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Abstract: Sea wave energy is being increasingly regarded as one of the most promising sources of
renewable energy. This paper deals with the modeling and simulation of an onshore wave energy
converter system designed by UMBRA GROUP SpA. Several topics are addressed. Starting from the
multibody modeling strategy, this paper delves more deeply into the mechanical efficiency evaluation
of the ball-screw in the elastohydrodynamic lubrication regime, the core of the energy conversion
process, as well as the thermal characterization of the power take-off module, based on the lumped-
parameter and finite element method models. High values of ball-screw indirect efficiency have been
observed, ranging from 73% to 97%; these results appear even more encouraging when compared
to the performance of alternative energy-consuming technologies. Thermal analysis, on the other
hand, provided a maximum temperature increase of 40 ◦C, allowing for the aversion of any structural
collapse and the realistic identification of the lubrication regime, which turned out to be mostly mixed.
Finally, an inverse multibody dynamic analysis is performed, and the most interesting simulation
results are collected to prove the effectiveness of the proposed approach.

Keywords: wave energy converter; multibody modeling and simulation; ball-screw efficiency;
thermal models; inverse dynamic analysis

1. Introduction

In the past few decades, the idea of exploiting the huge and largely untapped potential
energy of ocean waves (typically 2–3 kW/m2 compared to 0.4–0.6 kW/m2 of wind and
0.1–0.2 kW/m2 of solar radiation at the earth’s surface [1]) has drawn significant attention
in order to meet renewable energy targets and environmental awareness. Great effort has
been devoted to the development of several types of devices, commonly called wave energy
converters (WECs), able to convert the immense power the ocean waves into electricity.
According to the large energy density when compared with other energy systems, WECs
can be a key player for increasing the sustainability of the energy sector [2–7].

Depending on their working principle, WECs are generally categorized into oscillating
water columns, overtopping systems, bottom-hinged systems, and floating-point absorbers,
which are thought to be the most cost-efficient technology to take advantage of energy
density and the consistency of ocean waves. To date, companies and academic research
groups around the world have modeled and tested many working concepts in wave tanks,
but only a few prototypes have moved from the R&D stage to sea testing [8–11].

This paper deals with modeling and simulation of a point-absorbing type WEC, and
the whole study is carried out in collaboration with UMBRA GROUP (UG), a leading
global manufacturer of recirculating ball-screws in the aeronautics sector, which has been
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strengthening its R&D background in the energy market over the past ten years. As shown
in Figure 1, UG developed a very promising concept for onshore WEC, consisting of a
floating buoy connected to the support frame by a couple of holding arms. The buoy, acting
as an energy absorber, is lifted and dropped by sea waves, oscillating in a single mode (i.e.,
it exhibits 1 DOF). Periodic forces exerted by ocean waves are transferred to the power
take-off module (PTO), located between the floating buoy and the support frame. Within
the PTO, a massive recirculating ball-screw directly converts the reciprocating movement
of the nut into the high-speed rotary motion of the screw shaft, which can be easily fed to
the electro-mechanical reciprocating generator (EMRG) for electricity generation.
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Figure 1. Onshore WEC structure designed by the UMBRA GROUP.

Such a device is designed for shoreline installation, close to the utility network and
it is expected to require less intensive maintenance compared to offshore WECs [12]. It is
worth noting that, in many areas of the world, the wind blows with enough consistency
and speed to provide continuous waves along the coast. However, as ocean waves are
attenuated in their travel through the shallow water, the onshore location leads to a lower
energy content available for regenerative purposes.

The aim of this work is to investigate the dynamic behavior of the WEC in common
sea states by developing a multibody model supported by the analytical estimation of
the ball-screw efficiency. Moreover, a standalone simulation of transient heat conduction
within the PTO is carried out by relying on increasingly accurate models. Finally, the most
interesting simulation results are collected, shedding light upon the effectiveness of the
proposed models.

2. Multibody Model, Ball-Screw Efficiency, and Thermal Models

Primarily, it is wise to offer a focused, yet coherent, overview of the WEC multibody
modeling strategy and the most interesting forces acting on the structure. As a first attempt,
a simplified structure able to provide an overall idea of WEC functionality was developed
in a multibody software environment, wherein all components were paired together by
defining a local coordinate system coord and a set of constraints for each of them; the result
is depicted in Figure 2.

