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Abstract: Undersaturated oil viscosity is one of the most important PVT parameters to be measured
and/or predicted in a fluid sample. Since direct experimental measurements are expensive and time-
costly, prediction methods are essential. In this work, viscosity data from more than five hundred
fluid reports are utilized, and all correlation methods available in the literature and implemented
in commercial software for reservoir and production engineering calculations, including fracked
systems, are evaluated against the dataset. The results of this work are intended to set up workflows
that give insight as to which method should be selected when running flow simulations, with
emphasis on complex simulations such as in the case of EOR. The developed workflows provide the
optimal choice of the viscosity correlation for the case of distinct viscosity ranges, as well as when
overall performance is sought. A surprising result is that one of the oldest known correlations from
the literature gives the best results (minimizes average absolute relative error) when tested against
this large dataset. This may be attributed to the high locality that alternative correlations exhibit,
which makes them generalize poorly.

Keywords: undersaturated oil viscosity; correlations; reservoir simulation; EOR

1. Introduction

Undersaturated oil viscosity is the term used to describe oil viscosity at pressures
above bubble point (Pb), which usually correspond to the pressure values prevailing during
the greatest part of a reservoir’s life. Below that pressure, the reservoir fluid enters the
two-phase region and all volumetric and transport properties behave entirely differently.
As pressure drops down below its initial value, undersaturated oil viscosity drops as
well, as long as pressure remains above the bubble point. For undersaturated reservoirs,
where composition remains constant over time, viscosity changes only with declining
pressure. Viscosity may experience changes from 0.5% to 40%/1000 psi (for very rare
cases), as opposed to oil formation volume factor (Bo), which only varies from 0.5% to
2.8%/1000 psi, thus indicating that the pressure drop experienced by the reservoir is
impacted directly and pretty significantly from the viscosity drop.

Viscosity is very important since its exact measurement or even a fair estimate is es-
sential in all flow calculations in reservoir and production engineering flow calculations [1],
as it is directly related to the pressure drop associated with flow. For example, Darcy’s
equation for cylindrical (radial) flow through porous media incorporates viscosity in the
mobility ratio, as shown below [2].

Pe − Pw f =

qoµoBo

[
ln
(

re

rw

)
− 0.75 + S

]
7.0815 · 10−3kh
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where Pe − Pw f is the pressure drop in the reservoir, k/µo is the mobility ratio, re/rw is the
geometry factor and S is the skin factor. When it comes to fluid flow in pipelines such as
the production tubing and the surface network, the combination of the continuity equation
and the equation of momentum conservation is considered, where the rate of momentum
difference plus the momentum accumulation in a pipe segment must equal the sum of all
forces on the fluids [3]. In that case, pressure drop is given by:

∆P
∆L

=
1

144

[
ρo cos(θ) +

f ρoµ2
o

2gd
+

ρoµo∆µo

g∆L

]
where ρo is the oil density, µo is the viscosity, θ is the pipe inclination and d is the pipe di-
ameter. The three parts of the equation’s right-hand side describe the hydrostatic, frictional
and kinetic energy losses in the system, respectively. The frictional factor f is obtained from
the Moody Friction factor chart as a function of Reynolds Number [4], with the latter being
calculated by

R =
1488 · d · ν · ρo

µo

The viscosity of oil is usually obtained at the laboratory in the form of a PVT report
or may be estimated by correlating equations. Although lab measurements are of high
accuracy, the problem arising with the PVT reports is that the time and costs involved
are high, unlike drilling mud viscosity measurements, which can be easily obtained both
at the lab and at the field due to the surface conditions prevailing. When it comes to
live oil, both pressure and temperature exhibit high values, thus requiring specialized
apparatus and personnel. Correlations are frequently used when detailed PVT reports
are not available to provide estimates of the reservoir oil viscosity. Although they may
utilize various properties as input, the most important ones are pressure and bubble point
viscosity, whereas GOR, API gravity and dead oil viscosity are of secondary importance
and used only by few correlations. The input range utilized for the development of each
model depends on the dataset available to them and should always be considered whether
it fits to a specific fluid simulation.

When it comes to complex simulations such as those in EOR operations, the value in
properly estimating viscosity is two fold. Firstly, for fractured reservoirs, the commonly
employed double porosity/permeability model considers oil flow in both systems (microp-
ores and fractures/fissures), thus enhancing the role of fluid viscosity in the simulation of
the fluids’ mobility and, eventually, to the production prediction. Secondly, in thermal EOR
applications such as SAGD, reservoir temperature is increased, thus forcing significant
changes to the viscosity value and, in turn, to the flow simulation. As a result, when inac-
curate viscosity values are utilized, the simulation operator is forced to change irrelevant
model properties so as to “counter-balance” the viscosity error and eventually develop
heavily twisted, non-physically sound behaving reservoir models.

In this work, a large number of correlations, most notably encountered in commercial
software as well as in related textbooks [5–8], was collected, and their performance against
a new extended PVT database is evaluated in a concise and detailed way. Readers of
this work can obtain a clear picture on the correlations’ performance against a large not
seen before dataset. The results obtained are used to setup workflows which can assist
engineers in their choice of the most appropriate correlating equation while working on
their own assignments.

In the following sections, the correlations to be evaluated are presented in detail.
This presentation is held in Section 2 and includes their origin, their development range
and their exact mathematical formulation. Subsequently, in Section 3, the new dataset
is thoroughly examined in terms of value distributions and ranges. QA/QC (Quality
Analysis/Quality Control) is performed to fill missing input values and also for the dataset
to be resampled in a way that will make the comparison of correlations fair and unbiased.
Correlations are evaluated in a plethora of ways and compared against each other in
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Section 4. The outcoming workflow is also presented in that section. Finally, conclusions
are drawn in Section 5.

