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Abstract: Severe weather conditions not only damage electric power infrastructure, and energy
systems, but also affect millions of users, including residential, commercial or industrial consumers.
Moreover, power outages due to weather-related natural disasters have been causing financial losses
worth billions of US dollars. In this paper, we analyze the impact of power outages on the revenue of
electric power suppliers, particularly due to the top five weather-related natural disasters. For this
purpose, reliable and publicly available power outage events data are considered. The data provide
the time of the outage event, the geographic region, electricity consumption and tariffs, social and
economic indicators, climatological annotation, consumer category distribution, population and land
area, and so forth. An exploratory analysis is carried out to reveal the impact of weather-related
disasters and the associated electric power revenue risk. The top five catastrophic weather-related
natural disaster categories are investigated individually to predict the related revenue loss. The most
influencing parameters contributing to efficient prediction are identified and their partial dependence
on revenue loss is illustrated. It was found that the electric power revenue associated with weather-
related natural disasters is a function of several parameters, including outage duration, number of
customers, tariffs and economic indicators. The findings of this research will help electric power
suppliers estimate revenue risk, as well as authorities to make risk-informed decisions regarding the
energy infrastructure and systems planning.

Keywords: electric power; severe weather disasters; revenue loss; prediction

1. Introduction

Electric power infrastructure plays an important role for the development of any
geographical area in the world. Many systems, such as water, transportation, health, food,
education, telecommunication, and security rely on a consistent electric power supply.
Climate change has affected the regional weather across the globe [1–3]. As a result,
weather-related natural disasters have been witnessed all over the world, causing events
such as typhoons, storms, heavy rainfall, flooding, and landslides [4–10]. Such disasters
affect millions of people, and cause power infrastructure damage and long power outages.

In the United States (U.S.), the electricity network is very entangled and complex.
In 1996 there were a total of 3199 electric companies (utilities) in the U.S. where almost
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700 companies among them were involved in the generation of electric power, while others
in the distribution systems [11]. The energy demand has been increasing since then due to
an increase in population, as well as the growth of the industry.

In the U.S., if we look back over the last two decades, there have been many reasons
for power outages to happen. One of the main and probably top reasons for power outages
is the occurrence of weather-related natural disasters [12,13]. Due to their environmental
conditions, some regions are more prone to natural disasters than others. A study based on
2007–2018 data exposed how the vulnerability of eastern U.S. to weather-related disasters
is higher [14]. California, Texas and Ohio were identified as the most vulnerable States to
face such disasters [15]. Due to the impacts of global climate change, the rate of occurrence
of weather-related disasters has increased, particularly during the last two decades [16,17].
In 2021, a major power crisis developed which spread across the U.S. due to three winter
storms which befell Texas [18]. From 2011 to 2017, a total of 16 weather-related disasters
were witnessed [19]. In the year 2020 only, the U.S. faced 22 severe weather-related disasters,
including storms, droughts, tropical cyclones and wildfires [15]. If we look at the historical
record, the reason for 80% of the total outage events during 2003–2012 was severe weather
disasters [20].

Natural disasters driven by severe weather conditions cause extended power outages,
which not only affects millions of people but also costs billions of dollars. In 2021 only,
winter storms cost around 200 billion dollars for the U.S. economy [21]. A winter storm
hit Texas in February 2021 and caused an estimated financial loss of 45–50 billion USD,
including infrastructure damage, medical expenses, loss of jobs, and business losses [22].
In the year 2020, a total of 22 disasters hit the U.S. and caused an average financial dent of
1 billion USD [15]. As the top catastrophic event, a Category Four Hurricane (Laura) hit
Louisiana on 27–28 August 2020, causing an economic loss of more than 18 billion USD. The
Derecho storm was the second most disastrous event hitting South Dakota to Ohio on 10th
August, costing the economy 11 billion USD. Hurricane Sally, being the third in the list, hit
the Alabama coast and cost 7 billion USD. The U.S. witnessed 16 disasters in the year 2017
alone causing an economic loss worth billions of dollars [23]. In 2012, Hurricane Sandy
hit the U.S., where it was one of the most catastrophic events of the U.S. history affecting
8 million people and costing 70 billion USD [24]. Hurricane Irene affected 6 million people
and cost the economy 10 billion USD in 2011 [24]. The U.S. bore an economic loss of up to
50 billion USD due to marine disasters during 2003–2012 [25]. Over the period of 38 years
from 1980 to 2017, the U.S. observed economic losses of around 219 billion USD specifically
due to natural disasters [26].

