thus, in this study, we developed a low-cost fault detection remote monitoring
system for small-scale grid-connected PV systems. This active monitoring system equipped with a
simulation-based fault detection algorithm accurately predicts AC power under normal operating
conditions and notifies its failure when the measured power is abnormally low. In order to lower the
cost, we used a single board computer (SBC) with edge computing as a data server and designed a
monitoring system using openHAB, an open-source software. Additionally, we used the Shewhart
control chart as a fault detection criterion and the ratio between the measured and predicted ac
power for the normal operation data as an observation. As a result of the verification test for the
actual grid-connected PV system, it was confirmed that the developed remote monitoring system
was able to accurately identify the system failures in real-time, such as open circuit, short circuit,
partial shading, etc.

Keywords: PV system; monitoring system; Shewhart control chart

1. Introduction

As the distribution of photovoltaic (PV) systems rapidly increases, monitoring systems
for the management and maintenance of the facilities are becoming common. Monitoring
systems are being implemented that range from a simple method limited to checking the
real-time power generation status and failures, to a remote monitoring system based on
the Internet of Things (IoT) that can detect and diagnose failures by string or module and
can access the solar power system from anywhere through the Internet [1–10]. Looking at
previous studies related to PV systems monitoring, Kang et al. (2019) presented a plan to es-
tablish a remote real-time monitoring system to manage photovoltaic facilities, described a
monitoring method at the inverter level, and diagnosed abnormalities in the system through
acquisition of power generation information through inverter VF [11]. Sushmita et al. (2019)
developed a low-cost, cloud-based, real-time monitoring graphical dashboard with very
few sensors installed and a very simple fault detection to ensure sustainable energy self-
sufficiency through PV systems, and presented an IoT-based wireless sensor network
operation and maintenance (O&M) method [12]. Mohammed et al. (2010) proposed a
precision PV monitoring system with high reliability. A graphical user interface (GUI) pro-
gram was developed through LabVIEW. All data collected on the computer was monitored
and the system actuator was controlled through a microcontroller [13]. Jürgen et al. (2014)
developed and tested an integrated monitoring and simulation method for precise online
simulation of photovoltaic plants at the second level, unlike the previous studies described
above. Since the developed system includes both monitoring and simulation datasets, a
highly efficient fault detection scheme can be used, and the results show that it is suitable
for providing automatic and real-time fault detection for solar power plants of various
sizes, significantly improving the commissioning procedure [14]. As such, various studies
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using the PV monitoring system have been conducted, but it was difficult to find studies
that suggested a failure detection method through simple simulation power generation
calculation. The PV systems for domestic power generation are self-managed through a
separate manpower and monitoring system. The systems installed in public buildings as
a part of a new and compulsory renewable energy installation project or government-led
project are subject to five years of real-time monitoring of the power generation status
through an integrated renewable energy monitoring system. The efficient operation and
management of small-scale PV systems of less than 10 kW installed for private use are
insufficient. In the case of a small-scale, grid-connected system that is operated unmanned,
a relatively expensive monitoring system is rarely used, and as a result, the system may
be left unattended for a long time in the case of failure. This study proposes a remote
monitoring system applicable to small-scale PV systems. Unlike the monitoring system that
has been used in previous studies, it can be built at low cost by using an SBC server and
applying an open source platform. In addition, PV remote monitoring system equipped
with a simulation-based failure detection algorithm accurately estimates power production
under normal operating conditions. Furthermore, this system refers to an active system
that recognizes and notifies of a system failure when the amount of power generated is
abnormally low. This allows the operator to take corrective action promptly and minimizes
power loss due to short- and long-term performance degradation of the system.

2. Design of the Remote Monitoring System for Failure Detection
2.1. Data Server

Compared to cloud computing, edge computing occupies a relatively short distance
between the device and the network, so the service can be performed quickly and the
communication load can be reduced. In addition, this computing architecture minimizes
damage to the entire system by preventing the loss of original data stored in the edge
server when communication is cut off due to an external network problem. Accordingly, in
this study, a data server was constructed using ODROID-N2, an ARM-based single board
computer, as an edge method. ODROID-N2 is a low-power, ultra-compact computer that
integrates components such as the microprocessor, memory, and input/output on a single
circuit board, making it possible to build a low-cost system.