2. Evaluated Methods

In this section, the correlations commonly used by the industry to predict undersatu-
rated oil viscosity are presented. Many more are available in the literature, but the ones
presented here were selected due to their historic significance, popularity and appearance
in commercial software packages handling reservoir or pipeline flow problems. Rather than
the pressure (P) itself, the methods presented use either the pressure ratio or the pressure
differential (i.e., P/Pb and P− Pb, respectively) as the primary correlating parameter, along
with bubble point viscosity (µob). Some correlations utilize additional PVT properties such
as solution GOR, API gravity and dead oil viscosity (µod). To facilitate the presentation of
the results, the methods evaluated in this work are split into two main groups. The first
group contains correlations that utilize bubble point viscosity, bubble point pressure and
pressure as input. The second group consists of correlations which, in addition to the above,
also utilize one or more of the GOR, API or dead oil viscosity. Furthermore, the correlations
of the first group are split into two clusters (A1 and A2) for presentation purposes, whereas
those of the second group are split as well (clusters B1 and B2), this time based on whether
they utilize dead oil viscosity or not. Cluster A1 contains the following correlations: Beal,
Kouzel, Vazquez and Beggs, Khan and Petrosky, while Cluster A2 consists of Kartoatmodjo
and Schmidt, Orbey and Sandler, Kouzel API modified and Hossain. Similarly, the B1
and B2’s correlations are Labedi, De Ghetto, Elsharkawy and Alikhan, and Al-Khafaji,
Abdul-Majeed, Almehaideb and Dindoruk and Christman, respectively. A detailed list of
all correlations evaluated in this work is given in Tables 1–4, one for each cluster. Some
approaches contain more than one expressions, each best applicable to some specific type
of fluid.

The range of the dataset utilized for the development of each correlation defines the
applicability of each model to each specific flow problem and, consequently, it depicts the
uncertainty when using extrapolated values. For that purpose, the range of all variables uti-
lized by each correlation, where available, is given in Table 5. In the following paragraphs,
an insight on the type, input data and special features of each correlation is given. Note that
some software packages allow the “tuning” of such correlations by introducing adjustable
shifting and multiplying coefficients, i.e., µ′o = αµo + β [9]. However, this approach is
applicable only when additional undersaturated oil viscosity measurements are available,
which is not the case in the absence of a full PVT report.

In the following presentation of the correlations, the terms heavy oil or high viscosity
oil are encountered at times. These terms describe highly viscous paraffinic oil that overtime
forms asphalt–resin–paraffin deposits (ARPDs) in the downhole equipment. These organic
wax deposits lead to a significant decrease in production. In order to fully exploit such
reservoirs, EOR techniques have been developed. Some techniques involve flushing the
well and injection of an ARPD solvent into the bottomhole formation. The prevention
of the formation is performed by squeezing the ARPD inhibitor and then pumping it
by the solvent fluid for five to ten times of the volume [10]. Other methods involve
periodically injecting hot associated petroleum gas into the annulus between tubing strings
and technological pipes [11]. Others target developing control systems for thermal control
methods [12].

2.1. Group A, Cluster A1
2.1.1. Beal (1946)

In 1946, Beal [13] graphically correlated 52 viscosity measurements from 26 crude oil
samples representing 20 individual oil pools, 11 of which were in California. It was noted
that viscosity increased with pressure above the bubble point and that this increase was
greater with an increasing bubble-point viscosity. Beal’s method was reported to exhibit an
average error of 2.7% on his 26 undersaturated samples.
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Later on, in 1977, Standing generated correlation equations by applying a curve
fitting method to Beal’s graphical method, resulting in a model linear in ∆P, with its slope
depending polynomially on µob [14]. Despite the equation of the model being the work
of Standing, this method is still referred to as Beal’s correlation and will be for the rest of
this work.

2.1.2. Kouzel (1965)

Kouzel [15] utilized Barus’ exponential model µ = µobeα(P−Pb) and correlated exponent
α with the bubble-point viscosity to match 95 data points.

2.1.3. Vazquez and Beggs (1976)

Vazquez and Beggs [16] pointed out in their study that many correlations used by
then had been developed many years ago using limited datasets and were commonly being
applied beyond the range they were intended for. For that purpose, they generated a new
regression model by gathering more than 600 laboratory PVT analyses from fields all over
the world, containing more than 6000 viscosity measurements and exhibiting a wide range
of oil properties. They came up with a model predicting undersaturated oil viscosity as
a function of bubble-point viscosity, pressure and bubble-point pressure. The model is
exponential in the pressure ratio, with an exponent which depends on pressure itself.

2.1.4. Khan (1987)

In this study [17], the viscosity data of 75 fluid samples taken from 62 Saudi Arabian oil
reservoirs were utilized. A total of 150 data points were used for bubble-point oil viscosity
and 1503 for undersaturated viscosity. This model exponentially correlated viscosity with
pressure as in Barus’ model, with a fixed exponent value being set to α.

2.1.5. Petrosky (1990)

In 1990, Petrosky [18] presented an updated review of the published correlations and
provided his own based on 81 laboratory PVT analyses and 404 total data points from the
Gulf of Mexico. The model generated is linear in ∆P with a slope that depends non-linearly
on µob.

2.2. Group A, Cluster A2

2.2.1. Kartoatmodjo and Schmidt (1991)

In 1991, Kartoatmodjo and Schmidt [19] used many PVT reports from multiple geo-
graphical locations, including Southeast Asia, Latin America, the Middle East and North
America, totaling 3588 points, in order to modify Beal’s correlation [14] for undersaturated
oil viscosity. The correlating equation is linear in ∆P and the slope depends polynomially
on µob. Interestingly, this correlation does not honor the measured µob value at Pb.

