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Abstract: In an era where sustainability is becoming the main driving force for research and develop-
ment, supercritical fluids-based techniques are presented as a very efficient alternative technology
to conventional extraction, purification, and recrystallization processes. Supercritical antisolvent
(SAS) precipitation is a novel technique that can replace liquid antisolvent precipitation techniques.
Additionally, through the optimization of precipitation operating conditions, morphology, particle
size, and particle size distribution of nanoparticles can be controlled. As an antisolvent, supercritical
carbon dioxide (scCO2) is far more sustainable than its conventional liquid counterparts; not only
does it have a critical point (304 K and 73.8 bar) on its phase diagram that allows for the precipitation
processes to be developed so close to room temperature, but also its recovery and, consequently, the
precipitated solute purification stage is considerably simpler. This technique can be used efficiently
for preparing nanocatalysts to be used in biodiesel production processes.

Keywords: supercritical antisolvent precipitation; carbon dioxide; supercritical CO2; nanoparticles;
biodiesel catalysts

1. Introduction

Ever since Baron Charles de la Tour first theorized supercritical fluids (SCFs) in
1822 [1–3], several research studies have been executed regarding its applications, re-
sulting in several technologies such as supercritical fluid extraction, supercritical drying,
supercritical dyeing, and supercritical fluid chromatography. [1] SCFs are characterized by
having both their temperature and pressure values higher than their critical point, where a
significant difference between liquid and gas does not exist [2,4].

As these operating conditions exceed the critical point, a clear interface between the
liquid and gas phases tends to disappear and, thus, becomes a mixed gas, as shown in
Figure 1. This mixed gas has properties inherited from both gaseous and liquid states,
namely: low viscosity, high density, high diffusivity, non-existing surface tension, good
fluidity, heat and mass transfer characteristics, as well as an adjustable solvent selectiv-
ity [1,5–10]. The particular combination of these properties is appropriate for creating
procedures for recovering, purifying, and extracting fine chemicals and pharmaceuticals
and also for creating new products that can not be produced by applying more traditional
processes [2,3].

Supercritical carbon dioxide (scCO2) and supercritical water have been recognized as
green solvents for the future, mostly due to their ecological benefits, as they are nontoxic,
noncarcinogenic, non-mutagenic, nonflammable, and thermodynamically stable. Supercrit-
ical carbon dioxide (scCO2), when compared to supercritical water, exists at temperatures
above 647 K and pressures over 221 bar, and it is more easily accessible by having a critical

Energies 2022, 15, 9355. https://doi.org/10.3390/en15249355 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15249355
https://doi.org/10.3390/en15249355
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-8602-7885
https://orcid.org/0000-0002-2763-3655
https://orcid.org/0000-0003-2579-6669
https://doi.org/10.3390/en15249355
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15249355?type=check_update&version=1


Energies 2022, 15, 9355 2 of 7

temperature (TC) of 304 K and a critical pressure (PC) of 73.8 bar, as shown in Figure 1.
Thus, this considerably low critical temperature allows processes to be developed very near
to ambient temperature [3,12–15].
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2. Preparation of Nanomaterials Using Supercritical CO2

Nanoscale materials, often known as nanomaterials, are defined by the International
Union of Pure and Applied Chemistry (IUPAC) as having organized components with
at least one dimension less than 100 nm [16]. New nanomaterials, including nanoclays,
nanofibers, nanoporous materials, carbon nanotubes, nanocomposites, and nanoparticles,
have recently been used for several different applications [17].

The most used methods to produce nanomaterials are gas condensation, vacuum
evaporation and deposition, precipitation, impregnation, chemical vapor deposition, nano-
grinding, calcination-hydration-dehydration, and sol–gel techniques [1,18–20]. Liquid
anti-solvent processes are also used in the industry, based on the miscibility between
two solvents. The solute to be micronized has to be soluble in the first solvent, but not
soluble in the anti-solvent. Therefore, by adding the anti-solvent, the formation of a solution
between the two liquids and the supersaturation is induced, and subsequent precipita-
tion of the solute occurs [21]. This traditional micronization technique usually produces
wide particle size ranges and products with an uneven morphology. The elimination of
liquid solvent residues is also a matter of concern [21,22]. These limitations can be particu-
larly pertinent for some industrial applications, such as the production of pharmaceutical
compounds [23].