Economic losses from power outages due to weather-related natural disasters have
represent overall financial loss, including costs of infrastructure destruction, business
investment costs, revenue loss, and damage to equipment. One of the most widely used
methods to estimate financial loss is the willingness to pay (WTP) for continuous electricity
supply. Such a method reflects a subjective assessment depending on the user’s philosophy
and added value linked to a consistent electric power supply. There have been many recent
studies carried out around the globe which present this approach to estimate the financial
risk related to power outages. In Hyderabad India, a study presented the willingness to
pay of small firms for a continuous supply of electricity [27]. The findings showed that
the firm owners agreed to pay an extra 20% for an uninterrupted power supply. A study
from Nepal, conducted after the energy crisis during 2008–2016, presented that households
were ready to pay 65% of their monthly bill for a consistent electric power supply [28]. To
assess the WTP by organizations for a reliable power supply, a study was conducted in
Zambia which revealed that organizations were ready to pay for consistent electricity, and
larger groups were ready to pay more than smaller organizations [29]. The authors of a
study conducted in Pennsylvania to assess economic loss based on the WTP by residential
customers for a week-long uninterrupted power supply up to 20 amperes [30] concluded
that residents were ready to pay up to 1.2 USD per kWh.
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The existing literature reveals the usage of different approaches for economic loss
assessment based on collected or available information. One of the most widely used
approaches is the WTP approach as discussed [31–34]. Using this approach, most of the
studies presented a financial loss assessment from the electricity consumer’s perspective
where different consumer sectors were investigated, such as the residential, commercial,
and industrial sector. Moreover, both public and private organizations were studied to
estimate the financial hazard in case of a power outage, in terms of willingness to pay for a
consistent electric power supply. However, the financial hazard faced by power suppliers
is almost entirely missing in the literature. Electric suppliers also bear losses in revenue
during power outages, but the estimation of their revenue loss is rarely investigated. A
recent study presented the prediction of revenue loss of electric power suppliers due to
power outages [35]. However, in this study, all reasons for power outages, including
weather-related natural disasters, were considered. The study also revealed that almost
70% of the total revenue loss is linked with weather-related disasters. This reveals a way
forward to deeply analyze the impact of weather-related natural disasters on power outages
and to assess the consequent revenue losses. Therefore, the aim of this study was to analyze
the historical power outages triggered by weather-related natural disasters, specifically
the top five categories. A comprehensive exploratory analysis is presented to highlight the
impact of these disasters and the associated revenue losses. The contributions of this study
are summarized as the following:

• An exploratory data analysis is presented to identify and lay the foundations of
this research, leading to analyze the impact of top weather-related natural disaster
categories on power outages;

• The top five most financially catastrophic weather-related natural disaster types are
investigated where for each disaster category, the revenue loss prediction is performed;

• Towards the efficient prediction of revenue loss, the 10 most influential parameters
are identified and their relation with revenue loss is illustrated for each of the five
disaster categories.

The paper is organized as follows: Section 2 presents the data and exploratory anal-
ysis. Methodology is explained in Section 3. The results and discussion are presented in
Sections 4 and 5, respectively. Finally, a conclusion is added at the end.

2. Exploratory Data Analysis

The United States has witnessed a large number of power outages in the past. Reliable
data regarding historical power outages, collected from U.S. national agencies, are publicly
available [36]. The data cover the information of 1534 outage events which happened
over 17 years from 2000 to 2016 in 49 States. For each of the power outage events, the
data include such information categories as electricity usage patterns, consumer strength,
population density, climate annotation, social and economic indicators, and land area with
a total of 51 parameters altogether.

2.1. Visualization of Severe-Weather-Related Natural Disasters

Power outage data include the outage events which were triggered due to seven
different explanations. Figure 1 shows the occurrence of different events in terms of
percentages which caused the power outage. It can be observed that a weather-induced
natural disaster was the reason behind half of the total events which occurred.

Most of the natural disasters were linked with severe weather conditions. Among those
disaster types, the occurrence of a few was higher than the others, such as thunderstorms,
hurricanes and winter storms. Figure 2 shows the frequency of the top 10 most frequently
occurring disaster categories over the entire period of 17 years. It can be observed that all
those disaster categories were related to severe weather conditions.
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Figure 2. Frequency of different natural disaster events causing power outages.

Next, we visualize in how many States a power outage event occurred which was
related to a particular disaster category. Figure 3 illustrates the occurrence of individual
disaster events in a total number of states of the U.S. It is observable that not only were the
weather-induced disaster events the most frequent ones (as shown in Figure 1), but that
their prevalence also existed across many States.
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Figure 3. Distribution of frequency of natural disaster events in multiple states of the U.S.

If we look carefully in Figures 2 and 3, one can observe that the top five disaster
categories remain the same with regard to occurrence as well as prevalence. Next, we find
out the relevance of occurrences of those top five disaster categories with varying weather
conditions over the entire year. The month-level frequency of these events is presented in
Figure 4. It can be observed that thunderstorms and hurricanes were the reason behind
power outage events during the summer season. Similarly, winter storms mostly caused
power outages during the winter season. Looking at the statistics, it can also be observed
that the reason behind 58% of all outage events is among the top five disaster categories.
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2.2. Visualization of Revenue Loss Associated with Weather-Related Natural Disasters

Power outages due to severe weather-related disasters cause electric power revenue
loss for electricity-supplying corporations. The power outage data include the tariffs offered
by electricity-supplying companies at the time of the outage event. Moreover, tariffs were
distinguished among different customer categories, such as residential, commercial and
industrial. The revenue lost during the power outage event due to the non-sale of electricity
can be estimated using the tariff information and the total time of the outage. For example,
for the residential sector, revenue loss was estimated as follows:

Residential revenue loss = Residential sale × Residential tariff × Total time of power outage (1)

Similarly, revenue loss was computed in the commercial and industrial sectors as well.
The total revenue loss during a power outage event was the sum of the losses of individual
sectors. The data show there were seven different reasons which caused power outage
events, including severe weather disasters. Figure 5 shows the reason for power outages
and the corresponding total revenue loss in terms of percentages. It is evident that severe
weather-related disasters were the reason behind more than two-thirds of the total revenue
loss. As shown earlier in Figure 1, 50% of power outage events occurred due to severe
weather-related disasters; however, the impact in terms of revenue loss was even higher,
that is, up to 70%.
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Figure 5. Percentage revenue loss against different kinds of events causing power outage [35].