2.2.2. Orbey and Sandler (1993)

Orbey and Sandler [20] presented a sequence of empirical models for calculating the
viscosity of hydrocarbons and their mixtures (including those containing CO2) at both
atmospheric and high pressures over a wide range of temperatures. They used 377 data
points. The models are exponential in ∆P and have specific, fixed exponents for paraffinic,
naphthenic and aromatic fluids.

2.2.3. Kouzel API Modified (1997)

An API-modified [21] Kouzel correlation is also available in the literature, but little
is known about its application range. The modification considers the dependency of the
exponent on the saturated oil viscosity.
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2.2.4. Hossain (2005)

In 2005, Hossain et al. [22] evaluated the existing correlations against a dataset of
heavy oils (10 ≤ γAPI ≤ 22.3) with viscosity values as high as 500 cp and developed a new
model. They derived their correlation by running regression analysis on their dataset using
Beal’s equation and modifying the slope term.

2.3. Group B, Cluster B1
2.3.1. Labedi (1982)

Labedi [23], in his 1982 PhD thesis, collected a large number of PVT analyses from
reservoirs in Libya, Nigeria and Angola. He used multiple linear regression techniques,
testing many possible mathematical models. He studied the effect of each independent
variable and noted that viscosity is linearly correlated to pressures above the bubble point.
A total of 91 data points were used for his Libyan crudes model and 31 for the Nigerian
one. Both Labedi’s models are linear in the pressure ratio.

2.3.2. De Ghetto (1994)

In 1994, De Ghetto, Paone and Villa [24] introduced a new strategy to build oil viscosity
equations based on four different classes of API gravity. The best correlations for each class,
as well as for the whole range of API gravity, were evaluated using 195 oil samples and a
total of 3700 measured data points. They tested the existing functional forms of the already
established correlations at the time. Those that gave the best results for undersaturated oil
viscosity were further optimized to arrive at a better correlation, thus achieving an average
error reduction of 5–10%. It is noted that their heavy oil correlation (10 < γAPI < 22.3)
does not honor the measured µob value and that it is the only one which does not utilize
µod. The authors mentioned that “The Non-Newtonian behavior of a highly viscous fluid
could affect the reliability of laboratory measurement”, implying that the development and
evaluation of models in this range would also be hindered.

2.3.3. Elsharkawy and Alikhan (1999)

In 1999, Elsharkawy and Alikhan [25] developed new empirical model to predict
Middle East oil viscosity by using 254 crude oil samples. They assumed that the slopes of
the ∆µ vs ∆P lines are functions of dead oil viscosity, bubble-point viscosity and bubble-
point pressure and used regression analysis to build a model linear in ∆P with its slope
depending polynomially on the three above-mentioned inputs.

2.4. Group B, Cluster B2

2.4.1. Al-Khafaji (1987)

In 1987, Al-Khafaji, Abdul-Majeed and Hassoon [26] developed a correlation to predict
undersaturated oil viscosity using 210 oil samples from the Middle East. The new equation
was built as a function of API gravity, bubble-point pressure and reservoir pressure. Their
model is logarithmic in ∆P.

2.4.2. Abdul-Majeed (1990)

In 1990, Abdul-Majeed, Kattan and Salman [27] developed a new equation using 253
experimentally obtained oil viscosities on 41 different oil samples from North America and
the Middle East. By plotting ∆P vs ∆µ on log–log axes, straight lines of constant slope were
revealed. The interecepts of the resulting lines are given as a function of API gravity and
GOR at the bubble point.

2.4.3. Almehaideb (1997)

In 1997, Almehaideb [28] used datasets from 15 different reservoirs in the UAE and
generated his own PVT correlations. He claimed that the improvement in the accuracy
of his correlation compared woth that of Vazquez and Beggs, which is similar in form, is
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probably due to the fact that the solution of GOR in addition to pressure was included. His
correlation utilizes the ratio of pressure to the bubble-point one.

2.4.4. Dindoruk and Christman (2004)

In 2004, these two researchers [29] set up a database of more than 100 PVT reports
to generate a viscosity correlation model that is linear in ∆P, with the slope depending
exponentially on ∆P as well.

Table 1. Correlations in cluster A1.

A1

Beal (1946) µo = µob + 10−5 · (P− Pb)
(
2.4 · µ1.6

ob + 3.8 · µ0.56
ob
)

Kouzel
(1965)

µo = µob · exp(α(P− Pb))
α = 5.50318 · 10−5 + 3.77163 · 10−5µ0.278

ob

Vazquez and
Beggs (1976)

µo = µob

(
P
Pb

)m

m = C1 · PC2 · exp(C3 + C4P)
C1 = 2.6, C2 = 1.187, C3 = −11.513,
C4 = −8.98 · 10−5

Khan
(1987)

µo = µob · exp (9.6 · 10−5(P− Pb))

Petrosky
(1990)

µo = µob + 1.3449 · 10−3(P− Pb) · 10X2

X1 = log10(µob)

X2 = −1.0146 + 1.3322 · X1 − 0.4876 · X2
1 − 1.15036 · X3

1

Table 2. Correlations in cluster A2.

A2

Kartoatmodjo
and Schmidt
(1991)

µo = 1.00081µob + 1.127 · 10−3 · (P − Pb) ·(
−6.517 · 10−3 · µ1.8148

ob + 0.038 · µ1.59
ob
) Orbey and

Sandler
(1993)

µo = µob · exp(α(P− Pb))

• Parriffinic hydrocarbons

α = 6.76 · 10−5

• Akylbenzes and cyclic hydrocarbons

α = 7.24 · 10−5

• Average
α = 6.89 · 10−5

Kouzel API
modified

α = −2.34864 · 10−5 + 9.30705 · 10−5µ0.181
ob Hossain

(2005)
µo = µob + 0.004481(P − Pb) ·(
0.555955µ1.068099

ob − 0.527737µ1.063547
ob

)
Table 3. Correlations in cluster B1.

