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Abstract: In this paper, a deep neural network (DNN)-based nonlinear model predictive controller
(NMPC) is demonstrated using real-time experimental implementation. First, the emissions and
performance of a 4.5-liter 4-cylinder Cummins diesel engine are modeled using a DNN model with
seven hidden layers and 24,148 learnable parameters created by stacking six Fully Connected layers
with one long-short term memory (LSTM) layer. This model is then implemented as the plant model
in an NMPC. For real-time implementation of the LSTM-NMPC, an open-source package acados with
the quadratic programming solver HPIPM (High-Performance Interior-Point Method) is employed.
This helps LSTM-NMPC run in real time with an average turnaround time of 62.3 milliseconds. For
real-time controller prototyping, a dSPACE MicroAutoBox II rapid prototyping system is used. A
Field-Programmable Gate Array is employed to calculate the in-cylinder pressure-based combustion
metrics online in real time. The developed controller was tested for both step and smooth load
reference changes, which showed accurate tracking performance while enforcing all input and output
constraints. To assess the robustness of the controller to data outside the training region, the engine
speed is varied from 1200 rpm to 1800 rpm. The experimental results illustrate accurate tracking
and disturbance rejection for the out-of-training data region. At 5 bar indicated mean effective
pressure and a speed of 1200 rpm, the comparison between the Cummins production controller and
the proposed LSTM-NMPC showed a 7.9% fuel consumption reduction, while also decreasing both
nitrogen oxides (NOx) and Particle Matter (PM) by up to 18.9% and 40.8%.

Keywords: deep learning; deep neural network; emission reduction; machine learning; long-short-term
memory; model predictive control

1. Introduction

Model-based optimal control techniques take advantage of significant improvements
in system modeling, which has led to an increase in interest from various researchers in the
past two decades. Some of these model-based control methods include the linear quadratic
regulator [1,2], sliding mode controller [3–5], backstepping [6,7], adaptive control [8,9],
and Model Predictive Control (MPC) [2,10–13]. Of these model-based controllers, MPC is
an effective control strategy that is used widely in a range of applications from the chemi-
cal process industry to other industries such as automotive, power and energy systems,
manufacturing, aerospace, healthcare, finance, and others [14]. All of these applications
take advantage of the ability of MPC to provide an optimal control solution while allowing
for the implementation of constraints on system states and controller outputs.
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The models for the MPC controllers can be designed from various modeling methods
including physics-based models (white box) and Machine Learning (ML) models based
on experimental data (black box), as well as a mix of the physics and experimental data
(gray box). Each of these models have their advantages and disadvantages. However,
independent of the type of the model, one challenge with MPC is the controller sensitivity
to model uncertainty and the required model computational time, especially for online
optimization. Often, a trade-off exists, where improving model accuracy leads to increased
model complexity, and these complex models exhibit nonlinear behavior requiring a more
complicated control law such as Nonlinear MPC (NMPC) [15,16].

When compared with a feedforward neural network, A Recurrent Neural Network
(RNN) is structurally similar with the addition of backward connections, which are needed
for the sequential inputs [17]. With the use of parameter sharing, the RNN is highly
computationally efficient. However, in RNNs, any long-term dependencies are difficult
to capture in the model, as the prediction is only based on recent steps. This can also be
described as the “vanishing gradient”, with the contribution of earlier steps becoming
increasingly small. The challenge with RNN is the lack of long-term memory; however,
memory cells can be introduced to help solve this problem. The most well-known form of
these long-term memory cells is the Long Short-Term Memory (LSTM) cell [17].

Combining LSTM and NMPC, denoted as LSTM-NMPC, has shown its potential in
optimal temperature set-point planning for energy efficient buildings [18], steam quality
of thermal power units [19], and for motion prediction of surrounding vehicles in an
autonomous vehicle [20]. With the success in these previous applications, LSTM-NMPC is
now being considered for systems requiring fast time steps, such as control of an internal
combustion engine. To implement this, embedded programming techniques are required,
as discussed in this paper.

Specifically, the control of a diesel-fueled Compression Ignition (CI) engine is demon-
strated in this work. The reliability and fuel conversion efficiency of CI engines has allowed
these engines to be prevalent in a wide range of transportation sections. From the interna-
tional transportation of goods in ships to use in public transportation systems including
trains, buses, and medium-duty vehicles, the diesel engine is a common combustion system
worldwide [21,22]. However, there are also disadvantages of diesel combustion, one of
which is air pollution. With the need to move to a cleaner future, hybridization and electri-
fication are getting increasing market share for light-duty passenger vehicles. However,
challenges still remain for heavy-duty applications, which can be attributed to limited
battery range, high battery costs, and increased total cost of ownership [21,22]. Because of
this slow transition to electrification in the heavy-duty applications, there is an urgent
need to provide emission reduction strategies that can be applied to the medium-duty and
heavy-duty vehicles on the road today.

The challenge with applying LSTM-NMPC for cycle-to-cycle CI control is both the
very short computational time available between engine cycles (e.g., 80 ms at engine speed
of 1500 rpm) as well as the highly complex combustion process. The computational time
restriction limits the complex models and high-fidelity models that can be included for
real-time controller implementation. This competes with the need for detailed models that
provide an accurate representation of the combustion process. Therefore, to enable the
use of model-based controllers, significant work has been invested in the development of
accurate and computationally efficient models [23–27]. However, the complexity of the CI
combustion and the many various supporting systems in a CI engine has made physical-
based model development time-consuming, and these models are often highly nonlinear
and nonconvex. It is often necessary to utilize linearization or model-order reduction
techniques of these complex models to allow for real-time control implementation [28].

The structure of most of the previous work in ML-based MPC for ICEs has been
linear [10,12,29,30], or a nonlinear model that has been linearized [31–33]. Only a few
previous researchers have explored a nonlinear data-driven structure [34–36]. Among these
works, only one study was found that explores ML-based MPC control of a CI engine where
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a linearized model of a nonlinear ML-based model was used to design and implement a
controller [31]. Furthermore, for considering real-time implementation, only linear models
such as linear parameter varying (LPV) [12] or a linearized model [33] have been suc-
cessfully implemented experimentally. Any previous ML-based Nonlinear MPC (NMPC)
has only been implemented in simulation [34–36]. To the authors’ knowledge, this work
shows the first time that a data-driven-based NMPC using Deep Neural Network (DNN)
with a Long Short-Term Memory (LSTM) layer has been experimentally implemented
that addresses the fast dynamics of ICEs. The advantages of the proposed LSTM-NMPC
compared with prior physical-based NMPC studies [15] for CI engines include (i) less
required development time to create high-fidelity engine combustion and emission models,
(ii) less computational cost, (iii) no need for multilayer controller design (supervisory MPC
and feedback NMPC), and (iv) including Maximum Pressure Rise Rate (MPRR) constraints.