Having found that the major percentage of electric power revenue losses of 70%
was due to severe weather disasters, we look into the revenue loss distribution among
individual States of the U.S. It was found that more than 85% of the total revenue loss
was witnessed by eight States of the U.S. Figure 6 shows the percentage distribution of the
accumulated revenue loss in the top eight States (i.e., 85% of total revenue loss), among the
individual States.

Finally, the revenue loss accumulated in the top eight States related to individual
severe weather-related disaster categories is shown in Figure 7.
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The exploratory analysis and visualizations reveal that weather-connected natural
disasters triggered half of the total power outage events during 2000–2016, and also caused
70% of the total electric power revenue loss. The scope of this research is to analyze the
impact of top severe weather-related disaster categories and to predict the consequent losses
in revenue. Since only 15% of the total electric power revenue loss happened in 41 States,
while the remaining 85% of revenue loss was borne by eight States, it is convincing as
well as convenient to consider the data of eight States for further analysis and prediction.
Therefore, further in the research, analysis and prediction are carried out based on the data
of the eight most vulnerable States of the U.S., as shown in Figure 6.

3. Methodology

The visualization of severe weather-related disasters and electric power revenue loss
in the exploratory data analysis section revealed that the many of the outage events were
triggered because of the top few categories of disasters overall. Therefore, to confine the
scope of the research analysis, the top five most catastrophic severe weather-related disaster
categories are investigated and revenue loss prediction is presented.
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For revenue loss prediction in the case of the occurrence of a severe weather disaster,
machine learning (ML) algorithms were considered. ML algorithms are based on data-
driven approaches to solve the problem. Therefore, it is critical to select the appropriate
algorithm which is particularly suitable for the nature of the data. The dataset used in
this research is diverse and multidimensional, and also includes outliers. Therefore, it is
important to choose an appropriate machine learning algorithm which may perform well
on such data. In the literature, several machine learning algorithms have been employed
for different applications, such as support vector machines, random forest, decision trees,
the artificial neural network, and linear models [12,35,37]. However, random forest (RF)
has proved to be the best candidate, particularly in the case of non-linear data with high
diversity and outliers, considering multiple research domains [12,17,35,38–42]. The overall
flow chart of the research methodology is shown in Figure 8.
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3.1. Random Forest Prediction Algorithm

Random Forest is an ensemble learning technique originally developed by Brie-
man [43] and is used for both classification and regression purposes. The key advantage
of this algorithm is that it is a non-parametric technique which can handle the noise and
non-linearity in data very well. It has high predictive accuracy and does not require any stiff
rules. The number of the trees or estimators plays a key role in the prediction process. The
efficiency and accuracy of the model can be improved by selecting the optimum number
of trees. According to general observation and also in our model, it is pragmatic that the
higher number of trees, the greater accuracy in prediction results. Concretely, RF is a simple
regression process in which it takes the split of data for training and testing purposes and
minimizes the error on the data with the selected number of trees. It has fast convergence
time and handles the noisy data easily which makes it superior over other algorithms,
specifically considering the data used in this research.

3.2. Performance Evaluation Metrics

The aim of this research was to predict the electric power revenue loss associated with
power outages caused by any of the top five severe weather-related natural disaster categories.
Therefore, revenue loss was the response variable or output parameter to be predicted by the
algorithm, while the rest of the parameters were used as input parameters. To evaluate the
prediction results, the following evaluation and analysis parameters were measured.
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3.2.1. Prediction Error

Prediction error tells the difference between the actual value and the predicted value.
To evaluate the fit of the model, different kinds of errors were considered, such as mean
absolute error (MAE), mean absolute percentage error (MAPE) and root mean square error
(RMSE). The mathematical expressions of these errors are as follows:

RMSE =

√√√√√ n
∑

i=1
(yi − pi)

2

n
(2)

MAE =

n
∑

i=1
|yi − pi|

n
(3)

MAPE =
1
n

n

∑
i=1

|yi − pi|
yi

(4)

where pi represents the predicted value, yi represents the actual value, and n represents the
total number of observations.

3.2.2. Quantile–Quantile (QQ) Plot

A QQ plot is another approach to see similarities between the data and a specific
probability distribution. It typically checks whether the data set is normally distributed or
not. It is different from histograms and pie charts because both the axes in QQ plots are
used to show the quantiles. Usually, the sample data are taken on the vertical axis, and the
desired probability distribution on the horizontal axis. The plot shows whether the data are
distributed according to the desired probability distribution, and as a result, data samples
are distributed along a 45-degree line. The graphs with normal distribution usually have a
symmetric curve and are rarely skewed left or right.

3.2.3. Influential Feature Ranking

Feature ranking is used to identify the most influential parameters in the data which
contribute for the efficient prediction by of the output variable. The influence of each
feature towards electric power revenue loss is presented in terms of normalized importance
of the feature used in the algorithm.

3.2.4. Correlation Plot

The correlation plot is used to interpret the relation between different variables in a data
set. It is a convenient way to find the linearity or non-linearity in the data. These types of
plots are mostly used to create a link and association among the variables present in the data.