At this stage, the rotor–stator interaction within the PTO is not yet considered, and
its resistant action against bouncing motion of the buoy is performed by a cylinder-piston
system, whose inner pressure p is supposed to be a function of rod position s and velocity
v (1).

p = p(s(t), v(t)) (1)

Subsequently, the first developed multibody model was moved to the MATLAB/
Simulink environment, and the real structure of the WEC provided by UG was examined.
In order to minimize the number of constraints to be imposed between the hundreds of
disjointed parts (e.g., all nuts, bolts, screws, and levers), the 3D CAD provided by UG was
preliminarily divided into five XML assemblies that behave like rigid bodies after being
imported into MATLAB/Simulink: the onshore frame, the buoy and its connecting arms,
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the PTO shell and nut, the screw shaft and EMRG rotor, and the EMRG stator. Then, proper
joints were included to impose kinematic constraints between the assemblies.
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A multibody model is designed to receive either the vertical motion z(t) of the buoy
CG, or the net force Fz(t) experienced by the floating body as inputs. For this purpose,
both buoyancy force Fhs(t) and hydrodynamic force Fhd(t) have to be considered: the
former is evaluated as the volumes of water V displaced by the completely or partially
submerged buoy for each discrete angular position α, as further detailed in Figure 3,
while the estimation of the latter requires more in-depth considerations concerning the
velocity vector field of the flowing fluid around the buoy. Kinematic and dynamic inputs
can be iteratively obtained by trying to achieve a match between the sea state energy E
and the mechanical work W completed by the reciprocating nut and available for energy
conversion, whereas “sea state” refers to the physics quantities {height H; period T} that
fully define the sinusoidal sea wave. According to the linear wave theory proposed by G. B.
Airy [13], the wave energy density E per unit of horizontal area is proportional to the wave
height H squared (2), regardless of the depth of the water on whose surface the gravity
waves propagate:

E =
1

16
ρgH2 (2)

where ρ is the density of water, g is the acceleration of gravity, and H is known within
physical oceanography as a significant wave height, but it can be assumed to be equal to
the wave height, if more detailed wave characterization is not available.

The energy content transferred by the sea to the buoy can be obtained by multiplying
the wave energy density E by an appropriate horizontal surface; common sense might
suggest choosing as a surface reference the instantaneous intersection between the buoy and
the free surface of the sea or, more conveniently, its average extension Savg observed during
usual WEC operating conditions. As a result, the sea wave lifts the buoy by an altitude
h, starting from its static equilibrium position, causing the high-speed rotary motion of
the screw shaft. The energy balance algorithm (EBA) represents the attempt to iteratively
obtain the lifting h of the buoy and, ultimately, a kinematic input for the multibody model,
starting only from sea state and the mandatory simplification of the hypotheses, as shown
in Figure 4.

The axial force FPTO resisting the relative motion between the translating nut and the
rotating screw shaft is represented by a vector in Figure 5, and Equation (3) provides an
estimation of it,

FPTO = −Kdamp vPTO − Ff riction sign(vPTO)− Kvisc vPTO − Kinert aPTO (3)

where vPTO and aPTO represent the nut’s velocity and the acceleration of the translating nut,
respectively; Ffriction is the friction force, depending on which lubrication regime the recircu-
lating ball-screw is expected to operate in; Kdamp, Kvisc, and Kinert are inertias and damping
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coefficients, as each subscript suggests. Since frictional forces have a large influence on
this mechanism, the estimation of output power Pout available at the rotating screw shaft
requires contact analysis. For this purpose, the multibody model described above is meant
to be coupled to the elastohydrodynamic lubrication (EHL) model for the estimation of the
indirect efficiency η of the recirculating ball-screw, in a simultaneous calculation scheme,
according to Figure 6, with data transferred from the multibody module to the EHL module
regarding current relative speeds and forces at the ball-screw mechanism level. As very
well underlined in [2], the interdisciplinary research efforts between mechanical, electrical,
and control engineers are required to achieve mature research in WEC systems. Thus,
the involvement of a tribological coupling as the ball screw mechanism in the proposed
WEC system requires an adequate investigation of the frictional response of the mechanism
responsible for the motion conversion.