2.2. Building a Platform for the Monitoring System

The study developed a remote monitoring system for failure detection using openHAB
that integrates device and sensor nodes with open-source software and can connect to a
database. OpenHAB is implemented in Java on the Equinox OSGi framework. OpenHAB is
designed to be dynamically integrated with various IoT devices and protocols such as KNX,
Z-Wave, Insteon, Arduino, Ethernet, MQTT, and any operating systems such as Linux,
macOS, Windows, Raspberry Pi, Docker, and Synology without restrictions. In addition,
openHAB integrates Grafana and InfluxDB through binding. Grafana, an open-source
project, is a visualization tool that does not depend on any specific software, supports
connection with more than 30 different collection tools and DBs, and is mainly used for
time series data visualization. InfluxDB is an open-source time-series database that has
excellent write functions and is suitable for monitoring a large number of events.

3. Simulation Algorithm

Various factors can affect the power generation loss (failure) of a PV system, such
as deterioration of solar modules, errors in tracking the maximum power point, wiring
shorts and aging, shading effects, and dust or snow. Many failure detection algorithms are
based on comparisons between measurements of PV systems and simulation predictions to
identify failures [15–18]. Accordingly, the algorithm used in the monitoring system applied
in this study is subdivided into an algorithm that obtains power generation through
simulation and a failure detection algorithm that is the basis for error when comparing
measured power and predicted power generation.
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3.1. Simulation Generation Model

The power generation efficiency of the crystalline solar module in the MPP output can
be expressed as Equation (1), in the form of a linear function of the PV module temperature,
Tc [19].

ηc = ηref [1 − βref (Tc − Tr)] (1)

Here, ηref refers to the rated efficiency of the module under standard test conditions,
βref is the temperature coefficient, Tc refers to the PV module temperature, and represents
the reference temperature (25 ◦C).

The PV module temperature can be calculated using Equation (2) as a function of solar
intensity and outside temperature.

(τα)It = ηcIt + UL(Tc − Ta) (2)

Here, (τα) represents the solar transmittance/absorption rate of the solar module, It is
the solar intensity, Ta refers to the outside temperature, and UL is the heat loss coefficient.

Substituting Equation (1) into Equation (2), the PV module temperature, Tc is derived
from Equation (3).

Tc =
ULTa +

(
(τα) − ηre f − ηre fβre f Tr

)
It

UL − ηre fβre f It
(3)

The heat loss coefficient, UL is shown in Table 1, according to the installation type
(rear boundary condition) of the PV module [20].

Table 1. Thermal loss factor by installation type.

Installation Type Thermal Loss Factor
(W/m2 K)

Mounted modules with air circulation 29

Semi-integrated modules with air duct behind 20

Integrated modules with fully insulated back 15

The solar radiation on the slope of the PV module considering the incident angle loss
from the total solar radiation on the horizontal plane can be estimated using Equation (4).
In this study, the Orgill and Holland model [21] was applied to separate the direct and
scattering components for the horizontal plane, and the scattering and ground reflection
for the inclined plane were calculated using Reindl’s anisotropic puncture model [22,23].

It = Rb IbKb + IdKd
1 + cosβ

2
+ (Ib + Id) ρgKg

1 − cosβ
2

(4)

Here, Rb is the direct irradiance ratio of the inclined plane to the horizontal plane, Ib
is the horizontal direct irradiance, and Id is the horizontal sky scattering. Kb and Kd are the
direct, scattering modifiers, and Kg is the incident angle modifier for the ground reflection
component ρg is the ground reflectance; and β represents the PV module installation
inclination angle.

The incident angle correction factor for each component of solar radiation is shown in
Equation (5).

Ki = 1 − b0

(
1

cos θi
− 1

)
(5)

Here, b0 is an incident angle correction coefficient, and θi is an incident angle of the
PV module for each component of solar radiation.
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Incident angles of direct irradiance, scattering, and ground reflected solar radiation on
the slope are calculated as follows [24].

θb = cos−1(cos (ϕ− β)) cos ω + sin(ϕ − β)sin δ) (6)

θd = 59.68 − 0.1388 β + 0.001497 β2 (7)

θg = 59 − 0.5788 β + 0.002693 β2 (8)

Here, ϕ represents latitude,ω refers to time angle, and δ indicates solar declination.
Therefore, the AC power generation of the PV system, considering the incident angle

and temperature loss, is calculated by Equation (9).

PPV = ηsηc ItAPV (9)

Here, ηs is the operating efficiency reflecting the system loss, and APV is the total
installation area of the module.

System losses are a combination of all losses caused by other mechanisms, such as
ohmic, module quality, array mismatch contamination, and inverter losses.