3.2.5. Partial Dependency Plot (PDP)

A Partial dependence plot shows the marginal relationship between the response
variable and predicted variable to show whether the model is linear, monotonic, or of any
other non-linear kind [44]. Sometimes the value of a PDP is negative, which shows that the
predicted variable would have been less than the actual amount. Mathematically, it can be
obtained as follows:

f j(xj)
=

1
n

n

∑
i=1

f j(xj−x−j,i) (5)

where f is the estimated response, n is the total number of observations in training data,
and the average value of the variable over the marginal distribution is obtained.
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4. Results

The revenue loss prediction due to the top five individual disaster categories is pre-
sented and discussed in this section. For each disaster category, detailed results are pre-
sented and discussed, including prediction errors, the QQ plot, important feature charac-
terization, correlation plots between the top five important features, and the PDP of the top
five features.

4.1. Hurricanes

In this sub-section, the results of revenue loss estimation due to hurricanes are pre-
sented. The power outage data related to the hurricane disaster category were used to
perform the experiments. Employing the random forest algorithm, different numbers of
trees were selected and results recorded. Table 1 shows the revenue loss prediction errors
for hurricanes. The MAE and RMSE of revenue loss are expressed in USD and rounded to
an integer value. It can be observed that the minimum MAPE was achieved with 50 trees,
while errors increased when increasing the number of trees.

Table 1. Revenue loss prediction errors due to hurricanes.

Experiment No. of Trees MAPE MAE (USD) RMSE (USD)

1 50 23.45 23,079,835,627 28,026,732,162
2 80 34.85 30,018,823,161 33,616,564,460
3 100 34.91 30,212,456,847 36,824,097,170
4 200 30.48 27,327,924,177 36,868,394,234
5 300 27.84 26,556,687,363 37,152,012,173
6 400 28.31 26,786,049,438 37,800,187,377
7 500 29.69 27,269,116,911 37,114,244,997

Figure 9 shows the QQ plot for the hurricane data prediction results. It can be observed
that residuals fall along the 45-degree line, which reveals that the random forest model
captures the data variability well.
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Figure 10 shows the top 10 features ranked for the correct prediction of revenue loss.
The outage is the most important feature with a normalized importance of 0.62, while the
second influential feature is the utility sector income as percentage of the total income
of the U.S. The six more features down the line have equal normalized importance. The
variable ranking is based on the mean decrease for out-of-sample prediction accuracy.
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Figure 10. Ranking of the top 10 important parameters for revenue loss prediction for the hurricanes
disaster category.

Figure 11 shows the correlation plot between the top five influential features. The plots
along the 45-degree line show the mass distribution of a single feature. The remaining plots
illustrate the inter-feature correlation. It is observable from scatter plots in the right-most
column of the figure that the population parameter has a positive correlation with the rest
of the four influential features. Similarly, the contrary case of no correlation can be observed
by looking at the scatter-plot between the industrial price feature and the percentage utility
of the U.S.
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Figure 11. Correlation plot of the top five influential features for the hurricanes disaster category.
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The individual partial dependence plots for the top influential features are shown in
Figure 12. It can be observed that industrial customers and industrial tariff prices have
a negative linear relation with revenue loss in general, except in the middle range where
revenue loss increases with a small increase in the price. Similarly, the percentage of the
utility industry in the income of the U.S. and the population has a positive relation with
revenue loss.
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the hurricane disaster category.

4.2. Winter Storm

In this section, the revenue loss prediction is shown using the outage data associated
with winter storms. Different values for the number of trees in a random forest implemen-
tation were selected and results recorded. Table 2 shows the revenue loss prediction error
results for winter storms. The minimum error was recorded with 200 trees.

Table 2. Revenue loss prediction error of different experiments for the winter storm category.

Experiment No. of Trees MAPE MAE (USD) RMSE (USD)

1 50 29.69 32,220,838,997 41,084,191,702
2 80 30.13 33,415,595,609 41,830,421,202
3 100 31.11 33,999,830,403 42,091,161,381
4 200 26.12 30,359,905,448 39,364,991,165
5 300 26.89 31,464,230,122 40,729,734,176
6 400 26.26 31,164,528,874 41,096,929,311
7 500 26.35 30,986,271,677 40,636,022,029
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The QQ plot for the winter storm data prediction results is shown in Figure 13, which
reveals that the random forest model captures the data variability well, since the residuals
fell along the diagonal line.
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Figure 13. QQ plot (red line showing 45 degrees) shows data variability along the normal quantile
distribution.

Figure 14 shows the 10 most influential parameters towards an accurate prediction
of revenue loss. The outage duration has a normalized importance of 0.46, and this is the
highest. The second most important feature is the number of customers affected. Down the
list, there are different parameters which contributed equally for prediction.
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Figure 14. Ranking of top 10 important parameters for revenue loss prediction for the winter storm
disaster category.

Figure 15 illustrates the performance analytics graph showing the inter-feature rela-
tionship of the top five features. The plots along the off-diagonal direction represent the
density distribution of individual features.
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Figure 15. Top five feature correlation plots for the winter storm disaster category.

Figure 16 shows the individual partial dependence plots for the top five influential
features. It can be seen that the residential sales and the commercial price have a positive
relation with the revenue loss. A similar relation can be observed for outage duration and
the residential customers’ percentage up to the 60% range; however, the relationship is
inverted in the higher range.