Energies 2022, 15, x FOR PEER REVIEW 4 of 15 
 

 

 
Figure 3. Volume of water displaced by the floating buoy. 

The energy content transferred by the sea to the buoy can be obtained by multiplying 
the wave energy density E by an appropriate horizontal surface; common sense might 
suggest choosing as a surface reference the instantaneous intersection between the buoy 
and the free surface of the sea or, more conveniently, its average extension Savg observed 
during usual WEC operating conditions. As a result, the sea wave lifts the buoy by an 
altitude h, starting from its static equilibrium position, causing the high-speed rotary mo-
tion of the screw shaft. The energy balance algorithm (EBA) represents the attempt to it-
eratively obtain the lifting h of the buoy and, ultimately, a kinematic input for the multi-
body model, starting only from sea state and the mandatory simplification of the hypoth-
eses, as shown in Figure 4. 

 
Figure 4. Basic concept of the energy balance algorithm (EBA). 

The axial force FPTO resisting the relative motion between the translating nut and the 
rotating screw shaft is represented by a vector in Figure 5, and Equation (3) provides an 
estimation of it, 𝐹௉்ை ൌ െ𝐾ௗ௔௠௣ 𝑣௉்ை െ 𝐹௙௥௜௖௧௜௢௡ 𝑠𝑖𝑔𝑛ሺ𝑣௉்ைሻ െ 𝐾௩௜௦௖ 𝑣௉்ை െ 𝐾௜௡௘௥௧ 𝑎௉்ை (3) 

where vPTO and aPTO represent the nut’s velocity and the acceleration of the translating nut, 
respectively; Ffriction is the friction force, depending on which lubrication regime the recir-
culating ball-screw is expected to operate in; Kdamp, Kvisc, and Kinert are inertias and damping 
coefficients, as each subscript suggests. Since frictional forces have a large influence on 
this mechanism, the estimation of output power Pout available at the rotating screw shaft 
requires contact analysis. For this purpose, the multibody model described above is meant 
to be coupled to the elastohydrodynamic lubrication (EHL) model for the estimation of 

Figure 3. Volume of water displaced by the floating buoy.

Energies 2022, 15, x FOR PEER REVIEW 4 of 15 
 

 

 
Figure 3. Volume of water displaced by the floating buoy. 

The energy content transferred by the sea to the buoy can be obtained by multiplying 
the wave energy density E by an appropriate horizontal surface; common sense might 
suggest choosing as a surface reference the instantaneous intersection between the buoy 
and the free surface of the sea or, more conveniently, its average extension Savg observed 
during usual WEC operating conditions. As a result, the sea wave lifts the buoy by an 
altitude h, starting from its static equilibrium position, causing the high-speed rotary mo-
tion of the screw shaft. The energy balance algorithm (EBA) represents the attempt to it-
eratively obtain the lifting h of the buoy and, ultimately, a kinematic input for the multi-
body model, starting only from sea state and the mandatory simplification of the hypoth-
eses, as shown in Figure 4. 

 
Figure 4. Basic concept of the energy balance algorithm (EBA). 

The axial force FPTO resisting the relative motion between the translating nut and the 
rotating screw shaft is represented by a vector in Figure 5, and Equation (3) provides an 
estimation of it, 𝐹௉்ை ൌ െ𝐾ௗ௔௠௣ 𝑣௉்ை െ 𝐹௙௥௜௖௧௜௢௡ 𝑠𝑖𝑔𝑛ሺ𝑣௉்ைሻ െ 𝐾௩௜௦௖ 𝑣௉்ை െ 𝐾௜௡௘௥௧ 𝑎௉்ை (3) 

where vPTO and aPTO represent the nut’s velocity and the acceleration of the translating nut, 
respectively; Ffriction is the friction force, depending on which lubrication regime the recir-
culating ball-screw is expected to operate in; Kdamp, Kvisc, and Kinert are inertias and damping 
coefficients, as each subscript suggests. Since frictional forces have a large influence on 
this mechanism, the estimation of output power Pout available at the rotating screw shaft 
requires contact analysis. For this purpose, the multibody model described above is meant 
to be coupled to the elastohydrodynamic lubrication (EHL) model for the estimation of 

Figure 4. Basic concept of the energy balance algorithm (EBA).