Due to the features of supercritical fluids (SCFs) that have been previously described,
approaches based on SCFs have been suggested as an alternative to traditional proce-
dures [5]. By adjusting the operational parameters like the temperature, pressure, and
solvent flow rate, supercritical fluids like scCO2 can produce nanoparticles. It is also feasi-
ble to modify the particle size as well as the morphology of nanoparticles by utilizing the
unique properties of supercritical solvents [1]. The earliest evidence of supercritical fluids
being used for particle formation upon their depressurization was found in 1879 by Hannay
and Hogart [24,25]. Surprisingly, the first patent for the rapid expansion of supercritical ex-
pansion solutions by valves or other spraying devices, or Rapid Expansion of Supercritical
Solutions (RESS), was not published until 1986, more than a century after the invention was
made [25]. Since CO2 has a low critical pressure, and particularly temperature, in addition
to being abundant and reasonably non-expensive, it has several technological advantages:
used CO2 can be easily collected and reutilized [26], and different processes have been
developed for that purpose.
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Recently, new proposals and developments have been made concerning various
micronization technologies aiming to benefit from the peculiarities of fluids at supercritical
conditions: new approaches for particle formation methods focused on the use of scCO2
have started to be designed, developed, and tested, such as solvent (RESS), antisolvent
(supercritical antisolvent (SAS)), aerosol solvent extraction system (ASES), precipitation
with compressed antisolvent (PCA), gaseous antisolvent (GAS), supercritical antisolvent
using enhanced mass transfer (SAS-EM), solution enhanced dispersion by supercritical
fluids (SEDS), suspension-enhanced dispersion by supercritical fluids (SpEDS)), co-solute
(particle formation from gas-saturated solutions (PGSS)) and co-solvent [25,27–29]. A
conceptual picture of the various scCO2-based particle production processes is shown in
Figure 2.
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Figure 2. Conceptually distinct particle precipitation mechanisms are represented using scCO2:
(a) Formation of particles from gas-saturated solutions (PGSS). (b) Expansion (rapid) of supercritical
solutions (RESS). (c) Expansion (rapid) of a supercritical solution into a liquid solvent (RESOLV).
(d) Precipitation using a compressed anti-solvent (PCA)/Aerosol solvent extraction system (ASES).
(e) Supercritical antisolvent with enhanced mass transfer (SAS-EM). (f) Solution-enhanced dis-
persion by supercritical fluids (SEDS). (g) Suspension-enhanced dispersion by supercritical fluids
(SpEDS) [28].

3. Supercritical Antisolvent (SAS) as a Micronization Technique

Supercritical antisolvent precipitation (SAS), is a novel, ecologically benign method of
creating nanomaterials that may be used as a substitute for liquid solvent precipitation since
it is far more efficient. scCO2 has been extensively used for producing a variety of materials,
such as polymers, biopolymers, superconductors, explosives, colouring agents, active
pharmaceutical ingredients (APIs), and catalysts, using an antisolvent for the controlled
precipitation of solids dissolved in conventional solvent, if the processed compounds do not
dissolve in the supercritical medium [5,23,30–34]. Under the right process conditions, these
compounds dissolve into an organic liquid miscible with the supercritical antisolvent [32].
SAS combines the benefits of the sol–gel process with the use of a supercritical CO2
antisolvent to create highly porous nanoparticles. The sol–gel technique is used in the
SAS process and takes place in a supercritical atmosphere, allowing for quick precursor
hydrolysis and quick condensation. This rapid method is, then, connected to a simple
purification phase [26]. The dissolution of the solvent and, also, of the supercritical fluid
occurs very fast when the solution is put into contact with scCO2 because of very high
mass transfer rates, ensuring for the creation of micro- and nanoparticles within the solute
precipitation. The process is carried out in either a one-phase supercritical manner or
a two-phase gas-liquid approach, with particle production taking place in both cases,
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depending on operating variables such as pressure and temperature. As a result, the
SAS process, based on the characteristics of supercritical fluids, is a viable micronization
method [31,35,36].

Additionally, the size and morphology of the resulting solids precipitated by SAS
technologies are usually correlated with the system solvent/antisolvent high-pressure VLEs
(vapour-liquid equilibrium), or the position of the SAS operating point around the critical
point of the mixture (MCP) [7,29]. For instance, if the process is being conducted as a single-
phase method with no interface between the solution and the antisolvent, this indicates
that micronization is occurring at supercritical conditions, i.e., above the MCP, and the very
fast diffusion of scCO2 into the liquid solvent causes its expansion, thus producing the
solute’s supersaturation and resulting in forming nanoparticle morphologies that are not
typically achieved by traditional catalyst preparation methods [26,33]. This phenomenon,
adding to the quasi-zero surface tension of scCO2, allows for obtaining particles of smaller
size and having a narrow particle size distribution (PSD) with the complete elimination
of the solvents, when compared to the traditional micronization techniques [23,31,36,37];
or, if the process shows a two-phase mixing, the micronization is occurring at subcritical
operation conditions, i.e., in the biphasic region below the MCP, resulting in the production
of microparticles [25,29].

The success of SAS precipitation techniques is strongly dependant on the affinity
between the solvent and the supercritical antisolvent, i.e., the solubility of the liquid
solvent in the supercritical CO2 and the quick gas-like diffusion of the scCO2 in the sol-
vent [22,29], as shown in Figure 3. Several organic liquids that are completely miscible with
scCO2 under process conditions have been used, such as acetic acid, acetone, chloroform,
dichloromethane, dimethyl formamide, dimethylsulfoxide, ethanol, ethyl acetate, formic
acid, isopropanol, methanol, N-methyl pyrrolidone, and tetrahydrofuran. In some other
cases, mixtures of two of the indicated solvents have also been used [25,34].
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Figure 3. Schematic diagram of the supercritical antisolvent (SAS) apparatus, composed of: BPV:
Back-pressure valve; LS: Liquid separator; MV: Micrometric valve; P1, P2: Pumps; PC: precipitation
chamber; RB: Refrigeration bath; S1: CO2 supply; S2: Liquid solution supply; R: Rotameter [22].