B1

Labedi (1982
Libya) µo = µob +

10−2.488 · µ0.9036
od · P0.6151

b
100.01976·γAPI

(P/Pb − 1)

Labedi
(1982 Nigeria)

µo = µob + 0.0483 · µ0.7374
od (P/Pb − 1)
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Table 3. Cont.

B1

De Ghetto
(1994)

Extra-heavy oil
γAPI ≤ 10:
µo = µob + 10−2.19 · µ1.055

od · P0.3132
b /100.0099·γAPI ·

(P/Pb − 1)
Heavy oil 10 ≤ γAPI ≤ 22.3 :
µo = −0.9886µob + 2.763 · 10−3·
(P− Pb)

(
−11.53 · 10−3 · µ1.7933

ob + 0.0316 · µ1.5939
ob

)
Medium oil 22.3 ≤ γAPI ≤ 31.1:
µo = µob + 10−3.8055 · µ1.4131

od · P0.6957
b /100.00288·γAPI ·

(P/Pb − 1)
Agip:
µo = µob + 10−1.9 · µ0.7423

od · P0.5026
b /100.0243·γAPI ·

(P/Pb − 1)

Elsharkawy
and Alikhan
(1999)

µo = µob +
10−2.0771(P− Pb)µ

1.19279
od

µ0.40712
ob P0.7941

b

Table 4. Correlations in cluster B2.

B2

Al-
Khafaji
(1987)

µo = µob + 10F

F = −0.3806− 0.1845 · γAPI + 0.004034 · γ2
API −

3.716 · 10−5 · γ3
API + 1.11 log10(0.07031(P− Pb))

Abdul-
Majeed
(1990)

µo = µob + 10G−5.2106+1.11·log10(6.894757(P−Pb))

G = 1.9311 − 0.89941 ln(Rs) − 0.001194 · γ2
API +

9.2545 · 10−3 · γAPI · ln(Rs)

Almehaideb
(1997)

µo = µob

(
P
Pb

)m

m = 0.134819 + 1.94345 · 10−4 · Rs − 1.93106 ·
10−9 · R2

s

Dindoruk
and Christ-
man
(2004)

µo = µob + α6(P− Pb)10A

A = α1 + a2 log10 µob + α3 log10 Rs +
α4µob log10 Rs + α5(P− Pb)
α1 = 0.776644115, α2 = 0.987658646,
α3 = −0.190564677, α4 = 0.009147711,
α5 = −0.000019111, α6 = 0.00006334

Table 5. Correlation input ranges of validity.

Cluster Correlation µo Range (cp) µob Range (cp) P Range (psi) Pb Range (psi)

A1

Beal (1946) 0.16–315 0.142–127 - -

Kouzel (1965) 1.78–202 1.22–134 423–6015 -

Vazquez and Beggs (1976) 0.117–148 - 126–9500 -

Khan (1987) 0.13–71.0 0.13–77.4 - 107–4315

Petrosky (1990) 0.22–4.09 0.211–3546 1600–10,250 1574–9552

A2

Kartoatmodjo and Schmidt (1991) 0.168–517.03 0.168–184.86 25–6015 25–4775

Orbey and Sandler (1993) 0.225–7.3 0.217–3.1 740–14,501 -

Kouzel API modified (1997) - - - -

Hossain (2005) 3–517 3.6–360 300–5000 222–1458

B1

Labedi Libya (1982) - 0.115–3.72 - 60–6358

Labedi Nigeria (1982) - 0.098–10.9 - 715–4794

De Ghetto (1994) 0.13–354.6 - - -

Elsharkawy (1999) 0.2–5.7 - 1287–10,000 -

B2

Al-Khafaji (1987) 0.093–7.139 - - -

Abdoul-Majeed (1990) 0.096–28.5 0.093–20.5 - 496–4864

Almehaideb (1997) - - - 501–4822

Dindoruk and Christman (2001) 0.211–10.6 0.161–8.7 - 926-12,230
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In the Tables above, µo denotes undersaturated oil viscosity, µob is the bubble-point
viscosity, P is the reservoir’s pressure and Pb is the bubble-point pressure. Additionally,
γAPI is the API-specific gravity of the oil, Rs is the Gas–Oil Ratio and µod is the dead
oil viscosity.

3. Dataset

To evaluate the performance of the selected correlations, viscosity measurements were
collected from all available sources including published material and in-house measure-
ments. The data corresponded to approximately 500 fluids originating all around the world,
varying from very light oils to heavy ones.

The dataset quality control procedure identified no fluids with inconsistent viscosity
shape (i.e., non-increasing) versus pressure, which implies that all data points of every fluid
are continuous and smooth. Out of the whole dataset, 89% of the fluids have bubble-point
viscosity of less than 10 cp, 7.8% of them have a viscosity value between 10 and 50 cp and
only 3.2% have a value greater than 50 (up to 1760 cp). As fluids of that high viscosity
values tend to behave very differently compared with regular oils, these datasets were
removed to avoid introducing bias to the correlations’ evaluation. Dead oil viscosity values
(i.e., µo @ Patm, Tres) were available only for a small subset of the fluids, thus preventing the
evaluation of correlations which make use of that crucial input. To include such correlations
in the evaluation, the missing dead oil viscosity values were estimated using the Beggs and
Robinson correlation (discussed below).