An accurate assessment of efficiency by relying exclusively upon the geometry of
the contact surfaces and their finish, the helix angle of the thread, as well as the working
conditions of the screw (load, speed, lubrication, preload, alignment) is challenging due
to the complexity of the kinematic and dynamic analysis of the rolling elements. Indirect
efficiency η is defined as the ratio between output power Pout available at the rotating screw
shaft and input power Pin provided by the translating nut to achieve the conversion of
motion against frictional resistance [12], as reported in Equation (4).

η =
Pout

Pin
=

Mscrωscr

Fnutvnut
(4)
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Since the frictional forces and the lubrication regime engaged during the operation
have a large influence on the overall efficiency of this mechanism, the transmitted torque
Mscr evaluation requires a contact analysis, whereas axial force Fnut and both velocities ωscr
and vnut can be easily obtained from multibody simulations. The equilibrium condition in
contact points A and B are depicted in the Figure 7, which shows the forces shared between
the rolling element, the screw shaft, and the nut.
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Furthermore, in smooth and moderate operating conditions, low values of the screw’s
angular acceleration pave the way for a huge simplification in the proposed dynamic
analysis [14]: inertia forces can be neglected, and the quasi-steady-state assumption (QSSA)
is also expected to be appropriate. Let QA = QB = Q denote the closing force, βA = βB = β
the ball contact angle, α the lead angle, and f and ρ the coefficient of friction and the angle
of friction, respectively. The force Fball applied on each loaded ball and the transmitted
torque Mscr are reported in Equations (5) and (6) [15].

Fball = Q{cos(ρ)[sin(β) cos(α) + f cos(β) cos(α)] + sin(ρ)sin(α)} (5)

Mscr = (rm − rb cos(β))Q{cos(ρ)[sin(β) sin(α)− fB(cos(γB) cos(β) sin(α)− sin(γB) cos(α))]− sin(ρ)cos(α)} (6)

Finally, the elastohydrodynamic lubrication occurring in nonconformal elliptical con-
tacts is investigated [16,17] and the minimum film thickness hmin, as well as the coefficient
of friction f and the angle of friction ρ, are predicted, employing the widely used Hamrock–
Dowson formula [18], and the Houpert [19] and Balan [20] outcomes. It may be noted
that the minimum film thickness hmin is often divided by the root mean square roughness
σ of the contacting surfaces [21] in order to calculate the film parameter λ to predict the
lubrication regime the machine is expected to operate under (7), as shown in Figure 8 [22].

λ =
hmin

σ
(7)
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Mechanical power losses taking place in the ball return system and supporting the
bearings, as well as electrical power losses certainly confined inside the EMRG, cause the
whole actuator to overheat. The decrease in oil viscosity due to higher temperature may
result in a change in the lubrication mode from hydrodynamic to mixed film to boundary
lubrication, which usually represents the critical condition that reduces the lifespan of
the components. Moreover, the correct estimation of the EMRG operating temperature
is helpful in order to prevent thermal damage and ensure its continuing operation. For
this purpose, the lumped-parameter thermal model and the more advanced bidimensional
thermal model based on the finite element method (FEM) have been developed for the
offline estimation of temperature dynamics in the PTO module. Since heat production
estimation deeply affects the time evolution of temperature, both mechanical and electrical
power losses need to be taken into account. For a typical WEC operating cycle lasting 600 s,
experimental data for instantaneous mechanical power losses are provided by UG and
shown in Figure 9, whereas the electrical losses have been evaluated assuming an average
generation efficiency of 87%, which is known to be the useful electric power output.
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As first attempt, due to their relatively small sizes in the radial coordinate and their
high thermal conductivities, the generator, the screw shaft, and the nut are supposed
to behave as “lumps” whose internal temperatures remain essentially uniform in space.
Under such an assumption, the temperature can be taken to be a function of time only [23],
and the lumped parameter thermal model reported in the first order linear ODEs (8), (9),
and (10) is carried out. Each component, initially at uniform temperature T0, is suddenly
subjected to heat generation

.
Q and a convective boundary condition (i.e., convective heat

flux condition into the surrounding environment). In this model, Tgen denotes the generator
temperature, Tscr the screw temperature, Tnut the nut temperature, Tair,1 the temperature of
the air around the generator, Tair,2 the temperature of the air near the nut and the screw, m
the mass, cp the specific heat capacity,