Based on our previous simulation results [37–39], LSTM is a promising control method
for ICE control, especially when compared with Support Vector Machine based LPV [38].
In our previous work, the reduction in NOx emissions and fuel consumption using LSTM-
NMPC [37] was implemented in simulation and validated using a processor-in-the-loop
platform. This work extends our previous study [37] and is implemented on a real-time
system using acados embedded programming. The previously developed controller is also
further expanded to include Particle Matter (PM) emission reduction; thus, the NOx and
PM trade-off can be optimized for the CI engine. In addition, multi-pulse injection timing
and duration, along with fuel pressure control, were added to gain more degrees of freedom
to optimally control the CI engine-out emissions.

The main contributions of this paper are summarized as:

1. Developed a transient Indicated Mean Effective Pressure (IMEP), Maximum Pres-
sure Rise Rate (MPRR), NOx and PM concentration model using a DNN with one
LSTM layer, which provides a high-accuracy model for nonlinear model predictive
combustion engine control;

2. Real-time implementation of our previously proposed novel approach [37] to augment
LSTM in NMPC (LSTM-NMPC) by augmenting LSTM hidden and cell states into a
nonlinear optimization problem;

3. Design and real-time implementation of an NMPC using an ML model to minimize
engine-out emission concentration, optimize NOx-PM trade off, and minimize fuel
consumption, while maintaining the same output torque performance and illustrating
significant improvements compared with the Cummins-calibrated production ECU.

The remainder of this paper is organized into four sections. Section 2 presents the
development and design structure of the deep network model, as well as the experimental
setup details. Section 3 provides details of the NMPC design and acados implementation.
Experimental results, including comparison with the production ECU, are presented in
Section 4. Finally, the main conclusions are summarized in Section 5.

2. Modeling
2.1. Deep Neural Network

The Long Short-Term Memory (LSTM) cell is the most well-known form of RNN with
long-term memory cells that are able to predict outputs while considering a long-term
dependency. In comparison with basic RNNs, LSTMs employ a hidden state that is divided
into two components: (i) the short-term state h(k) and (ii) the long-term state c(k), as shown
in Figure 1. The long-term state goes across the network and initially enters the forget gate
and is multiplied by f (k). Each time step adds new values (memories) to the input gate
i(k). As a result, some data are added and some are deleted at each time step [17].

To model the CI engine emissions, a deep neural network with seven hidden layers,
including 6 Fully Connected (FC) layers and one LSTM layer, is proposed, as shown in
Figure 2. The input of this model is the start of injection (SOI) for the main injection
(uSOI,main), duration of injection for both main (uDOI,main) and pilot injection (uDOI,pilot),
duration between the end of pilot injection and the start of main injection pre-2-main
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time (up2m), and fuel rail pressure (up,fuel). The pre-2-main time is used instead of the
SOI of pilot injection (uSOI,pilot) to allow for hardware constraints which limit the minimal
time between injections to be implemented in the controller. This is necessary to prevent
unintended overlapping injections where the injector has not fully closed. Figure 3 shows
the relationship between SOI and DOI for both injections, as well as up2m. The outputs of
this model are nitrogen oxides (yNOx ), Particle Matter (yPM), Maximum Pressure Rise Rate
(yMPRR), and Indicated Mean Effective Pressure (yIMEP).

Forget gate

input gate

output gate

LSTM cell

Element-wise multiplication Addition

Figure 1. Long Short-Term Memory (LSTM) cell structure schematics.

LSTM
Layer 

FC1 FC2 

FC3 

FC5 FC6 

FC4 
LSTM 

64
units 

64
units 

128
units 

4
units 128

units 

64
units 

64
units 

Output  Input Fully Connected 
Layers 

Fully Connected 
Layers 

Figure 2. Structure of the proposed deep neural network model for engine performance and emission
concentration modeling. LSTM: Long Short-Term memory, SOI: start of injection, DOI: duration of
injection, p,fuel: fuel rail pressure, IMEP: indicated mean effective pressure, MPRR: maximum pressure
rise rate, PM: Particle Matter, p2m: duration between end of pilot injection and start of main injection.

Figure 3. Diesel engine multiple injections. SOI: start of injection, DOI: duration of injection,
p2m: duration between end of pilot injection and start of main injection.

To capture the nonlinearity with the LSTM, more LSTM hidden units are needed,
which result in a high number of hidden states and cell states. This resulted in a high
computational cost for the MPC controller to find an optimal solution during real-time
implementation. In our real-time implementation, doubling LSTM hidden units resulted
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in approximately doubling computational turnaround time from 63 ms to 130 ms, while
this time must be within one engine cycle time (e.g., 80 ms at 1500 rpm) for cycle-by-cycle
control. Instead of increasing LSTM hidden units, the Fully Connected (FC) layers are
added before and after the LSTM layer to boost the network’s capacity for estimating the
engine’s nonlinearity without significantly increasing the number of hidden and cell states.

To use this network inside a Nonlinear MPC (NMPC), a function using forward
propagation is needed. To perform forward prorogation, first the LSTM and FC layers
computations are evaluated. A computational graph (Figure 4) clarifies how the equations
of the model are obtained. The LSTM computations are

i(k) = σ
(

W>u,iu(k) + W>h,ih(k− 1) + bi

)
(1a)

f (k) = σ
(

W>u, f u(k) + W>h, f h(k− 1) + b f

)
(1b)

g(k) = tanh
(

W>u,gu(k) + W>h,gh(k− 1) + bg

)
(1c)

o(k) = σ
(

W>u,ou(k) + WT
h,oh(k− 1) + bo

)
(1d)

c(k) = f (k)� c(k− 1) + i(k)� g(k) (1e)

h(k) = o(k)� tanh(c(k)) (1f)

where Wu,( f ,g,i,o) are the weight matrices applied to the input vector u(k) and Wh,( f ,g,i,o)
are the weight matrices of the previous short-term state h(k). In this equation, � is an
element-wise multiplication and b( f ,g,i,o) are the biases. In Equation (1), i(k) is the input
gate, f (k) is the forget gate, g(k) is the cell candidate, o(k) is the output gate, c(k) is the cell
state, and h(k) is the hidden state. Two activation functions are used in Equation (1), which
are given as: (i) tanh(z) activation function:

tanh(z) =
e2z − 1
e2z + 1

(2)

(ii) σ(z) activation function:

σ(z) =
1

1 + e−z (3)

An FC layer equation with Rectified Linear Unit (ReLU) activation function is de-
fined as

zFC(k) = ReLU(WT
FCu(k) + bFC) (4)

where ReLU activation function is defined as

ReLU =

{
0 if z ≤ 0
z if z > 0

(5)