To avoid introducing bias to the evaluation process due to the varying number of
pressure steps between Pb and Pi per fluid (which is defined arbitrarily by the PVT lab
client), the available measurements were interpolated with fluid-specific first-order rational
functions of pressure. Subsequently, each fluid was resampled at a fixed number of pressure
values from this curve, equally spaced between Pb and Pi, as shown in Figure 1. These
rational equations are a result of non-linear regression. In total, twenty points were selected
for each fluid between the pressure values stated above.

The range spanned by the cleaned dataset’s undersaturated fluids properties are given
in Table 6. Their distribution is further illustrated in the histograms in Figure 2, where the
vertical axis corresponds to the percentage of each value bin.

Figure 1. Example of experimental data resampling by means of interpolation (green line).
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Judging from the distribution of the Pb values in Figure 2, the fluids database utilized
contains reservoir fluids, whose saturation pressure is as low as less than a hundred psi,
whereas others’ top at 6500 psi, thus exhibiting the fluid-type variance of the dataset.
Regarding the oil’s volatility, GOR ranges from nearly zero, i.e., fluids characterized mainly
by their C7+ fraction, up to 17,000 scf/stb, a value associated with very highly volatile,
near critical fluids. Similarly, API gravity values range from 14 to 50+. It is also shown that
the reservoirs’ temperature, which also affects viscosity strongly, is distributed in a wide
range spanning from less than 100◦F up to more than 350◦F.

Figure 2. Fluid property values’ distributions.
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Table 6. Database fluid properties range.

Parameter Minimum Maximum

µob (cp) 0.04 48
µ (cp) 0.04 100

GOR (scf/stb) 0 17,118
API 14 57

T (◦F) 87 376
Pb (psi) 36 7303
P (psi) 36 12,750

To facilitate the interpretation of the obtained results, the data were further split into
four ranges according to the bubble-point viscosity value, as shown in Figure 3. The first
and second ranges (0–1 cp and 1–5 cp) can be described as low or mildly viscous fluids,
while the third and fourth (5–20 cp and 20–50 cp) correspond to fluids that are highly
viscous and do not flow as easily and fast. The number of fluids in each range is shown in
the bottom-most part of the Figure 3 in the form of a histogram. The box plots above the
histograms indicate the distribution of every input in each range, with the red line in the
middle showing the average value and the edges of the box corresponding to the 25th and
75th percentiles. Beyond the box are the whiskers, the end points of which denote the min
and max values of the property. As reasonably expected, as bubble-point viscosity increases,
API, GOR, Pb and even temperature become low. Interquartile ranges are sometimes high,
but this is very common when dealing with PVT values in real-world reservoir oil datasets.
Variation also decreases in those properties, but that should probably be attributed to the
fewer points in the high viscosity ranges.

Figure 3. Fluid property values box plots for four viscosity value ranges.
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4. Results

The evaluation of the correlations’ performance against this dataset is discussed in this
section, and results are presented following the grouping defined in Section 2. The typical
metrics utilized in the evaluation process are the ARE or Average Relative Error as a
measure of bias and AARE or Absolute Average Relative Error as a measure of variance.
They are defined as follows:

ARE % = 100 · e = 100
N

N

∑
i=1

ei =
100
N

N

∑
i=1

(µ̂o)i − (µo)i
(µo)i

AARE % = 100 · |e| = 100
N

N

∑
i=1
|ei| =

100
N

N

∑
i=1

∣∣∣∣ (µ̂o)i − (µo)i
(µo)i

∣∣∣∣
where µ̂ is the predicted viscosity value and µ is the lab-measured one, N is the number of
data points considered and ei is the error of every point. The bar operator is used to note
the average value. To evaluate how widely ARE and AARE values are distributed around
their means, their standard deviation (SDRE and SDARE) is provided as well, defined by

SDRE % = σe =

√
∑N

i=1(ei − e)2

N − 1

SDARE % = σ|e| =

√√√√∑N
i=1

(
|ei| − |e|

)2

N − 1

Lastly, Pearson’s correlation coefficient (R2) is used as a simple metric of the match
between measured and predicted viscosity values, defined by

R2
X,Y =

(µo − µo)(µ̂o − µ̂o)

σµo σµ̂o

where σµo =

√
∑N

i=1((µo)i − µo)
2

N − 1
, σµ̂o =

√
∑N

i=1
(
(µ̂o)i − µ̂o

)2

N − 1
.

Results are presented separately for each cluster of correlations, so as to enhance read-
ability and allow for direct comparisons. Their visualization is attempted in Figures 4–8.
ARE and AARE are plotted per group/cluster and per viscosity value range to allow
for the evaluation of the correlations’ performance on various oil types. The correlation
performance data series are slightly shifted to each other to avoid overlapping and facilitate
comparison. Some markers are hollow, indicating that the corresponding correlation is
being tested outside its design inputs range. For example, Petrosky’s correlation exhibits
ARE and AARE errors of approximately −24% and −26% when tested against the data
points with viscosity in the 5–20 cp and 20–50 cp, respectively. However, as indicated by
the hollow points, that result is not representative of the correlation value, as the latter is
tested beyond its design range.

In Figure 4 (cluster A1) it is notable that the Beal and Kouzel models produce almost
no systematic error at all for the full viscosity values range, with Beal’s model performing
marginally better in terms of AARE. Khan’s model was a close match up until tested
against values above its design limit (i.e., 20–50 cp). This did not hinder Kouzel’s model
performance regarding its prediction against low µo values below its design range. Pet-
rosky’s correlation suffers from similar issues as Khan’s, while the correlation of Vazquez
and Beggs performs consistently below average across all ranges. Note that all of these
correlations share the same form µ = f (µob, P, Pb).
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Figure 4. Evaluation of correlations in cluster A1 (hollow points correspond to results obtained
outside the development range of the correlation).