4.3. Thunderstorms

Thunderstorms was the third most catastrophic natural disaster category related to
power outages and the associated electric power revenue loss. The error results by choosing
a different number of trees for the RF algorithm are shown in Table 3. It can be observed
that there was not any significant improvement by increasing the number of trees, and the
result with 50 trees was good enough.

Table 3. Revenue loss prediction error of different experiments for the thunderstorm category.

Experiment No of Trees MAPE MAE ($) RMSE ($)

1 50 34.64 27,243,171,092 42,976,400,445
2 80 36.27 27,594,272,395 42,609,631,917
3 100 35.18 26,952,676,148 42,482,427,053
4 200 35.27 26,748,282,945 41,787,071,287
5 300 34.77 26,367,527,269 41,708,198,459
6 400 35.22 26,644,653,509 41,781,040,877
7 500 35.52 26,713,157,021 41,810,251,294



Energies 2022, 15, 9292 15 of 25

Energies 2022, 15, x FOR PEER REVIEW 14 of 26 
 

 

Figure 14. Ranking of top 10 important parameters for revenue loss prediction for the winter storm 
disaster category. 

Figure 15 illustrates the performance analytics graph showing the inter-feature rela-
tionship of the top five features. The plots along the off-diagonal direction represent the 
density distribution of individual features. 

 
Figure 15. Top five feature correlation plots for the winter storm disaster category. 

Figure 16 shows the individual partial dependence plots for the top five influential 
features. It can be seen that the residential sales and the commercial price have a positive 
relation with the revenue loss. A similar relation can be observed for outage duration and 
the residential customers’ percentage up to the 60% range; however, the relationship is 
inverted in the higher range. 

  

Energies 2022, 15, x FOR PEER REVIEW 15 of 26 
 

 

  

 
Figure 16. Partial dependency plots of top five important parameters for revenue loss prediction in 
the winter storm disaster category. 

4.3. Thunderstorms 
Thunderstorms was the third most catastrophic natural disaster category related to 

power outages and the associated electric power revenue loss. The error results by choos-
ing a different number of trees for the RF algorithm are shown in Table 3. It can be ob-
served that there was not any significant improvement by increasing the number of trees, 
and the result with 50 trees was good enough. 

Table 3. Revenue loss prediction error of different experiments for the thunderstorm category. 

Experiment No of Trees MAPE MAE ($) RMSE ($) 
1 50 34.64 27,243,171,092 42,976,400,445 
2 80 36.27 27,594,272,395 42,609,631,917 
3 100 35.18 26,952,676,148 42,482,427,053 
4 200 35.27 26,748,282,945 41,787,071,287 
5 300 34.77 26,367,527,269 41,708,198,459 
6 400 35.22 26,644,653,509 41,781,040,877 
7 500 35.52 26,713,157,021 41,810,251,294 

Figure 17 shows the quartile–quartile plot for the thunderstorm data. The deviation 
between the normal quantile and the residual can be observed in the top-right corner, that 
is, the right tail of the distribution. 

Figure 16. Partial dependency plots of top five important parameters for revenue loss prediction in
the winter storm disaster category.

Figure 17 shows the quartile–quartile plot for the thunderstorm data. The deviation
between the normal quantile and the residual can be observed in the top-right corner, that
is, the right tail of the distribution.
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Figure 17. QQ plot (red line showing 45 degrees) shows data variability along the normal quan-
tile distribution.

The top-ranked 10 influential features for revenue loss prediction are shown in
Figure 18. The outage duration is the most important feature and it stands out with a
normalized importance of 0.76. The residential sale is the second with 0.02, while the rest
of the features have equal importance of 0.01 only. Hence, the outage duration is the most
important and single important feature for electric power revenue loss prediction.
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Figure 18. Ranking of top 10 important parameters for revenue loss prediction for the thunderstorm
disaster category.

The correlation plot between the top five important features for thunderstorm-based
revenue loss prediction is shown in Figure 19. The positive correlation between individual
features can be observed in the plots having diagonal distribution of data, such as between
commercial sales and residential sales.
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The partial dependence plots for the top five influential features are shown in Figure 20.
A fairly linear relation can be observed between revenue loss and the power outage duration.
The rest of the four partial dependence plots also show a similar pattern; however, the
relation is smoother in the case of outage duration.
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4.4. Storm

In this sub-section, the results of revenue loss due to storm events are presented. With
the random forest algorithm, a different number of trees was selected to record the results.
Table 4 shows the revenue loss prediction errors. The error decreased by increasing the
number of trees, while it increased again after 400.

Table 4. Revenue loss prediction error of different experiments for the storm category.

Experiment No. of Trees MAPE MAE ($) RMSE ($)

1 50 38.28 57,487,689,636 67,292,232,902
2 80 36.40 54,103,886,735 67,356,771,901
3 100 36.47 54,754,643,310 68,389,271,159
4 200 34.39 50,678,281,472 62,015,332,599
5 300 33.72 50,263,373,676 62,033,663,039
6 400 33.58 49,459,727,798 61,212,561,372
7 500 34.35 50,281,406,980 63,471,821,939
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Figure 21 shows the QQ plot for the storm data. The plot shows that residuals fell
along the 45-degree line, which reveals that the random forest model captures the data
variability well.
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Figure 22 shows the top 10 features ranked for revenue loss prediction in the storm-
related outage data. The customers affected and outage duration were the two most
influential features, with a normalized importance of 0.44 and 0.257, respectively.
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Figure 22. Ranking of top 10 important parameters for revenue loss prediction for the storm disaster category.