.
Qel the electrical power loss,

.
Qmecc the mechanical

power loss, a1 the convective thermal conductance referred to the generator-air interface,
a2 the convective thermal conductance referred to the screw–air interface, a3 the convective
thermal conductance referred to the nut–air interface, b the contact thermal conductance for
the screw–generator interface, and p stands for the partition coefficient of heat generation
between the two components mentioned as a subscript (i.e., screw, nut, bearing) and
assumed equal to 50% in both cases, while r is the fraction of mechanical losses taking place
in the recirculating ball system supposed equal to 95%.(

mcp
dT
dt

)
gen

= a1
(
Tair,1 − Tgen

)
+ b

(
Tscr − Tgen

)
+

.
Qel (8)

(
mcp

dT
dt

)
scr

= b
(
Tgen − Tscr

)
+ a2

(
Tair,2 − Tscr

)
+ pscr−nutr

.
Qmecc + pscr−bea(1− r)

.
Qmecc (9)(

mcp
dT
dt

)
nut

= a3(Tair,2 − Tnut) + (1− pscr−nut)r
.

Qmecc (10)

The thermal parameters were obtained in a literature search [24,25] or, whenever the
need arose, estimated using the parameter estimation tool in Simulink [26–29] by fitting
the experimental profiles of thermal, mechanical, and electrical energies per cycle provided
by the UMBRA Group.

The finite element method (FEM) is used to numerically solve the coupled conduction–
convection problem, overcoming the strong limitations and the restricted range of applica-
bility experienced in the lumped system formulation. The FEM thermal model developed
in ANSYS required:

• laying out the physical structure;
• specifying the thermal properties of the materials and the internal heat sources;
• assigning the boundary and initial conditions.

In order to take advantage of the axial symmetry of both the geometry and the
boundary conditions, the bidimensional structure depicted in Figure 10 is considered, and
the adiabatic condition along the axis of symmetry y can be assumed.
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3. Simulation Results

This section covers the most interesting findings from the simultaneous simulations
performed by the Multibody and EHL models, as well as the comprehensive results
obtained by means of the standalone thermal models.

3.1. Multibody and EHL Models

Inverse dynamic analysis is performed to better understand and improve the power
takeoff (PTO) techniques and ultimately enhance the energy extraction from sea waves,
bearing in mind that WEC dynamic behavior is closely related to the efficiency of energy
conversion. In Figures 11–13, a sinusoidal vertical motion z(t) lasting for the period T = 3.8 s
of the common sea states, with an amplitude A = 1 m, is provided as kinematic input to the
buoy CG, and three outputs are observed: axial force FPTO acting on the translating nut,
screw rotation speedωscrew, and nut velocity vnut.

Energies 2022, 15, x FOR PEER REVIEW 9 of 15 
 

 

bearing in mind that WEC dynamic behavior is closely related to the efficiency of energy 
conversion. In Figures 11–13, a sinusoidal vertical motion z(t) lasting for the period T = 3.8 
s of the common sea states, with an amplitude A = 1 m, is provided as kinematic input to 
the buoy CG, and three outputs are observed: axial force FPTO acting on the translating nut, 
screw rotation speed ωscrew, and nut velocity vnut. 

 
Figure 11. Axial force FPTO as a function of time. 

 
Figure 12. Screw rotation speed ωscrew as a function of time. 

Figure 11. Axial force FPTO as a function of time.

Energies 2022, 15, x FOR PEER REVIEW 9 of 15 
 

 

bearing in mind that WEC dynamic behavior is closely related to the efficiency of energy 
conversion. In Figures 11–13, a sinusoidal vertical motion z(t) lasting for the period T = 3.8 
s of the common sea states, with an amplitude A = 1 m, is provided as kinematic input to 
the buoy CG, and three outputs are observed: axial force FPTO acting on the translating nut, 
screw rotation speed ωscrew, and nut velocity vnut. 

 
Figure 11. Axial force FPTO as a function of time. 

 
Figure 12. Screw rotation speed ωscrew as a function of time. Figure 12. Screw rotation speedωscrew as a function of time.



Energies 2022, 15, 9358 9 of 13
Energies 2022, 15, x FOR PEER REVIEW 10 of 15 

Figure 13. Nut velocity vnut as a function of time. 