Figure 5. Evaluation of correlations in cluster A2 (hollow points correspond to results obtained
outside the development range of the correlation).
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Figure 5 depicts the performance of the second correlations set of the form
µ = f (µob, P, Pb), namely cluster A2. The modified Kouzel correlation and those by
Hossain and Kartoatmodjo all seem to reach a level of being unbiased as viscosity increases,
as opposed to cluster A1, where most models only start off as unbiased. Hossain’s is the
only one that performs better above the 5 cp limit, which is reasonable since the latter
is within its design range. Orbey and Sandler’s model performs similarly to Petrosky’s,
severely underestimating values when above its designed viscosity range.

Figure 6 illustrates the results obtained for correlations in cluster B1 which further
utilize dead oil viscosity and share the common form of µ = f (µob, P, Pb, µod, GOR, API).
Most dead oil viscosity values are not available in the dataset and were estimated using
Beggs and Robinson correlation [30], which considers oil API and reservoir temperature in
the following form:

µod = 10x − 1

x = 103.0324−0.02023·API · T−1.163

It should be noted that this approach is common practice to estimate µod, as its lab
measurement requires that a full viscosity study needs to be run which, unlike a single
measurement of µob, severely increases the analysis cost. Labedi’s correlation for Nigerian
oils generally performs worse than his Libya model, despite the first being built against a
wider range of viscosity values. Elsharkawy’s model completely underestimates values
above its design limit, just like Petrosky’s does. De Ghetto’s correlation seems to have
lowest bias in the bunch, which should probably be attributed to the fact that De Ghetto’s
model does not utilize dead oil viscosity for a certain range of API values. Clearly, all
models but the one by De Ghetto cannot perform for oils of high viscosity above 5 cp.

Figure 6. Evaluation of correlations in cluster B1 (hollow points correspond to results obtained
outside the development range of the correlation).



Energies 2022, 15, 9320 14 of 23

The correlations in cluster B2, Figure 7, are of the form µ = f (µob, P, Pb, GOR, API).
Dindoruk’s model performs poorly above its design range but very accurately inside
that. Abdul-Majeed’s correlations produced extremely high errors for GOR values below
50 scf/stb, and these fluids were not included in the latter’s evaluation to avoid receiving
unrealistic statistics. Al-Khafaji’s model suffers from the same drawbacks as Petrosky’s.

Radar charts showing all correlations AARE are implemented in Figure 8 to allow
correlations comparison in a more concise way. It is noted that as was the case with
Figures 4–7, filled and hollow points indicate correlations acting within or beyond their
design range, respectively. It can be readily seen that the models by Beal and Kouzel
exhibit far better performance than any other correlation for any fluid in all four ranges.
The models by Khan, Vazquez and Beggs and Petrosky exhibit progressively deteriorating
accuracy, which becomes more acute the higher the viscosity is. As far as the correlations in
cluster A2 are concerned, all but that by Orbey and Sandler exhibit ARE values of less than
10% in all ranges, with the modified Kouzel one being the most accurate, slightly better
than the original one appearing in cluster A1.

Figure 7. Evaluation of correlations in cluster B2 (hollow points correspond to results obtained
outside the development range of the correlation).

In cluster B1, all models except De Ghetto’s produce high AARE values with pro-
gressing viscosity range. As seen in Table 3, De Ghetto’s model consists of four equations,
three of which are modified versions of Labedi’s, and the other being a modified version
of Kartoatmodjo’s. From Figure 3, it is apparent that the last µob range consists of very
low-volatility oils, where fluids have an API value below 20. At this API range, De
Ghetto’s equation has a form resembling Kartoatmodjo’s, which itself produces accurate
results. This is the main reason justifying De Ghetto’s advantage in the last range. Lastly,
regarding cluster B2, Dindoruk and Christman’s correlation performs the best when
low-viscosity fluids are considered, but soon, the error increases rapidly outside its
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design range. Although Al-Khafaji’s and Abdul Majeed’s models do not suffer from
the same drawbacks, they provide poor predictions on the first two viscosity ranges.
Overall, Almehaideb’s correlation would be the one to choose out of this cluster, as it
stays close to 10% AARE, even in the range of 20–50 cp.

Figure 8. AARE radar charts of the correlations in all four clusters (hollow points correspond to
results obtained outside the development range of the correlation).

The full set of all five metrics discussed at the beginning of Section 4 are given in the
Appendix A in Tables A1–A4 for the four distinct viscosity values ranges discussed above,
following the policy of similar publications. Green highlighting is used to indicate that
the corresponding correlation is evaluated within its design range. The same convention
is used in Appendix B regarding the parity plots, where the experimentally measured
viscosity values are shown in scatter plots vs the model-predicted ones. In these plots,
a green box is used to indicate the space of bubble-point viscosity values inside which
the corresponding correlation was developed. As the Tables progress towards ranges of
increasing viscosity, it can be verified that correlations in the white background appear
more often and perform worse than those in the green.

An overall comparison of their performance for all ranges reveals that most correla-
tions perform very well in the first range of bubble-point viscosity (0-1 cp) that corresponds
to oils of medium-to-high volatility. On the other hand, they perform excessively badly in
the range of the highly viscous fluids, but only if their development range is way below
these values. They all tend to underestimate viscosity values in this range, thus being
negatively biased. Closer examination shows that their formulas are generated in a way
that forbids predicted viscosity to change according to pressure change in that region.
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5. Discussion

Although physical evidence exists that could have been used to develop physics-
driven models (such as the facts that undersaturated reservoir oil has constant composition,
lies in a single liquid phase, the reservoir’s temperature is constant and pressure change
does not really bring the molecules significantly closer together in liquids since they are
incompressible), the reservoir engineer community still relies on data-driven models such
as the ones presented in this work. Strictly speaking, the only principle embedded in
all models’ mathematical form is that oil viscosity increases with pressure. As a result,
the performance compared in Figures 9 and 10 has only been a result of the developers’
skills and the dataset used, rather than the physics principles considered.