The top five feature correlation plots for the storm disaster category are shown in
Figure 23. The density distribution of individual features is shown in the plot along the
45-degree line. In the distribution of industrial customers, it can be observed that most
of the data belong to the Michigan State, while the rest of the States have very small sets
of data for the distribution. It can also be observed that the features related to the storm
category data are mostly uncorrelated.
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The individual partial dependence plots for the top five influential features for the
electric power-related revenue loss due to storms are shown in Figure 24. The PDP of the
industrial customers is different towards the revenue loss, while the rest of the PDPs show
a similar pattern.

4.5. Heavy Wind

Heavy wind is the fifth most catastrophic natural disaster category which caused
power outages, and consequently, revenue losses. Different choices in the number of trees
were tested and errors were computed as shown in Table 5. The minimum prediction error
was recorded with 50 trees for RF algorithm.

Table 5. Revenue loss prediction error of different experiments for the heavy wind category.

Experiment No of Trees MAPE MAE ($) RMSE ($)

1 50 83.40 47,501,400,222 52,759,606,361
2 80 86.20 49,155,373,634 54,630,688,304
3 100 86.24 48,008,743,169 53,146,652,401
4 200 84.06 46,950,463,246 53,976,260,853
5 300 84.07 45,588,167,043 5,246,621,949
6 400 88.26 47,475,184,097 53,839,453,615
7 500 89.86 48,309,695,082 54,533,261,344
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forest model captures the data variability well; however, some deviations between data
variables can be seen in the right-tail end of the distribution.
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Figure 26 shows the most influential feature ranking. Among the top influential
features, outage duration is the first with a normalized importance of 0.61, while the
second parameter is demand loss. The next six features have an equal contribution with an
importance value of 0.023.
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Figure 26. Top 10 influential feature ranking for revenue loss prediction in the heavy wind category.

Figure 27 shows inter-feature correlations for the top five important features.
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The individual partial dependence plots for the top five influential features are shown in
Figure 28. It can be observed that revenue loss is linearly related with the outage duration.
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5. Discussion

Electric power revenue loss prediction due to power outages associated with the top
five weather-related natural disaster categories has been performed. The Hurricane disaster
category happened to be the most devastating event which caused an average revenue loss
of 292 billion USD. Similarly, winter storms caused the second highest average revenue loss
of 148 billion USD. The average revenue loss of 59.3 billion USD was recorded for each of
thunderstorm. The mean revenue loss per event for the storm disaster category is 129 billion
while for heavy wind the average revenue loss per disaster event was recoded as 78 billion
USD. The average revenue loss for heavy wind and the storm disaster categories is higher
than that for thunderstorms (which caused higher revenue loss overall). That is because of
the higher frequency of thunderstorms, that is, 4.47 per year in comparison to storms and
heavy wind, of which the average annual frequency was 1.53 and 1.76, respectively.

The prediction errors produced by random forest showed that the algorithm performed
best for the highest revenue loss disaster category, that is, hurricanes with 23% mean
absolute percentage error, while the worst prediction performance was recorded for the last
disaster category. Overall, the MAPE for all the disaster categories was recorded around
30% on average, except the heavy wind category, where the error was 83.4%.

The random forest algorithm’s prediction performance with different choices of num-
ber of trees revealed that the best results were recorded with a smaller number of trees,
such as 50. The quantile–quantile plots showed that the RF algorithm captured the data
variability well. The most influential parameters for revenue loss prediction revealed the
importance of the outage duration feature, which stood among the top two features for all
categories; however, its normalized importance has been quite different among categories.
The correlation plots revealed that the top five important features were often uncorrelated
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for almost all the five disaster category cases. The partial dependency plots highlighted
the importance of outage duration in each of the top five disaster category results. The
PDPs for individual features revealed the variation in the revenue loss with changes in the
feature value.

6. Conclusions

• Power outages due to severe weather-related natural disasters have laid a huge impact
on electric power revenue in the United States.

• Historical data have revealed that 50% of power outages happened due to bad weather,
while 70% of total revenue loss was witnessed merely due to such weather-related disasters.

• Most of the revenue loss (almost 85%) was recorded in only 8 of the 49 States.
• The revenue loss prediction using a random forest model revealed that the outage

duration was the most influential parameter for efficient prediction.
• This research will enrich the understanding of power industry investors as well as

authorities on the impact of weather-related disasters on electrical energy-related
revenue losses, and help them to take risk-informed decisions.