The computational graph of this network is shown schematically in Figure 4. Based
on this graph, and using Equations (1) and (4), the model equations are:

zFC1(k) = ReLU
(

WT
FC1u(k) + bFC1

)
(6a)

zFC2(k) = ReLU
(

WT
FC2zFC1(k) + bFC2

)
(6b)

zFC3(k) = ReLU
(

WT
FC3zFC2(k) + bFC3

)
(6c)
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i(k) = σ
(

W>u,izFC3(k) + W>h,ih(k− 1) + bi

)
(7a)

f (k) = σ
(

W>u, f zFC3(k) + W>h, f h(k− 1) + b f

)
(7b)

g(k) = tanh
(

W>u,gzFC3(k) + W>h,gh(k− 1) + bg

)
(7c)

o(k) = σ
(

W>u,ozFC3(k) + W>h,oh(k− 1) + bo

)
(7d)

c(k) = f (k)� c(k− 1) + i(k)� g(k) (7e)

h(k) = o(k)� tanh(c(k)) (7f)

zFC4(k) = ReLU
(

W>FC4h(k) + bFC4

)
(8a)

zFC5(k) = ReLU
(

W>FC5zFC4(k) + bFC5

)
(8b)

y(k) = W>FC6zFC5(k) + bFC6 (8c)

where WFC,i and bFC,i are the weights and biases of the fully connected layer where
i ∈ {1, 2, 3, 4, 5, 6}, Wu,( f ,g,i,o) are the weight matrices of the input vector u(k), and Wh,( f ,g,i,o)
are the weight matrices of the previous short-term states h(k).

FC1

FC2

FC3

FC4

FC5

FC6

Learnable = 12,864 

Learnables = 9156 

Learnables = 2128 

LSTM 

FC 

FC 

Figure 4. Computational graph of proposed deep network—FC: Fully Connected, LSTM: Long
Short-Term Memory.
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For training with experimental data, a standard cost function [17] of this network is
defined as

J(W, b) =
1
m

m

∑
k=1
L(ŷ(k), y(k)) +

λ

2m

L

∑
l=1
||W [l]||22 (9)

where L(ŷ(k), y(k)) is the loss function, m is the number of data points, ŷ(k) is measured
output, and y(k) is predicted output. A Mean Squared Error (MSE) loss function is used,
which is defined as

L(ŷ(k), y(k)) =
1
m

m

∑
k=1

(ŷ(k)− y(k))2 (10)

In Equation (9), λ is the regularization coefficients and ||W [l]||22 is the Euclidean norm,
which is defined as

||W [l]||22 =
n[l]

∑
i=1

n[l−1]

∑
j=1

(w[l]
ij )

2 (11)

2.2. Training Model: Diesel Engine Modeling

Experimental data were collected from a 4.5-liter medium-duty Cummins diesel en-
gine to parameterize the model. The schematics of the experimental setup of the Cummins
QSB4.5 160 diesel engine is shown in Figures 5 and 6. NOx emission concentration from
the engine are measured using a Bosch sensor with ECM electronics (P/N: 06-05). A Pe-
gasor Particle Sensor (PPS-M) is used to measure Particle Matter (PM). Additional details
regarding the experimental setup can be found in [3,40–42].

Dynamometer
Cummins 

Diesel Engine

Monitorin

g Camera

mks FTIR 

system

Pegasor Particle Sensor PPS-M

dSPACE

MicroAutoBox

NOx SensorControl Room

Figure 5. Experimental setup of the diesel engine in this work.

The in-cylinder pressure is recorded using a National Instruments Data Acquisition
Systems (DAQ) at a 0.1◦ resolution. This pressure signal is simultaneously provided to the
Field Programmable Gate Array (FPGA) board contained in the prototyping ECU. More
specifications of the MicroAutoBox II (MABX) prototyping ECU are provided in Table 1.
The MABX II contains two main boards a CPU and FPGA. The CPU (ds1401) is used for
replicating the production Cummins ECU tables, as well as for the implementation of the
NMPC developed in this work.

The Xilinx Kintex-7 FPGA contained within the MABX is used to calculate various
combustion metrics in real time. These include IMEP and MPRR, which are transferred
from the FPGA to CPU for use as input to the NMPC. Details regarding the real-time
calculation of IMEP and MPRR can be found in [27,43].
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Cummins QSB4.5  
160 Diesel Engine

Intake Manifold
Common Rail

 Output Torque

Intake Air

Fuel

Injector

Aftertreatment 
system

Vent to  
Atmosphere 

CAN

Electrochemical
NOx Sensor

Exhaust Gas

Exhaust Manifold

NOx Concentration Feedback

PEGASOR MI3 Particle Mass (PM) feedback 

SOI, DOI, Pfuel

Encoder

Pressure
Sensor

Dynamometer Speed

Dynamometer Control
Command

CAN

Dynamometer

FPGA 

IMEP 
MPRR 

MicroAutoBox 
Control Unit

Figure 6. Schematic of experimental setup of the diesel engine in this work.

Table 1. Rapid prototyping ECU Specifications.

Parameter Specification

Processor dSPACE® 1401 IBM PPC-750GL
Speed 900 MHz

Memory 16 MB main memory

I/O dSPACE® 1511
Analog input 16 Parallel channels

Resolution 16 bit
Sampling frequency 1 Msps

Analog output 4 Channels
Digital input 40 Channels

Digital output 40 Channels

FPGA dSPACE® 1514 Xilinx® Kintex-7
Flip-flops 407,600

Lookup table 203,800
Memory lookup table 64,000

Block RAM 445
DSP 840
I/O 478

To develop this deep network, which has 24,148 learnable parameters, a large data
set including 65,000 consecutive engine cycles is used. Therefore, the diesel engine was
run for 65,000 cycles, and all five inputs, including the SOI of main (uSOI,main(k)), DOI
of main (uDOI,main(k)), DOI of pilot (uDOI,pilot(k)), p2m time (up2m(k)), and fuel rail pres-
sure (up,fuel(k)), are changed randomly using a pseudo-random binary sequence (PRBS).
A random signal is used to change both the amplitude and frequency of these five inputs.

Table 2 summarizes the training information for the proposed network. To train this
model, the Adam algorithm was used in the MATLAB Deep Learning Toolbox©. The loss
function vs. iteration for the proposed deep network is given in Figure 7, where the
loss functions converge to a minimal value. Additionally, the validation loss function
converges to the training loss function, suggesting that neither overfitting nor underfitting
has occurred [17].
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Table 2. Specification of training the proposed deep network to predict performance and emission.

Name Value

Optimizer Adam
Maximum Epochs 5000

Mini batch size 512
Learn rate drop period 1000 Epochs
Learn rate drop factor 0.5

L2 Regularization 10
Initial learning rate 0.001

Validation frequency 64 iteration
Momentum 0.9

Squared gradient decay 0.99

Figure 7. Loss versus epochs (number of passes of the entire training dataset) for the proposed deep
neural network model.

The training and validation results of the proposed model are compared to the experi-
mental values in Figure 8. Where cycles 1 to 40,000 are utilized for training, cycles 40,001
to 52,000 are used for validation, and cycles 52,001 to 65,000 are used for testing. In this
figure, the SOI of pilot (SOIpilot) is calculated based on P2M time and illustrated to improve
understanding of the controller behavior.