Figure 9. AARE bar plot of the most accurate correlation(s) of each cluster.

By comparing in detail all correlations, an ordering of their performance for various fluid
types can be achieved to address the question of the most accurate correlation that should
be used. For this purpose, two workflows are considered to identify the most appropriate
correlation when a single model or various models along different ranges might be used,
subject of course to their availability in the flow simulator utilized. For the first task, where a
single correlation is sought, Beal’s correlations outperforms all others at every viscosity range,
and it should be hands down the first choice to use when available in the software package
used. It is closely matched by Kouzel’s modified and Kouzel’s original model. Finally, De
Ghetto’s correlation would be the fourth best in order when it comes to overall performance.
The ordering, however, may be altered according to the task at hand, regarding bubble-point
viscosity range or even the locality of the fluid that is being studied.

For applications where different correlations may be combined according to the µob
value, Figures 9 and 10 provide an insight as to which correlation performs best at each
range by comparing the metrics ARE and AARE between the top performing correlations.
In the first range (0–1 cp), it is Beal’s correlation that achieves the lowest AARE, and it is De
Ghetto’s one that achieves the least bias. In the second range (1-5 cp), the modified Kouzel
equation is clearly the top performer among both metrics. Regarding the third (5–20 cp)
and fourth range (20–50 cp), Beal’s equation is once again the best performer in terms of
AARE, while being closely matched by Kartoatmodjo’s one. In the third range, however,
De Ghetto’s correlation is once again the most unbiased, while in the fourth range there is a
handful of correlations that achieve this goal.

This study provides an in-depth analysis of the suitability of known correlations
for the prediction of undersaturated oil viscosity against hundreds of never seen before
fluids. It is complete in the sense that it gives a strong indication as to which correlations
should be applied when using flow simulating software. The large number of datasets
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utilized provide a sense of security to the engineer when they try to make a prediction of
the evolution of the viscosity in a reservoir. The negative aspect of this study is mainly
the minimal usage of experimental dead oil viscosity data, giving a handicap to several
correlations in terms of judging their true performance. Additional research is needed to
determine a model that performs optimally in all classes, and the abundance of data points
in our disposal may lead to a new model. This model may be a result of regression analysis
or more complex machine learning techniques.

Figure 10. AARE bar plot of the most accurate correlation(s) of each cluster.

6. Conclusions

A thorough examination and evaluation of correlations for the prediction of underastu-
rated oil viscosity was presented, followed by a fair comparison process which guarantees
that the correlations were judged appropriately.

The metrics obtained through this process show that a method should be chosen only
when the task at hand is within the method’s design range. Users also have to consider the
locality of the fluids in which they work on in order to choose between similarly performing
correlations. In general, linear in ∆P models tend to predict experimental values with better
accuracy, although the curvature of µob with respect to P is ignored. Surprisingly, one of
the oldest models (Beal 1946) performed on average better than most newer ones, even the
ones developed in the 2000s. Models of the second group (clusters B1 and B2) performed
worse than those in the first one, despite their enhanced input, but still, given the correct
data, some may find success in trying out the top performers of each cluster. The above
analysis was coded in guidelines/workflows which can be used by engineers facing the
problem of choosing the most suitable model for their task at hand.
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Abbreviations
The following abbreviations are used in this manuscript:

AARE Average Absolute Relative Error
ARE Average Relative Error
SDRE Standard Deviation of Relative Error
SDARE Standard Deviation of Absolute Relative Error
cp Centipoise
psi Pounds per square inch
F Fahrenheit
API American Petroleum Institute gravity
scf Standard cubic feet
stb Stock tank barrel
QA/QC Quality Analysis/Quality Control
EOR Enhanced Oil Recovery
ARPD Asphalit Resin Paraffin Deposit
APG Associated Petroleum Gas

Appendix A

Table A1. Detailed metric values for all correlations and for µob range 0–1.

Cluster Correlation ARE SDRE AARE SDARE R2

Beal (1946) −0.92 5.07 3.00 4.18 0.993
Kouzel (1965) 1.46 6.84 4.23 5.57 0.990
Vazquez and Beggs (1976) 6.18 13.34 8.11 12.26 0.953
Khan (1987) 3.26 7.70 5.18 6.57 0.987

A1

Petrosky (1990) 5.36 26.26 6.73 25.94 0.986
Kartoatmodjo and Schmidt (1991) −7.23 7.16 7.28 7.11 0.987
Orbey and Sandler (1993) −0.80 5.75 3.31 4.77 0.993
Kouzel Modified (1997) −2.76 6.08 3.93 5.40 0.993A2

Hossain (2005) 3.35 7.21 5.43 5.81 0.990
Labedi Nigeria (1982) −1.96 9.38 4.90 8.23 0.962
Labedi Libya (1982) 0.31 6.74 4.05 5.40 0.989
De Ghetto (1994) 0.51 6.65 4.00 5.34 0.990B1

Elsharkawy (1999) 0.58 7.60 4.28 6.31 0.983
Al-Khafaji (1987) −0.23 11.02 4.82 9.91 0.985
Abdul-Majeed (1990) 1.98 14.92 6.67 13.49 0.929
Almehaideb (1997) 4.48 11.74 6.42 10.80 0.979B2

Dindoruk and Christman (2001) 2.28 6.50 4.45 5.26 0.992

Table A2. Detailed metric values for all correlations and for µob range 1–5.