The common and universal mode of operation of a semi-continuous SAS apparatus
comprises the utilisation of a high-pressure diaphragm pump with a cooling system for
the pumping head to supply supercritical CO2 into the precipitation vase at a constant
flow rate until the appropriate pressure is achieved. To achieve steady-state fluid phase
composition conditions during solute precipitation, a high-pressure pump then injects
pure solvent through the nozzle into the precipitation chamber. A stainless-steel frit is
generally located at the bottom of the chamber to collect the solute precipitate formed due
to the solvent supersaturation, enabling the solvent/scCO2 mixture to pass through and
then be recovered and separated further downstream, where the solvent is collected in a
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second vessel. A dry test meter and a rotameter are frequently employed to gauge the CO2
flow rate as well as the total amount of antisolvent supplied at the exit of this second vessel.
The solution created by the liquid solubilized in the supercritical antisolvent is removed
as supercritical CO2, which will flow through the chamber in order to wash it. When the
solvent condensates during the depressurization process, it has the potential to solubilize
or alter the precipitates if a final purge with pure CO2 is eliminated. The precipitator is then
depressurized to atmospheric pressure after this washing step, allowing for the collection
of the precipitated powder [7,22,25].

As stated before, numerous materials have been produced using scCO2 as an antisolvent
to perform the controlled precipitation of particles dissolved in more traditional solvents.

Ha et al. (2020) created nanoparticles of pure trans-resveratrol without the addition
of any sugars, polymers, or surfactants using supercritical antisolvent (SAS) technology.
The preferred solvents were combinations of dichloromethane and alcohol (methanol or
ethanol). Using an ethanol/dichloromethane combination at a 25%/75% (w/w) ratio, the
SAS approach enabled the production of trans-resveratrol nanoparticles having a mean
particle size of 0.17 m. The trans-resveratrol nanoparticles produced by SAS displayed
enhanced oral bioavailability when compared to other microparticles of varied sizes manu-
factured by two other milling processes [38].

Hariyanto et al. (2021) used the supercritical antisolvent (SAS) procedure to produce
micronized ecamsule powder (having dimensions in the range 1.8–2.8 µm) using scCO2 as
antisolvent. The effect of different operational parameters, such as pressure, temperature,
flow rate of ecamsule solution, and solute (ecamsule) feed concentration on the particle
size and size distribution, as well as properties of ecamsule were evaluated. The authors
obtained a yield of micronized (1.8 ± 0.8 µm) ecamsule particles of about 91% at 323 K,
14 MPa, and a solution flow rate of 1 mL min−1 for a solute feed concentration of 5%
wt. Compared to previous drying processes, the microparticles had a reduced crystalline
structure and improved chemical characteristics [39].

Kim et al. (2008) successfully used the supercritical antisolvent (SAS) technique to
produce amorphous atorvastatin calcium nanoparticles. The dissolution rates of amor-
phous calcium atorvastatin nanoparticles were much higher than those of the identical
unprocessed drug due to an increase in intrinsic dissolving rate and a decrease in particle
size, which, in turn, improved the specific surface area. Following oral administration
of the nanoparticles to rats, the researchers also observed a noticeably increased rate of
medicine absorption [40].

Reverchon et al. (1999) used supercritical antisolvent (SAS) for producing zinc acetate
to assess the viability of using this method to create controlled-size nanoparticles of catalyst
precursors. It was possible to create zinc acetate nanoparticles as small as 30 nm and with a
mean particle size distribution of 50 nm. Depending on the liquid solution’s concentration,
the generated nanoparticles displayed a range of porosities. Using N2 adsorption, BET
surface areas were measured, ranging up to 175 m2/g [41].

Nobre et al. (2020) investigated the precipitation of calcium acetate made from
eggshells using the SAS method. The experimental parameters such as pressure, tempera-
ture, liquid solution concentration, and injection flow rate were reported by the authors
along with a study of precipitation efficiency as a function of these parameters. In con-
trast to metallic acetates described in the literature, the produced particles had a distinct
morphology and exhibited a rod-like structure. Furthermore, FTIR and thermogravimetric
analyses proved that the precipitated calcium acetate had a better purity than the initial
acetate made from the eggshells [42]. Santos et al. [43,44] also used this technique to obtain
nano-structured calcium oxide catalysts that can be used in the obtaining of biodiesel via
transesterification, with certain advantages over other heterogeneous catalysts.

4. Conclusions

Supercritical antisolvent (SAS) precipitation using supercritical CO2 allows for more
efficient production of nanomaterials than liquid solvent precipitation, due to being faster,
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allowing for control of the nanomaterial’s particle size as well as particle size distribution
through fine-tuning of the precipitation operating conditions, and having an easier purifica-
tion stage. All these advantages, together with the fact that supercritical CO2 is considered
a green solvent for the future due to its ecological benefits when compared to conventional
solvents, make this a very desirable precipitation process.
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