Author Contributions: Conceptualization, R.A., I.K., J.A. and N.A.; Data curation, I.K. and S.R.; For-
mal analysis, I.K. and A.A.; Funding acquisition, H.H.; Investigation, I.K. and J.A.; Methodology, R.A.,
S.R. and N.A.; Project administration, H.H.; Resources, H.H.; Software, R.A. and S.R.; Supervision,
H.H.; Validation, A.A.; Visualization, A.A.; Writing—original draft, R.A. and J.A.; Writing—review &
editing, N.A. and H.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data used in this study is publically available at doi: https://doi.org/
10.1016/j.dib.2018.06.067 (accessed on 2 August 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khan, S.; Khulief, Y.A.; Al-Shuhail, A. Mitigating Climate Change via CO2 Sequestration into Biyadh Reservoir: Geomechanical

Modeling and Caprock Integrity. Mitig. Adapt. Strateg. Glob. Chang. 2019, 24, 23–52. [CrossRef]
2. Adamo, N.; Al-Ansari, N.; Sissakian, V.; Adamo, N.; Al-Ansari, N.; Sissakian, V. Review of Climate Change Impacts on Human

Environment: Past, Present and Future Projections. Engineering 2021, 13, 605–630. [CrossRef]
3. Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A Review of the Global Climate Change Impacts,

Adaptation, and Sustainable Mitigation Measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [CrossRef]
4. Zhang, K.; Wang, S.; Bao, H.; Zhao, X. Characteristics and Influencing Factors of Rainfall-Induced Landslide and Debris Flow

Hazards in Shaanxi Province, China. Nat. Hazards Earth Syst. Sci. 2019, 19, 93–105. [CrossRef]
5. Zhang, K.; Shalehy, M.H.; Ezaz, G.T.; Chakraborty, A.; Mohib, K.M.; Liu, L. An Integrated Flood Risk Assessment Approach

Based on Coupled Hydrological-Hydraulic Modeling and Bottom-up Hazard Vulnerability Analysis. Environ. Model. Softw. 2022,
148, 105279. [CrossRef]

6. Wang, S.; Zhang, K.; Chao, L.; Li, D.; Tian, X.; Bao, H.; Chen, G.; Xia, Y. Exploring the Utility of Radar and Satellite-Sensed
Precipitation and Their Dynamic Bias Correction for Integrated Prediction of Flood and Landslide Hazards. J. Hydrol. 2021, 603,
126964. [CrossRef]

7. Chen, X.; Quan, Q.; Zhang, K.; Wei, J. Spatiotemporal Characteristics and Attribution of Dry/Wet Conditions in the Weihe River
Basin within a Typical Monsoon Transition Zone of East Asia over the Recent 547 Years. Environ. Model. Softw. 2021, 143, 105116.
[CrossRef]

8. Guo, C.; Ye, C.; Ding, Y.; Wang, P. A Multi-State Model for Transmission System Resilience Enhancement against Short-Circuit
Faults Caused by Extreme Weather Events. IEEE Trans. Power Deliv. 2021, 36, 2374–2385. [CrossRef]

9. Huang, S.; Liu, C. A Computational Framework for Fluid–Structure Interaction with Applications on Stability Evaluation of
Breakwater under Combined Tsunami–Earthquake Activity. Comput. Civ. Infrastruct. Eng. 2022. [CrossRef]

10. Wang, H.; Hou, K.; Zhao, J.; Yu, X.; Jia, H.; Mu, Y. Planning-Oriented Resilience Assessment and Enhancement of Integrated
Electricity-Gas System Considering Multi-Type Natural Disasters. Appl. Energy 2022, 315, 118824. [CrossRef]

11. EIA The Changing Structure of the Electric Power Industry 2000: An Update; DOE/EIA-0562(00); Energy Information Administration:
Washingotn, DC, USA, 2000; pp. 1–153.

12. Mukherjee, S.; Nateghi, R.; Hastak, M. A Multi-Hazard Approach to Assess Severe Weather-Induced Major Power Outage Risks
in the U.S. Reliab. Eng. Syst. Saf. 2018, 175, 283–305. [CrossRef]

https://doi.org/10.1016/j.dib.2018.06.067
https://doi.org/10.1016/j.dib.2018.06.067
http://doi.org/10.1007/s11027-018-9792-1
http://doi.org/10.4236/eng.2021.1311044
http://doi.org/10.1007/S11356-022-19718-6
http://doi.org/10.5194/nhess-19-93-2019
http://doi.org/10.1016/j.envsoft.2021.105279
http://doi.org/10.1016/j.jhydrol.2021.126964
http://doi.org/10.1016/j.envsoft.2021.105116
http://doi.org/10.1109/TPWRD.2020.3043938
http://doi.org/10.1111/mice.12880
http://doi.org/10.1016/j.apenergy.2022.118824
http://doi.org/10.1016/j.ress.2018.03.015


Energies 2022, 15, 9292 24 of 25

13. Mukhopadhyay, S. Towards a Resilient Grid: A Risk-Based Decision Analysis Incorporating the Impacts of Severe Weather-
Induced Power Outages. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2017.

14. Shen, L.; Tang, Y.; Tang, L.C. Understanding Key Factors Affecting Power Systems Resilience. Reliab. Eng. Syst. Saf. 2021, 212,
107621. [CrossRef]

15. Kenward, A.; Raja, U. US Weather Highlights 2020: The Most Extreme Year on Record. Available online: https://assets.
climatecentral.org/pdfs/PowerOutages.pdf (accessed on 2 August 2022).