Cluster Correlation ARE SDRE AARE SDARE R2

Beal (1946) −3.69 5.60 4.39 5.08 0.980
Kouzel (1965) 2.66 6.81 4.53 5.74 0.980
Vazquez and Beggs (1976) 12.62 20.51 13.43 19.99 0.914
Khan (1987) 1.60 6.35 4.07 5.12 0.981

A1

Petrosky (1990) 2.72 8.09 5.72 6.33 0.976
Kartoatmodjo and Schmidt (1991) −5.19 6.07 5.54 5.75 0.979
Orbey and Sandler (1993) −2.73 5.57 3.95 4.79 0.981
Kouzel Modified (1997) −0.32 5.88 3.78 4.52 0.982A2

Hossain (2005) 6.11 7.61 6.92 6.88 0.979
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Table A2. Cont.

Cluster Correlation ARE SDRE AARE SDARE R2

Labedi Nigeria (1982) 0.43 19.71 10.37 16.77 0.908
Labedi Libya (1982) 2.51 13.63 7.16 11.87 0.968
De Ghetto (1994) −0.64 12.19 6.62 10.25 0.971B1

Elsharkawy (1999) −1.64 12.27 7.78 9.62 0.963
Al-Khafaji (1987) −7.06 7.41 7.51 6.95 0.973
Abdul-Majeed (1990) 8.92 25.79 12.28 24.37 0.890
Almehaideb (1997) 2.39 9.90 6.54 7.81 0.966B2

Dindoruk and Christman (2001) 5.39 7.04 6.40 6.14 0.980

Table A3. Detailed metric values for all correlations and for µob range 5–20.

Cluster Correlation ARE SDRE AARE SDARE R2

Beal (1946) −2.84 5.83 3.93 5.16 0.989
Kouzel (1965) 2.62 7.35 5.45 5.58 0.985
Vazquez and Beggs (1976) 12.73 22.86 14.17 22.00 0.871
Khan (1987) −2.78 6.44 4.80 5.10 0.988

A1

Petrosky (1990) −15.60 10.87 15.60 10.87 0.942
Kartoatmodjo and Schmidt (1991) −1.69 5.87 3.99 4.63 0.989
Orbey and Sandler (1993) −7.35 6.91 7.66 6.55 0.983
Kouzel Modified (1997) 6.62 4.69 4.75 0.987A2

Hossain (2005) 6.25 7.90 7.45 6.77 0.985
Labedi Nigeria (1982) −10.59 10.04 11.67 8.76 0.95
Labedi Libya (1982) −4.03 11.93 8.43 9.35 0.942
De Ghetto (1994) −0.52 15.91 7.79 13.89 0.871B1

Elsharkawy (1999) −12.18 9.93 12.76 9.18 0.954
Al-Khafaji (1987) −14.20 10.52 14.50 10.09 0.949
Abdul-Majeed (1990) −0.82 13.72 8.96 10.43 0.934
Almehaideb (1997) −1.72 8.94 6.20 6.67 0.968B2

Dindoruk and Christman (2001) 10.89 9.41 11.37 8.83 0.986

Table A4. Detailed metric values for all correlations and for µob range 20–50.

Cluster Correlation ARE SDRE AARE SDARE R2

Beal (1946) 0.56 7.65 4.82 5.97 0.968
Kouzel (1965) −0.66 7.91 5.64 5.58 0.964
Vazquez and Beggs (1976) 8.09 20.50 13.22 17.63 0.862
Khan (1987) −11.66 8.28 11.67 8.27 0.958

A1

Petrosky (1990) −26.27 14.49 26.27 14.49 0.792
Kartoatmodjo and Schmidt (1991) 1.39 7.61 4.94 5.95 0.968
Orbey and Sandler (1993) 9.92 16.20 9.92 0.936
Kouzel Modified (1997) 7.73 5.65 5.43 0.964A2

Hossain (2005) 1.20 7.49 5.41 5.32 0.968
Labedi Nigeria (1982) −22.90 14.85 23.66 13.60 0.802
Labedi Libya (1982) −19.30 12.27 19.30 12.27 0.874
De Ghetto (1994) −2.80 7.41 5.93 5.25 0.967B1

Elsharkawy (1999) −24.81 14.03 24.81 14.03 0.818
Al-Khafaji (1987) −25.30 13.69 25.30 13.69 0.829
Abdul-Majeed (1990) −18.28 11.80 18.28 11.80 0.914
Almehaideb (1997) −7.63 14.63 13.08 10.05 0.872B2

Dindoruk and Christman (2001) 47.42 40.03 48.98 38.10 0.953

Appendix B

The scatter (parity) plots constitute a graphical error analysis method. Every point’s
coordinates in this plot are its experimentally measured value on the horizontal axis and its
predicted value on the vertical one. Correlations can be compared on parity plots based
on how points are concentrated close to the diagonal. Parity plots to demonstrate the
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performance of each method are given in Figures A1–A4. The clustering order is followed
as in the previous sections. Due to the very wide range of the bubble-point viscosity values,
the axes are plotted in logarithmic scale.

Figure A1. Parity plots of correlations in cluster A1.
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Figure A2. Parity plots of correlations in cluster A2.

Figure A3. Parity plots of correlations in cluster B1.
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Figure A4. Parity plots of correlations in cluster B2.

There seem to be some fluids in the µob range of (0.01–0.1) that are severely under-
estimated by many of the models, even the best performing ones. On one hand, this can
be attributed to the logarithmic scaling of the axes, which enhances relative errors in low
values, but on the other, this range is not within the design area of any of the correlations.
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