The accuracy of this model for each output is summarized in Table 3. For accuracy,
the Root Mean Square Error (RMSE) and Normalized Root Mean Square Error (NRMSE)
are used, which are defined as

RMSE =

√
∑N−1

k=0 (ŷ(k)− y(k))
N

(12)

NRMSE =
RMSE

ymax − ymin
(13)

As presented in Table 3, IMEP is the most difficult parameter for the model to predict,
as shown by the 7% error in training, while other outputs are predicted with less than 3%
error. The same trend can be seen for the testing data, where IMEP has a 10% error, while
both emissions have errors of less than 8%. MPRR prediction is more accurate than others
for test data, with a 2.7% error. The model can be further tuned to improve prediction
accuracy by adding more hidden and cell states to the LSTM layer; however, by adding
more states, it causes a significant increase in the computational time of the model on the
real-time hardware. Therefore, this model has been improved only by adjusting the number
of hidden units of the fully connected layers. This model is used for the NMPC design in
the subsequent section.
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XLabel

Figure 8. Training, validation, and testing results for LSTM-based DNN model vs. experimental
data—(a) yIMEP—indicated mean effective pressure (IMEP), (b) yNOx —nitrogen oxides
(NOx), (c) yPM—Particle Matter (PM), (d) yMPRR—maximum pressure rise rate (MPRR),
(e) uDOI,pilot—duration of injection (DOI) of pilot injection, (f) uDOI,main—DOI of main injection,
(g) up2m—duration between end of pilot injection and start of main injection, (h) uSOI,main—SOI of
main injection, (i) up,fuel—fuel rail pressure.
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Table 3. RMSE and normalized RMSE of DNN model vs. Experiment—RMSE: Root Mean Square
Error, IMEP: indicated mean effective pressure, FQ: Fuel Quantity. PM: Particle Matter, MPRR:
maximum pressure rise rate.

Unit Training Validation Testing

yIMEP
[bar] 0.3 0.3 0.4
[%] 7.0 8.8 9.7

yNOx
[ppm] 18.4 39.3 46.9

[%] 2.9 6.2 7.4

yPM
[mg/m3] 0.4 1.3 2.4

[%] 1.2 4.0 7.5

yMPRR
[bar/CAD] 0.2 0.2 0.2

[%] 2.4 2.6 2.7

3. Controller Design
3.1. Nonlinear Model Predictive Control

This section provides details on the design and implementation of the proposed Non-
linear Model Predictive Control (NMPC) algorithm. In NMPC, the current control input
is computed by solving a nonlinear program at each sample instance. The underlying
optimization problem consists of a model-based prediction of the system’s behavior, start-
ing from the current state. The selected cost function minimizes engine-out emissions
NOx and PM concentrations, while simultaneously trying to reduce fuel consumption and
maintaining the requested output torque. Additionally, the NMPC must meet constraints
on the control output and engine combustion metrics. Finally, the developed NMPC is
imported to the real-time experimental implementation on the dSPACE MABX II for diesel
engine control.

3.2. Nonlinear State-Space Representation

The computation graph of the Deep Neural Network, derived in Section II, can be sum-
marized into a sequence of fully connected layers at the input (Equation (6)), an LSTM layer
(Equation (7)), and another sequence of fully connected layers at the output (Equation (8))

zFC3(k) = fFC,in(u(k)) (14)[
c(k)
h(k)

]
= fLSTM(c(k− 1), h(k− 1), zFC3(k)) (15)

y(k) = fFC,out(h(k)) (16)

Eliminating the intermediate value zFC3(k) results in[
c(k)
h(k)

]
= f (c(k− 1), h(k− 1), u(k)) (17)

y(k) = fFC,out(h(k)) (18)

If the hidden and cell states are now identified as an overall state vector
x(k) =

[
c(k− 1), h(k− 1)

]>, the resulting system of equations

x(k + 1) = f (x(k), u(k)) (19)

y(k) = fFC,out(x(k + 1)) (20)

is almost represented by a standard nonlinear state-space representation of a dynamic
system. In the standard formulation, however, the output depends only on the current state
x(k) and input u(k). One way to bring the LSTM-based network into the standard form
is to adapt the definition of the engine cycle, accounting for the output after the control



Energies 2022, 15, 9335 12 of 23

actions to the following cycle. Here, we simply substitute the next state in the output
function by its definition, resulting in a nonlinear output function

x(k + 1) = f (x(k), u(k)) (21a)

y(k) = fFC,out( f (x(k), u(k)))
= g(x(k), u(k))

(21b)

with

x(k) =
[

c(k− 1)
h(k− 1)

]
∈ R8, (22a)

y(k) =


yIMEP(k)
yNOx (k)
yPM(k)

yMPRR(k)

 ∈ R4, (22b)

u(k) =


uDOI,pilot(k)
uDOI,main(k)

up2m(k)
uSOI,main(k)

up,fuel

 ∈ R5. (22c)

Except for the duration of fuel injection, there are no desired setpoints for the other
input variables. A positive definite weighting matrix for the control inputs would thus force
an unnecessary compromise between tracking of the output and the manipulated variables.
By introducing the change in manipulated variables as new inputs [44,45], the positive
definite weighting matrix only drives the change to be zero, posing no conflict in reaching
the desired output setpoints.[

x(k + 1)
u(k)

]
︸ ︷︷ ︸

x̃(k+1)

=

[
f (x(k), u(k− 1) + ∆u(k))

u(k− 1) + ∆u(k)

]
︸ ︷︷ ︸

f̃ (x̃(k),∆u(k))

(23a)

[
y(k)

u(k− 1)

]
︸ ︷︷ ︸

ỹ(k)

=

[
g(x(k))
u(k− 1)

]
︸ ︷︷ ︸

g̃(x̃(k))

. (23b)

Both the absolute inputs as well as their rate of change can be penalized in the
cost function.

3.3. Optimal Control Problem

Given Equation (23), the discrete Optimal Control Problem (OCP) is defined as follows

∆u0,...,∆uN
x̃0,...,x̃N
ỹ0,...,ỹN

N

∑
i=0
‖ri − ỹi‖2

Q + ‖∆ui‖2
R x̃0 =

[
x(k), u(k− 1)

]> x̃i+1 = f̃ (x̃i, ∆ui) ∀i ∈ H \ Nỹi = g̃(x̃i, ∆ui) ∀i ∈ H

umin ≤ Fu · ỹk ≤ umax ∀i ∈ Hymin ≤ Fy · ỹk ≤ ymax ∀i ∈ H
(24)

where H = {0, 1, . . . , N}. The subscripts i indicate that the variables are part of the internal
computations of the NMPC controller, whereas x(k) and u(k− 1) are the actual model’s
current state and the previously applied control input, respectively. In this formulation,
the nonlinear output function is stated as part of the constraints by introducing the aug-
mented output as an optimization variable, allowing a linear least squares cost function.
The reference r̃i and the weighting matrix Q are selected such that deviations from the
requested load are penalized while minimizing NOx and PM emission concentrations, as
well as the amount of injected fuel
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r̃i =
[
rIMEP,i, 0, 0, 0, 0, 0, 0, 0, 0