16. Staid, A.; Guikema, S.D.; Nateghi, R.; Quiring, S.M.; Gao, M.Z. Simulation of Tropical Cyclone Impacts to the U.S. Power System
under Climate Change Scenarios. Clim. Chang. 2014, 127, 535–546. [CrossRef]

17. Nateghi, R.; Guikema, S.D.; Quiring, S.M. Forecasting Hurricane-Induced Power Outage Durations. Nat. Hazards 2014, 74,
1795–1811. [CrossRef]

18. Rice, D. Winter-Storm-Bring-Ice-Snow-Millions-along-1-500-Mile-Stretch. USA Today, 11 February 2021.
19. Annual 2020 National Climate Report. National Centers for Environmental Information (NCEI). Available online: https:

//www.ncei.noaa.gov/access/monitoring/monthly-report/national/202013#NRCC (accessed on 2 August 2022).
20. Alyson, K.; Raja, U. Blackout: Extreme Weather, Climate Change and Power Outages; Climate Central: Princeton, NJ, USA, 2014.
21. Texas Winter Storm Costs Could Top $200 Billion—More Than Hurricanes Harvey and Ike—CBS News. Available online:

https://www.cbsnews.com/news/texas-winter-storm-uri-costs/ (accessed on 2 August 2022).
22. Texas Storms’ Economic Impact Could Reportedly Approach $50B. Available online: https://nypost.com/2021/02/19/texas-

storms-economic-impact-could-reportedly-approach-50b/ (accessed on 2 August 2022).
23. U.S. Billion-Dollar Weather and Climate Disasters, 1980–Present. Natl. Centers Environ. Inf. 2020. [CrossRef]
24. 9 of the Worst Power Outages in United States History. Available online: https://www.electricchoice.com/blog/worst-power-

outages-in-united-states-history/ (accessed on 2 August 2022).
25. Zheng, H.; Gao, M. Assessment of Indirect Economic Losses of Marine Disasters Based on Input-Output Model. Stat. Inf. Forum

2015, 30, 69–73.
26. Weather-Related Power Outages and Electric System Resiliency. EveryCRSReport.com. Available online: https://www.

everycrsreport.com/reports/R42696.html (accessed on 2 August 2022).
27. Cohen, J.; Moeltner, K.; Reichl, J.; Schmidthaler, M. Effect of Global Warming on Willingness to Pay for Uninterrupted Electricity

Supply in European Nations. Nat. Energy 2017, 3, 37–45. [CrossRef]
28. Alberini, A.; Steinbuks, J.; Timilsina, G. How Valuable Is the Reliability of Residential Electricity Supply in Low-Income Countries?

Evidence from Nepal. Energy J. 2022, 43, 1–26. [CrossRef]
29. Batidzirai, B.; Moyo, A.; Kapembwa, M. Willingness to Pay for Improved Electricity Supply Reliability in Zambia; Energy Research

Centre, University of Cape Town: Rondebosch, South Africa, 2018.
30. Baik, S.; Davis, A.L.; Morgan, M.G. Assessing the Cost of Large-Scale Power Outages to Residential Customers. Risk Anal. 2018,

38, 283–296. [CrossRef]
31. Izuegbunam, F.I.; Amadi, H.N.; Okafor, E.N.C.; Izuegbunam, F.I. Assessment of Energy Losses and Cost Implications in the

Nigerian Distribution Network Evaluation of Losses in Distribution Networks of Selected Cities and Impact of Outages in
Industries in Nigeria View Project IEEE Virtual Events Program in Africa: Smart Grid Cybersecurity 2018 View Project Assessment
of Energy Losses and Cost Implications in the Nigerian Distribution Network. Am. J. Electr. Electron. Eng. 2016, 4, 123–130.
[CrossRef]

32. Zheng, X.; Ding, J.; Shang, C.; Lei, Q.; Wang, X. An Assessment Method of Grid Outage Cost Considering Multifactorial Influences.
Eng. J. Wuhan Univ. 2016, 49, 83–87.

33. Bouri, E.; Assad, J. El The Lebanese Electricity Woes: An Estimation of the Economical Costs of Power Interruptions. Energies
2016, 9, 583. [CrossRef]

34. Wu, X.; Guo, J. Comprehensive Economic Loss Assessment of Disaster Based on CGE Model and IO Model—A Case Study on
Beijing “7.21 Rainstorm”. In Economic Impacts and Emergency Management of Disasters in China; Springer: Singapore, 2021; pp.
105–136. [CrossRef]

35. Khosa, I.; Taimoor, N.; Akhtar, J.; Ali, K.; Rehman, A.U.; Bajaj, M.; Elgbaily, M.; Shouran, M.; Kamel, S. Financial Hazard
Assessment for Electricity Suppliers Due to Power Outages: The Revenue Loss Perspective. Energies 2022, 15, 4327. [CrossRef]

36. Mukherjee, S.; Nateghi, R.; Hastak, M. Data on Major Power Outage Events in the Continental U.S. Data Br. 2018, 19, 2079–2083.
[CrossRef] [PubMed]

37. Taimoor, N.; Khosa, I.; Jawad, M.; Akhtar, J.; Ghous, I.; Qureshi, M.B.; Ansari, A.R.; Nawaz, R. Power Outage Estimation: The
Study of Revenue-Led Top Affected States of U.S. IEEE Access 2020, 8, 223271–223286. [CrossRef]

38. Gupta, V.K.; Gupta, A.; Kumar, D.; Sardana, A. Prediction of COVID-19 Confirmed, Death, and Cured Cases in India Using
Random Forest Model. Big Data Min. Anal. 2021, 4, 116–123. [CrossRef]
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