The EHL model provided film parameters λ and coefficients of friction f, shown in 
Figure 14, and referred to each component mentioned above. 

(a) (b) 

(c) (d) 

Figure 14. EHL model outputs as functions of time: (a) film parameter λnut; (b) film parameter λscrew; 
(c) coefficient of friction fball-nut; (d) coefficient of friction fball-screw.

Finally, indirect efficiency η is reported below in Figure 15.

Figure 13. Nut velocity vnut as a function of time.

The EHL model provided film parameters λ and coefficients of friction f, shown in
Figure 14, and referred to each component mentioned above.
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The ball-screw frictional behavior used as the input of the lubrication model for the
calculation of the indirect efficiency η results in high values of the latter variable, ranging
from 73% to 97%, among the systems showing efficiency in the highest ranges, as explained
in [30].

Moreover, the lubrication model proves that the ball-screw mechanism operates largely
under mixed-mode lubrication, in the right-hand range of the Stribeck curve, associated
with a decrease in the coefficient of friction f as the relative velocity increases.

3.2. Thermal Models

The lumped-parameter model has been implemented in MATLAB/Simulink, and
time-domain solutions have been achieved in the offline mode. The simulation scenario is:

T0 = 20 ◦C, βscr−nut = βscr−bea = 50%, γ = 95% (11)

The geometrical and thermal properties of the components have been provided by UG,
while the thermal conductance was obtained from the literature. In Figure 16, numerical
solutions (dashed line) and approximating exponential functions (solid line) on the type
T(t) = T0 + ∆T

(
1− e−t/τ

)
are depicted. The careful choice of simulation times equal to

100 min allows the temperature to reach the steady-state value in each component.
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Electrical losses four times higher than frictional losses result in lower thermal stress on
the nut, whereas the screw and the electro-mechanical reciprocating generator experience a
more noticeable, but not critical, temperature increase: simulations show that the maximum
excursion between the warmer and the colder control points is only a few tens of Celsius
degrees. Finally, the nut exhibits a uniform temperature increase just above 40 ◦C.

The FEM thermal model developed in ANSYS provided the most accurate thermal
profiles: the spatial distribution of the temperature within the most thermally stressed
component, as well as its time evolution in some control points, are shown hereafter in
Figures 17 and 18. As result, the figures show the compatibility of the temperatures reached
by the main components of the WEC with the material properties and their resistance to
thermal stress.
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4. Concluding Remarks

This multidisciplinary research focused on the development of strongly integrated
models to simulate dynamic, tribological, and thermal responses of a wave energy converter
and its energy conversion process. As matter of fact, when looking at the present literature,
one finds that the researchers who are focusing on the mechanical aspects of the wave
energy converter systems and the device responsible for the energy capturing are often
working apart from considering the behavior of electrical systems and vice versa, including
the relevant coupling between thermal field. Thus, an effort to deepen the main frictional
conjunction responsible for the essential stage of the energy conversion in this WEC system
has been proposed in the present paper.

Inverse dynamic analysis demonstrates that high rotational speeds can be easily
obtained, exploiting shallow water wave energy. It also provides the internal force FPTO,
evenly distributed among the rolling elements of the ball-screw and used as the input of the
elastohydrodynamic lubrication model for the online estimation of the indirect efficiency
η: high values ranging from 73% to 97% have been observed. Moreover, the lubrication
model proves that ball-screw mechanism operates largely under mixed-mode lubrication,
in the right-hand range of the Stribeck curve, associated with a decrease in the coefficient
of friction f as the relative velocity increases.

Two thermal models have been compared to deliver additional results to designers of
wave energy converters based on the ball-screw mechanism. Electrical losses four times
higher than the frictional losses result in lower thermal stress on the nut, whereas the
screw and the electro-mechanical reciprocating generator experience higher temperatures,
operating in safe conditions in all the simulated scenarios.

For future study, the improvement of the design of the mechanical element will aim at
proving the stability of such systems for the sea environment, including the rheological
properties of greases and lubricants exposed to sea water. The design of the system should
also encompass the automatic control of auxiliaries to manage system operating conditions
outside of those reported in this work.

Researchers in the field wave energy converters will also be focused on the optimiza-
tion of the energy transfer from the mechanical device to the grid on the other side in order
to increase the capture of energy in a broad range of sea states.
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