]>, (25)

Q = diag
(

qIMEP, qNOx , qPM, 0, rDOI,pilot, rDOI,main, 0, 0, 0
)

. (26)

The specific cost function J thus reads as

J =
N

∑
i=0
‖rIMEP,i − yIMEP,i‖2

qIMEP︸ ︷︷ ︸
Load Tracking

+ . . . (27)

‖yNOx ,i‖2
qNOx

+ ‖yPM,i‖2
qPM︸ ︷︷ ︸

Emission Reduction

+ . . . (28)

∥∥∥uDOI,pilot,i

∥∥∥2

rDOI,pilot
+ ‖uDOI,main,i‖2

rDOI,main︸ ︷︷ ︸
Fuel consumption reduction

+ . . . (29)

‖∆ui‖2
R (30)

The weighting matrix R is a diagonal matrix with positive elements defined as

R = diag(r∆uDOI,pilot , r∆uDOI,pilot , r∆uDOI,main , r∆uSOI,main , (31)

r∆up2m , r∆up,fuel). (32)

One advantage of NMPC is the ability to impose constraints on inputs and outputs.
Fu and Fy are diagonal matrices with ones at the locations of bounded outputs and inputs.

The limits are imposed on IMEP to limit the engine to low–mid load operation. The up-
per IMEP constraint is below the engine maximum load but is imposed to keep the engine
operating near the model calibration range for initial NMPC real-time implementation.

The upper limits for NOx and PM are used to constrain peak emission concen-
tration levels and can be set to meet emission standards. The limits of 500 ppm for
NOxand 10 mg/m3 for PM were selected for this work based on the maximum engine-out
emissions recorded when operating the engine using the production ECU.

Controlling the maximum pressure rise rate (MPRR) is crucial in combustion engines
to ensure quiet and safe engine operation at various engine loads. MPRR is the rate at
which the pressure increases in the cylinder, and the maximum permissible MPRR is engine-
and application-dependent. Here, a typical 5 bar/CAD constraint is implemented to ensure
no engine damage [10].

Constraints are also imposed on the DOI for both the pilot and main injections.
The minimum DOI is limited to keep the injector within its calibration range. The upper
limit is defined as 25% higher than the maximum observed injection with the produc-
tion ECU.

The SOImain is constrained on both the upper and lower ends. Early SOI is restricted
to avoid early combustion phasing, which can result in high engine noise and low thermal
efficiency or engine damage at extreme values. Additionally, late SOI is limited to avoid
low thermal efficiency and elevated exhaust gas temperatures. The p2m time is constrained
for short durations based on hardware limitations to ensure the injector has fully closed
before opening for the main injection. The upper limit is to restrict too early pilot injections.
Finally, a limit for the fuel pressure is imposed to keep the commanded fuel pressure
within the normal operating range of the injectors. Table 4 summarizes the implemented
limitations on outputs and manipulated variables.
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Table 4. Constraint Values.

Lower Bound Variable Upper Bound

0 bar yIMEP 7 bar
0 ppm yNOx 500 ppm

0 mg/m3 yPM 10 mg/m3

0 bar/CAD yMPRR 5 bar/CAD
0.17 ms uDOI,pilot 0.24 ms
0.17 ms uDOI,main 0.55 ms
430 µs up2m 1000 µs

−10 CAD bTDC uSOI,main 2 CAD bTDC
600 bar up,fuel 1400 bar

3.4. Implementation and Deployment to Real-Time Hardware

The development of control algorithm in real time on the dSPACE hardware through
MATLAB/ Simulink is demonstrated in this section. Furthermore, the available computa-
tion time for the NMPC controller is dependent on the speed of the engine. At 1200 rpm,
one engine cycle lasts 100 ms, while at 1800 rpm, only 66.7 ms are available. To meet
the real-time requirements, a computationally efficient algorithm is needed to provide
feedback from the engine cycle to the next cycle. For these reasons, the NMPC controller is
implemented in MATLAB/ Simulink using the free and open source package acados [46],
since simulation results in [37] indicate that it outperforms MATLAB’s MPC toolbox in
terms of computation time, both with the fmincon and FORCES PRO [47,48] backend.

The plant model is passed to acados through the discrete dynamics interface, as no
discretization is required. For computation of the Hessian in the underlying Sequential
Quadratic Programming (SQP) algorithm, the Gauss–Newton approximation is used by
selecting the non-exact Hessian option. The resulting Quadratic Problems (QPs) within
the SQP algorithm are solved using the Interior Point (IP)-based QP solver hpipm, which
is provided by the acados package. Compared with Active-Set-based QP solvers such as
qpOASES, hpipm shows a higher computation time on average but avoids worst case peaks,
which eventually determine the feasible turnaround time.

The OCP in Equation (24) leads to a band-diagonal structure in the matrices of the QPs
within the SQP algorithm, which can be exploited by hpipm. Fully condensing the problem
shows improvements in computation time in comparison with passing the sparse but high-
dimensional problem formulation. The difference in runtime is attributed to the state vector
having a higher dimension than the control input vector, and the engine dynamics only
require small prediction horizons. The resulting OCP structure allows the fully condensed
problem formulation to take full advantage of the condensation benefits [44,45].

Tuning of the weights, number of allowed SQP iterations, and the prediction horizon
are performed by means of model in the loop simulations, where the NMPC controller
runs against the controller internal model. Through these stimulative studies, the allowed
number of SQP iterations is limited to five, while the prediction horizon is set to five.

After tuning, the algorithm is directly deployed to the embedded processor of the
MABX II. The required cross-compiled libraries of acados can be obtained by following the
“Embedded Workflow" in the acados documentation. On the embedded system, the NMPC
shows a maximum turnaround time of 63.0 ms and an average of 62.3 ms, which is feasible
for real-time implementation for the targeted engine speeds.

Figure 9 illustrates the setup of the experiments conducted on the testbed. The current
cell and hidden states required by the controller are estimated by the derived DNN model
that is running in parallel to the real engine.
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Figure 9. Block diagram of LSTM-NMPC structure—IMEP: indicated mean effective pressure,
NOx: nitrogen oxides, PM: Particle Matter, MPRR: maximum pressure rise rate, n: engine speeds,
DOI: duration of injection, SOI: start of injection.

In the next section, the real-time implementation results of the developed NMPC
controller along with comparison with the production Cummin’s ECU are presented.

4. Experimental Results: Diesel Emission Control

The developed LSTM-NMPC is experimentally tested for IMEP tracking performance
while minimizing emission concentration (NOx and PM) and fuel consumption, as well
as meeting constraints on MPRR and SOI. The controller is subjected to step and smooth
changes to create a bandwidth of approximately 1 Hz in target IMEP. Then, to test the
controller’s robustness, it is evaluated by changing in engine speed while maintaining a
constant IMEP. Finally, this controller is compared with the production ECU, which serves
as a benchmark (BM) for comparison with the NMPC. To provide a BM, the Cummins
production ECU is duplicated on the dSPACE MABX.