3.2. Failure Detection Algorithm

The Shewhart control chart is a statistical process control technique and is a time series
graph with three reference lines: a center line (CL), an upper control limit, and a lower
control limit. The CL is an acceptable value, which is the average of observations, and a
minimum of 100 observations is required to set it [25,26]. The control limit line is set as in
Equations (10) and (11). When the observed value deviates from the control limit line, it is
detected as a failure [27].

UCL = CL + 3 σ (10)

LCL = CL − 3 σ (11)

Here, CL refers to the mean of the observations and σ is the standard deviation of the
observations.

In this study, the Shewhart control chart above was applied as a benchmark for fault
detection in PV systems. The ratio of the AC power generation was measured from a
PV system (PPmeas) and simulation results (PPsim), and PPR(PPmeas/PPsim) was set as the
observed value. Figure 1 shows the process in which the PPR value is derived by applying
the simulation generation model and the failure detection algorithm described above to the
monitoring system.
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Figure 1. Process flow diagram of monitoring system.

4. Establishment of the Remote Monitoring System for Solar Power Generation
4.1. PV Systems and Sensor Installation

Figure 2 shows a 3-kW, grid-connected PV system installed on the roof of a building
in Daejeon for the demonstration of a remote monitoring system. Eight 380 W PV modules
were connected in series with an inclination angle of 45◦ to the southwest (10◦ azimuth),
and a 3.5 kW class model (ESP3K5-KRA/B) from D company was used for the inverter.
To secure the meteorological data required for analysis of power generation simulation,
a horizontal solar pyrometer and an RTD temperature sensor for outdoor temperature
measurement were installed in an instrument shelter around the PV system. The watt-hour
meter was installed at the bottom of the inverter to measure the AC power generated.
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4.2. Establishment of the Remote Monitoring System

As described above, the study used Odroid N2 equipped with an ARM processor as
the data server for edge computing. Figure 3 shows the monitoring device installed in
the field.
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Figure 3. Monitoring devices installed on site.

Figure 4 shows the schematic diagram of the remote monitoring system. The solar
system was connected to the data server (Ordroid N2) through RS-485 communication, and
the RTD temperature sensor, which was converted into a digital signal by the watt-hour
meter and Adam-6015, was connected through the router through TCP/IP communication.
Adam-6015 is a 16-bit 8-channel A/D converter that uses the Modbus protocol.
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Figure 4. Schematic of the PV remote monitoring system.

OpenHAB, an open-source platform, was loaded on the data server. It calls the sensing
data from the end nodes through the request packets of ‘Things’ (a concept that defines a
sensor or physical device connected to a server). These data are linked as ‘Items’ (a concept
that groups values measured by sensors defined in ‘Things’ as assigned attributes), and are
registered in openHAB. The interpretation algorithm derived from the ‘Items’ as a variable
is programmed in Java, and the script is called and executed by ‘Rules’ (a concept that
sets the rules of the groups defined in ‘Items’). If a script is written in another language
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(for example Python or Javascript), it can be registered in ‘Scripts’ (a concept used when
declaring a rule in a script such as ‘Rules’ in a language other than Java for use) [28].

4.3. Validation of the Simulation Model

This study compared the power generation measured at 1 min intervals for 10 days
and the simulation results through linear regression analysis and the normalized root
mean square error of Equation (12) to examine the validity of the simulation model. The
horizontal solar insolation measured and outside temperature were the input variables for
the simulation model. Figure 5 shows the simulation results according to the amount of
power generated. Here, the low solar radiation area [29] where power generation efficiency
was significantly reduced due to the reduction of the open-circuit voltage and fill factor
of the module was excluded. According to the linear regression analysis between the two
results, R2 and NRMSE were 0.9855 and 0.05, respectively, confirming the reliability of the
simulation model [28].

NRMSE =

√√√√ 1
n

n

∑
i=1

(
pi − mi

m

)2
(12)
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Here, n is the number of measurements, pi is the predicted value, mi is the measured
value, and m is the average value of the measurement.

4.4. Control Limits

Table 2 shows the mean values and standard deviations for the PPR during the same
period. The limit of the normal operation of the PV system according to the Shewhart
control chart could be set as Equation (13). When it reaches the control limit, 99.73% of the
normal operational observations (PPRref ± 3σ) are within this range.

0.77 ≤ PRP ≤ 1.2 (13)

Table 2. Control limits for Shewhart chart.