4.1. Experimental Results in Changing IMEP

The deep neural network based NMPC is first experimentally evaluated for its load
tracking performance by following a step reference between 2 and 6 bar IMEP. This load
range is selected to match the lower and upper bounds of the training data that are used
for model development, as previously described. Figure 10 shows the multiple steps that
are used to understand the performance of the controller on engine inputs and outputs.

The NMPC is capable of achieving the target IMEP within a cycle. There is a slight
overshoot and some oscillations that can be seen after both the increase and decrease
in target value. The oscillation in IMEP after the step change can be attributed to the
relatively slow dynamics of the fuel pump and resulting oscillation in fuel pressure, as
seen in Figure 10h. The delay in the fuel system to change pressure was not modeled, and
the NMPC assumes instantaneous changes in pressure, which are not possible given the
common rail fuel system used. However, overall, the controller is capable of achieving the
reference setpoint with a 0.26 bar average error and RMSE of 0.61 bar.

The changing NOx and PM concentration can be seen in Figures 10b and 10c, respec-
tively. As expected, an increase in IMEP results in an increase in emissions. However,
to better compare the improvement of the developed controller, it is compared with the
production ECU (BM) later in this section.
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Figure 10. Experimental results: step changes in IMEP at n = 1500 rpm—(a) indicated mean effective
pressure (IMEP), (b) nitrogen oxide (NOx), (c) Particle Matter (PM), (d) maximum pressure rise rate
(MPRR), (e) engine speed, (f) duration of injection (DOI) of pilot injection, (g) DOI of main injection,
(h) duration between end of pilot injection and start of main injection, (i) start of injection (SOI) of
pilot injection, (j) SOI of main injection, (k) fuel rail pressure.

The engine speed is controlled by dynamometer, and a variation of ±50 RPM is
observed. Finally, it can be noted that there are no constraint violations in MPRR, DOI, SOI,
fuel pressure, or other outputs.

The NMPC is then tested by providing a smooth IMEP setpoint with a bandwidth
of approximately 1 Hz. The controller performance can be seen in Figure 11, where the
NMPC is again able to successfully track the target load. Here, the controller is able to
track the reference with a 0.16 bar average error and a RMSE of 0.20 bar. Again, the NMPC
does not violate any of the constraints on inputs or outputs. As shown is Figure 11h, there
is oscillation in the fuel rail pressure. The current IMEP tracking is acceptable; however,
to further improve the controller, a more accurate fuel pressure controller may be required.

Overall, the developed NMPC performs very well at 1500 rpm, with an average of
0.21 bar tracking error (the deep neural network model is trained at this speed) for tracking
both step and smooth IMEP setpoints with a bandwidth of approximately 1 Hz. Next, the ro-
bustness of the NMPC to a changing engine speed is experimentally tested. The model was
developed at a constant speed, so a variation in engine speed is an unmodeled disturbance.



Energies 2022, 15, 9335 17 of 23

Figure 11. Experimental results at n = 1500 rpm: smooth IMEP setpoint with a bandwidth of approx-
imately 1 Hz—(a) indicated mean effective pressure (IMEP), (b) nitrogen oxide (NOx), (c) Particle
Matter (PM), (d) maximum pressure rise rate (MPRR), (e) engine speed, (f) duration of injection
(DOI) of pilot injection, (g) DOI of main injection, (h) duration between end of pilot injection and
start of main injection, (i) start of injection (SOI) of pilot injection, (j) SOI of main injection, (k) fuel
rail pressure.

4.2. Experimental Results in Changing Engine Speed

To further evaluate the developed NMPC, the engine speed is changed from 1200
to 1800 rpm at a constant IMEP of 5 bar. This test evaluates the model outside the range
where it was identified (trained), as it was only trained at 1500 rpm. The controllers’
performance in tracking step changes in load is shown in Figure 12. Here, steps of 100 rpm
are implemented for the first 1500 engine cycles, and then for the remaining cycles, larger
steps of up to 500 rpm are tested. Overall, the controller is able to maintain the IMEP
setpoint over changing speeds with an average error of 0.27 bar. Once again, the NMPC is
able to maintain all constraints over the range of speeds tested.

A similar result can be seen with smooth speed change with a bandwidth of approx-
imately 1 Hz, as shown in Figure 13. Again, all constraints are maintained. The NMPC
is able to maintain commanded engine load over step and smooth speed change with a
bandwidth of approximately 1 Hz on the engine.
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Figure 12. Experimental results: step changes in engine speed—(a) indicated mean effective pressure
(IMEP), (b) nitrogen oxide (NOx), (c) Particle Matter (PM), (d) maximum pressure rise rate (MPRR),
(e) engine speed, (f) duration of injection (DOI) of pilot injection, (g) DOI of main injection, (h) du-
ration between end of pilot injection and start of main injection, (i) start of injection (SOI) of pilot
injection, (j) SOI of main injection, (k) fuel rail pressure.

4.3. LSTM-NMPC vs. Cummins-Calibrated ECU

Now, the developed LSTM-NMPC controller is compared with the benchmark (BM)
engine controller. In this work, the BM is taken as the replicated Cummins production
ECU. Table 5 presents nine different load/speed cases varying between 2–6 bar IMEP and
1200–1800 rpm. Each table row represents an average of 200 cycles. It should be noted that
the average IMEP may not necessarily perfectly match the reference value for either the
BM or NMPC. Generally, the NMPC achieves closer to the reference value, since it uses
measured IMEP (calculated from an in-cylinder pressure sensor with FPGA) as input to
the NMPC controller, but the BM utilizes a feedforward table. However, for comparison,
load-normalized emissions are used for both NOx and PM, which are converted to g/kWh,
which represents the mass of emission produced per generated energy. Similarly, thermal
efficiencies of all controllers are compared.

Table 5 presents the average NOx, Particulate Matter (PM), Fuel Quantity (FQ), and
thermal efficiency at the given operating point. Here, the percent difference of the NMPC
compared with the BM is shown, where a negative value represents that the NMPC is
below the BM. In all the cases tested, the NMPC is able to reduce the fuel consumption by
9.5%, while also increasing the thermal efficiency by an average of 2.5%.
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Figure 13. Experimental results: smooth speed change with a bandwidth of approximately
1 Hz—(a) indicated mean effective pressure (IMEP), (b) nitrogen oxide (NOx), (c) Particle Mat-
ter (PM), (d) maximum pressure rise rate (MPRR), (e) engine speed, (f) duration of injection (DOI) of
pilot injection, (g) DOI of main injection, (h) duration between end of pilot injection and start of main
injection, (i) start of injection (SOI) of pilot injection, (j) SOI of main injection, (k) fuel rail pressure.

Table 5. Proposed NMPC results compared with benchmark (BM), Cummins-calibrated ECU for dif-
ferent engine operating conditions—negative value represents the LSTM-NMPC value is lower than
BM. IMEP: indicated mean effective pressure, FQ: Fuel Quantity. PM: Particle Matter.

Case Reference Avg IMEP [bar] Avg Engine Avg Thermal Avg NOx Avg PM
Number IMEP [bar] BM NMPC Speed [rpm] FQ [%] Eff. [%] [%] [%]

1 5.0 4.8 5.1 1190 −7.9 +4.7 −18.9 −40.8
2 5.0 5.2 4.9 1296 −11.0 +1.8 −11.2 −35.3
3 5.0 5.0 4.9 1701 −10.4 +3.0 +17.0 −14.3
4 5.0 5.0 4.8 1801 −9.6 +2.1 +3.4 −15.4
5 2.0 2.3 2.0 1509 −14.9 +0.1 −22.4 −8.0
6 3.0 3.1 3.0 1504 −8.3 +1.4 −8.7 −36.4
7 4.0 3.9 4.0 1504 −7.9 +3.1 +6.7 −37.5
8 5.0 4.9 4.9 1503 −8.5 +3.0 +9.1 −43.6
9 6.0 6.0 6.0 1504 −7.3 +3.2 +20.7 −34.2

For the PM emissions, there is a significant reduction in emissions at every operating
point. However, when looking at NOx ,there is not a clear trend. At some operating points,
there is an increase in NOx emissions, while at others there is a decrease. Overall, on aver-
age, there is a slight decrease of 0.5% in NOx emissions. However, a better comparison of
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the emission reduction can be seen in Figure 14, where the well-known trade-off between
NOx and PM is evaluated. Here, the importance of the cost function in the NMPC can be
seen as the reduction in both NOx and PM emissions from the upper end of their range. So,
when significant PM is present, the NMPC focuses more on reducing PM and may allow
a slight increase in NOx if the value is fairly low, especially for cases 3 and 4. However,
if both PM and NOx are high, such as in cases 1 or 2, the NMPC reduces both. This is a
significant advantage, as it shows that the NMPC is able to reduce both emissions when
they are high and close to the upper boundary. Additionally, if one emission is comparable
to the regulation boundary such as in case 9 for PM, it reduces it significantly by slightly
increasing the NOx value, which is lower than the regulated values for this engine. In this
case, the well-known optimum PM and NOx trade-off can be handled by NMPC.

Figure 14. Experimental results: PM vs. NOx trade-off improvement—filled shapes ( ), NOx is
slightly increased (case 3,4, 8, and 9), while remaining cases ( ), both PM and NOx are decreased.

5. Conclusions

This work demonstrated that deep learning and Nonlinear Model Predictive Control
(NMPC) can be successfully implemented in real time for the minimization of compression
ignition engine-out emissions and fuel consumption, while imposing constraints on engine
inputs and outputs. The emissions and performance characteristics of a 4.5-liter 4-cylinder
Cummins compression ignition engine were modeled using a deep network with seven
hidden layers and 24,148 learnable parameters constructed by stacking fully connected
layers with a Long Short-Term Memory (LSTM) layer. This model was then used to design
and implement an NMPC in real-time.

To develop this LSTM-NMPC, the open-source software acados was used in combi-
nation with the quadratic programming solution HPIPM (High-Performance Interior-Point
Method). This acados embedded programming approach enables real-time operation of
the LSTM-NMPC with an average turnaround time of 62.3 milliseconds on a dSPACE
MicroAutoBoxII. To implement the controller, the FPGA for online calculation of IMEP and
MPRR cycle by cycle, fast PM, and NOx sensors were needed.

When compared with the Cummins-calibrated production controller, the proposed LSTM-
NMPC saved fuel by 7.3–14.9 percent, while boosting thermal efficiency by 0.1–4.7 percent
depending on the engine operating point. This controller was capable of reducing nitrogen
oxides (NOx) and Particle Matter (PM) concentrations by up to 22.4 and 43.6 percent, re-
spectively. The well-known trade-off between NOx and particulate emissions was analyzed,
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where the controller showed that when large PM is present, the NMPC prioritizes PM
reduction while allowing a slight rise in NOx if the amount is relatively low. However,
if both PM and NOx levels are high, the NMPC effectively reduces both. This is a significant
benefit, since it demonstrates the NMPC’s ability to reduce emissions when they are near
the imposed constraints or regulatory limits.

To determine the controller’s robustness for operation outside the training range
of the model, the controller was evaluated at speeds ranging from 1200 to 1800 rpm.
The experimental findings confirm that tracking and disturbance rejection capability of the
designed controller. The controller was able to maintain the IMEP setpoint with an average
error of 0.16 and 0.27 bar for step and smooth speed change. No constraint violation was
observed in all cases tested for state, output, and input constraints.

Author Contributions: Conceptualization, D.C.G., A.N., and A.W.; methodology, E.N. and A.N.;
software, D.C.G., A.N., A.W., and J.M.; formal analysis, D.C.G. and A.N.; resources, D.A., M.S., J.A.,
and C.R.K.; writing—original draft preparation, D.C.G. and A.N.; writing—review and editing, all
authors; visualization, D.C.G. and A.N.; supervision, D.A., M.S., J.A., and C.R.K.; project administra-
tion, J.A. and C.R.K.; funding acquisition, J.A. and C.R.K. All authors have read and agreed to the
published version of the manuscript.

Funding: The research was performed under the Natural Sciences Research Council of Canada Grant
2016-04646 and as part of the Research Group (Forschungsgruppe) FOR 2401 “Optimization based
Multiscale Control for Low Temperature Combustion Engines,” which is funded by the German
Research Association (Deutsche Forschungsgemeinschaft, DFG). The research is also partially funded
by Future Energy Systems and Alberta innovates at the University of Alberta.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. López, J.D.; Espinosa, J.J.; Agudelo, J.R. LQR control for speed and torque of internal combustion engines. IFAC Proc. Vol. 2011,

44, 2230–2235. . [CrossRef]
2. Bemporad, A.; Morari, M.; Dua, V.; Pistikopoulos, E.N. The explicit linear quadratic regulator for constrained systems. Automatica

2002, 38, 3–20. [CrossRef]
3. Norouzi, A.; Ebrahimi, K.; Koch, C.R. Integral discrete-time sliding mode control of homogeneous charge compression ignition

(HCCI) engine load and combustion timing. IFAC-PapersOnLine 2019, 52, 153–158. [CrossRef]
4. Norouzi, A.; Adibi-Asl, H.; Kazemi, R.; Hafshejani, P.F. Adaptive sliding mode control of a four-wheel-steering autonomous

vehicle with uncertainty using parallel orientation and position control. Int. J. Heavy Veh. Syst. 2020, 27, 499–518. [CrossRef]
5. Altintas, Y.; Erkorkmaz, K.; Zhu, W.H. Sliding mode controller design for high speed feed drives. CIRP Ann. 2000, 49, 265–270.