Mean Standard Deviations, σ 3σ

PPRref 0.99 0.07 0.21
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5. Results and Discussion

Various types of monitoring systems have been developed and applied to grasp
the power generation status and operation status of PV systems in real time, and there
are also various fault diagnosis methods (algorithms) installed in them. The monitoring
level of the PV system can be largely classified into three levels. In the case of Step 1,
power generation information is acquired through the inverter interface and used as input
data for fault diagnosis. In the second stage, monitoring work is performed on the solar
junction panel, and generation information for each string of the solar array can be grasped,
enabling a higher level of fault diagnosis than the first stage. In the last three steps,
monitoring is performed at the PV panel level, generation information for each panel can
be obtained, and deterioration and aging of abnormal panels can be tracked. Similar to this,
the higher the monitoring step, the more precise fault diagnosis is possible, but the increase
in construction cost due to the increase in the number of sensors used for this can be a
disadvantage. Accordingly, this study proposed a PV failure detection method based on a
real-time remote monitoring system at the first level. The fault detection approach compares
the AC power generation measurement result of the PV power generation system and
the simulation model prediction results in real-time, and considers a significant difference
between the two results as a fault. The prediction model used in this approach applied a
simple analysis model that does not require advanced circuit-based modeling methods,
artificial intelligence techniques, or detailed understanding of the PV power generation
process in the power generation analysis process. Figure 6 shows the main screen of the
remote monitoring system built into the PV system. Various information such as real-time
power generation status monitored at 1 min intervals, weather information, and operation
statuses are stored in InfluxDB through openHAB and displayed in Grafana.
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Figures 7 and 8 show the daily measured and simulated power generation of the
monitoring system and the corresponding PPR under normal operation. The study
shows that the actual measurement and the power generated in the simulation are al-
most identical, and the PPR operates within the control limit (although there were several
temporary deviations).
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Figure 9 shows a clear deviation between the measured and predicted power genera-
tion in the case of inducement of shading and disconnection. Energy loss during power
generation caused by partial shading occurred as one out of the eight PV modules connected
in series was covered with an opaque cover. Figure 10 shows that the “PPR” goes over the
control limit in such an abnormal state. A temporary drop in PV module output caused
by partial shading or snow cannot be diagnosed as a failure, and the system generates a
warning of failure at an early stage when the exceeding of the control limit continues.
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6. Conclusions

PV systems of less than 10 kW, which are mostly operated unmanned as a grid-
connected system, have a few relatively expensive monitoring systems. As a result, there
is a lack of efficiency in the operating system and management; in the event of a failure,
the system may be left unattended for a long time. Therefore, this study proposed a low-
cost, fault detection remote monitoring system for small-scale PV systems. To implement
the system at a low cost, SBC was applied as a data server with edge computing, and a
monitoring system was designed using openHAB. For the failure detection benchmark, the
ratio of predicted power generation to actual power generation under normal conditions
was set as an observation value and a Shewhart chart was used. The verification test
on the actual grid-connected PV system proved that the monitoring system accurately
identified defects in real-time during normal operations or abnormal operations, such as
disconnection or partial shading.
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This remote monitoring system has advantages in that the system has a simple struc-
ture based on simulation and can be easily applied anywhere as long as the capacity and
installation type of the PV system is identified. In the future, a more affordable and reliable
monitoring system is expected to be available if weather data can be gathered in real-time
through a domestic, open application programming interface.
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Nomenclature
ηc Efficiency of the module (%)
ηref Reference efficiency of the module (%)
βref Temperature coefficient
Tc PV module reference temperature (◦C).
Tr Outside temperature (◦C).
τα Solar transmittance/absorption rate
UL Heat loss coefficient
It Solar radiation intensity (W/m2)
Rb Direct irradiance ratio
Ib Horizontal direct irradiance (W/m2)
Id Horizontal sky scattering irradiance (W/m2)
ρg Ground reflectance
Kb Incident angle modifier of direct irradiance
Kd Incident angle modifier of sky scattering
Kg Incident angle modifier of ground reflectance
β PV module Installation Slope Angle (◦)
b0 Incident angle correction coefficient
θi Incident angle of the PV module for each component of solar radiation (◦)
ω Time angle (◦)
δ Solar declination (◦)
ϕ Latitude (◦)
θb Incident angle of direct irradiance
θd Incident angle of sky scattering
θg Incident angle of ground reflectance
ηs Operating efficiency reflecting the system loss (%)
APV Installation area of the PV module (m2)
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