[CrossRef]
6. Norouzi, A.; Masoumi, M.; Barari, A.; Sani, S.F. Lateral control of an autonomous vehicle using integrated backstepping and

sliding mode controller. Proc. Inst. Mech. Eng. Part K: J. Multi-Body Dyn. 2019, 233, 141–151.
7. Madani, T.; Benallegue, A. Backstepping control for a quadrotor helicopter. In Proceedings of the 2006 IEEE/RSJ International

Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 3255–3260.
8. Souder, J.S.; Hedrick, J.K. Adaptive sliding mode control of air–fuel ratio in internal combustion engines. Int. J. Robust Nonlinear

Control. IFAC-Affil. J. 2004, 14, 525–541. [CrossRef]
9. Lavretsky, E.; Wise, K.A. Robust adaptive control. In Robust and Adaptive Control; Springer: London, UK, 2013; pp. 317–353.
10. Basina, L.A.; Irdmousa, B.K.; Velni, J.M.; Borhan, H.; Naber, J.D.; Shahbakhti, M. Data-driven modeling and predictive control of

maximum pressure rise rate in RCCI engines. In Proceedings of the IEEE Conference on Control Technology and Applications
(CCTA 2020), Montreal, QC, Canada, 24–26 August 2020; pp. 94–99. [CrossRef]

11. Cairano, S.D.; Bernardini, D.; Bemporad, A.; Kolmanovsky, I.V. Stochastic MPC With Learning for Driver-Predictive Vehicle
Control and its Application to HEV Energy Management. IEEE Trans. Control Syst. Technol. 2014, 22, 1018–1031. [CrossRef]

12. Irdmousa, B.K.; Rizvi, S.Z.; Velni, J.M.; Naber, J.; Shahbakhti, M. Data-driven modeling and predictive control of combustion
phasing for RCCI Engines. In Proceedings of the American Control Conference (ACC 2019), Philadelphia, PA, USA, 10–12 July
2019; pp. 1–6. [CrossRef]

13. Bemporad, A.; Borrelli, F.; Morari, M. Piecewise linear optimal controllers for hybrid systems. In Proceedings of the American
Control Conference (ACC 2000), Chicago, IL, USA, 28–30 June 2000, Volume 2, pp. 1190–1194. . [CrossRef]

http://doi.org/10.3182/20110828-6-IT-1002.02176
http://dx.doi.org/10.1016/S0005-1098(01)00174-1
http://dx.doi.org/10.1016/j.ifacol.2019.09.025
http://dx.doi.org/10.1504/IJHVS.2020.109290
http://dx.doi.org/10.1016/S0007-8506(07)62943-6
http://dx.doi.org/10.1002/rnc.901
http://dx.doi.org/10.1109/CCTA41146.2020.9206358
http://dx.doi.org/10.1109/TCST.2013.2272179
http://dx.doi.org/10.23919/ACC.2019.8815269
http://dx.doi.org/10.1109/ACC.2000.876688


Energies 2022, 15, 9335 22 of 23

14. Lee, J.H. Model predictive control: Review of the three decades of development. Int. J. Control. Autom. Syst. 2011, 9, 415.
[CrossRef]

15. Liao-McPherson, D.; Huang, M.; Kim, S.; Shimada, M.; Butts, K.; Kolmanovsky, I. Model predictive emissions control of a diesel
engine airpath: Design and experimental evaluation. Int. J. Robust Nonlinear Control 2020, 30, 7446–7477. [CrossRef]

16. Di Cairano, S.; Doering, J.; Kolmanovsky, I.V.; Hrovat, D. Model Predictive Control of Engine Speed During Vehicle Deceleration.
IEEE Trans. Control Syst. Technol. 2014, 22, 2205–2217. [CrossRef]

17. Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent
Systems; O’Reilly Media: Sebastopol, CA, USA, 2019.

18. Jeon, B.K.; Kim, E.J. LSTM-Based Model Predictive Control for Optimal Temperature Set-Point Planning. Sustainability 2021,
13, 894. [CrossRef]

19. Wang, Q.; Pan, L.; Lee, K.Y. Improving Superheated Steam Temperature Control Using United Long Short Term Memory and
MPC. IFAC-PapersOnLine 2020, 53, 13345–13350. [CrossRef]

20. Tang, X.; Zhong, G.; Yang, K.; Wu, J.; Wei, Z. Motion Planning Framework for Autonomous Vehicle with LSTM-based Predictive
Model. In Proceedings of the 2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI), Tianjin,
China, 29–31 October 2021; pp. 1–5. [CrossRef]

21. Norouzi, A.; Heidarifar, H.; Shahbakhti, M.; Koch, C.R.; Borhan, H. Model Predictive Control of Internal Combustion Engines: A
Review and Future Directions. Energies 2021, 14, 6251. [CrossRef]

22. Aliramezani, M.; Koch, C.R.; Shahbakhti, M. Modeling, diagnostics, optimization, and control of internal combustion engines via
modern machine learning techniques: A review and future directions. Prog. Energy Combust. Sci. 2022, 88, 100967. [CrossRef]

23. Nair, V.; Sujith, R. A reduced-order model for the onset of combustion instability: Physical mechanisms for intermittency and
precursors. Proc. Combust. Inst. 2015, 35, 3193–3200. [CrossRef]

24. Ra, Y.; Reitz, R.D. A combustion model for multi-component fuels using a physical surrogate group chemistry representation
(PSGCR). Combust. Flame 2015, 162, 3456–3481. [CrossRef]

25. Oran, E.S.; Boris, J.P. Detailed modelling of combustion systems. Prog. Energy Combust. Sci. 1981, 7, 1–72. [CrossRef]
26. Gordon, D.; Wouters, C.; Wick, M.; Lehrheuer, B.; Andert, J.; Koch, C.R.; Pischinger, S. Development and experimental validation

of a field programmable gate array–based in-cycle direct water injection control strategy for homogeneous charge compression
ignition combustion stability. Int. J. Engine Res. 2019, 20, 1101–1113. [CrossRef]

27. Gordon, D.; Wouters, C.; Wick, M.; Xia, F.; Lehrheuer, B.; Andert, J.; Koch, C.R.; Pischinger, S. Development and experimental
validation of a real-time capable field programmable gate array–based gas exchange model for negative valve overlap. Int. J.
Engine Res. 2020, 21, 421–436. [CrossRef]

28. Shahpouri, S.; Norouzi, A.; Hayduk, C.; Rezaei, R.; Shahbakhti, M.; Koch, C.R. Soot emission modeling of a compression ignition
engine using machine learning. IFAC-PapersOnLine 2021, 54, 826–833. [CrossRef]

29. Bao, Y.; Mohammadpour Velni, J.; Shahbakhti, M. An Online Transfer Learning Approach for Identification and Predictive
Control Design With Application to RCCI Engines. In Proceedings of the Dynamic Systems and Control Conference, Virtual, 5–7
October 2020; Volume 84270. [CrossRef]

30. Khoshbakht Irdmousa, B.; Naber, J.; Mohammadpour Velni, J.; Borhan, H.; Shahbakhti, M. Input-output Data-driven Modeling
and MIMO Predictive Control of an RCCI Engine Combustion. IFAC-PapersOnLine 2021, 54, 406–411. [CrossRef]
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