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Abstract: The direct reduction process has been developed and investigated in recent years due to less
pollution than other methods. In this work, the first direct reduction iron oxide (DRI) modeling has
been developed using artificial neural networks (ANN) algorithms such as the multilayer perceptron
(MLP) and radial basis function (RBF) models. A DRI operation takes place inside the shaft furnace.
A shaft furnace reactor is a gas-solid reactor that transforms iron oxide particles into sponge iron.
Because of its low environmental pollution, the MIDREX process, one of the DRI procedures, has
received much attention in recent years. The main purpose of the shaft furnace is to achieve the
desired percentage of solid conversion output from the furnace. The network parameters were
optimized, and an algorithm was developed to achieve an optimum NN model. The results showed
that the MLP network has a minimum squared error (MSE) of 8.95 × 10−6, which is the lowest error
compared to the RBF network model. The purpose of the study was to identify the shaft furnace
solid conversion using machine learning methods without solving nonlinear equations. Another
advantage of this research is that the running speed is 3.5 times the speed of mathematical modeling.

Keywords: direct reduction; MIDREX; neural network; optimization; algorithm; modeling

1. Introduction

Direct reduction of iron oxide (DRI) is one of the most important non-catalytic gas-
solid reactions in industry, and it continues to be an important field of study in chemical
engineering [1,2]. The MIDREX process, which is one of the direct-reduction technologies,
has received a lot of interest because it is a great technology for considerably reducing
carbon dioxide (CO2) emissions from steel plants [3,4]. This is primarily accomplished by
using natural gas instead of coke or coal [5]. Several approaches were used to develop
these solutions, whose overview is provided in Figure 1.Energies 2022, 15, x FOR PEER REVIEW 2 of 29 
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Despite the global COVID-19 pandemic, global DRI output in 2020 is 104.4 million tonnes
which has a 3.4% decrease compared with the previous year’s record of 108.1 million tonnes.
India and Iran produced about half of the world’s DRI [7].

The shaft furnace, reformer, and recuperator are the three main parts of the Midrex
process, of which the shaft furnace is the most important. Within the shaft furnace, re-
duction processes take place, and iron oxide turns into sponge iron. Researchers have
recently worked to regenerate hydrogen and develop the new MIDREX process design.
Pimm et al. improved the MIDREX process to use renewable energies to satisfy the energy
needs of the revised MIDREX process and the hydrogen-based MIDREX unit. According to
Rechberger et al.’s research, the carbon footprint of the power used to manufacture hydro-
gen has a significant impact on the amount of potential that the hydrogen-based pathway
offers for environmentally friendly steelmaking [8,9].

Figure 2 indicates direct reduction processes for the production of sponge iron which
uses natural gas as the major reducing agent. Today these processes provide for more
than 70% of the overall production of DRI and hot briquetted iron (HBI). Natural gas is
transformed into reducing agents, mostly carbon monoxide and hydrogen, which operate
as iron oxide reducers [6]. The shaft furnace is divided into three main parts: (i) reduction
zone, (ii) transition zone, and (iii) cooling zone. The most fundamental part of the shaft
furnace is the place where reduction occurs. Therefore, most of the modeling has been
conducted around this area. The unreacted shrinking core model (USCM) is an assumption
adopted by the majority of prior simulations at the pellet scale [10–12]. Furthermore, some
modeled direct reduction reactors in industrial units use this model and achieved desirable
results [13,14]. Nevertheless, the grain model can be better than the USCM at predicting
plant data [15].
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Hamadeh et al. assumed that the shaft furnace had pellets made of grains and
crystals [4]. In some reactor models, only one reductant gas is used, such as pure H2
gas [12,16–18], pure CO gas [19,20], and H2 and CO mixtures [21,22]. In a real shaft furnace,
the reducing gas is a combination of H2, CO, H2O, CH4, and CO2 [4]. Modeling and
simulation of industrial direct reduction furnaces have been performed by numerical
solutions and computational fluid dynamics (CFD), which are summarized in Table 1.
Additionally, some notable non-industrial modeling is given in Table 2.

It is employed at research centers today to comprehend the uses of machine learning
(ML) in both the present and the future of energy systems. One of the most effective
techniques employed in a variety of industrial fields is the deployment of ML algorithms.
Because hybrid approaches take advantage of two or more ways to make an accurate
forecast, they sometimes yield greater results than a single method. In light of this, it is
advised to use hybrid ML strategies in the future [23–25].
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Table 1. Summarized simulation works were validated using industrial plants.

Authors Modeling/Simulation Shaft Furnace Name Remark Reference

Parisi and Laborde
USCM/Numerical
(Rung–Kutta and
Dormand–Prince)

Gilmore Siderca

The model fits the data from two MIDREX plants successfully. Furthermore, they
enable investigation of the reactor’s behavior under various operating situations.

In terms of metallization, it has been determined that if it increases to 100%
(a 6% increase in metallization), the output must reduce to 70%

(A 30% loss in production).

[13]

Valipour and Saboohi USCM/CFD (FVM) Gilmore

They concluded that hematite was reduced entirely to magnetite during the
reduction of the haematite pellets in a shaft furnace. However, wustite was

transformed into iron in the lower section of the bed. Additionally, magnetite was
changed into wustite in the center of the bed. Because there was more hydrogen in

syngas than carbon monoxide, endothermic reactions were avoided, and as a
result, the temperature along the bed was reduced.

[26,27]

Nouri et al.

USCM and Grain model
with product layer

resistance/Numerical
Rung–Kutta

Mobarakeh

The impact of reducing gas parameters and pellet properties on the degree of
reduction has been examined. They observed that the grain model predicted plant

data better than the shrinking unreacted core model. Their calculations
demonstrate that even at the lowest flow rate, the Sherwood number is large

enough to eliminate the mass transfer resistance effectively.

[15]

Alamsari et al. USCM/CFD (FEM) Krakatau

The increase in H2 composition is predicted, whereas the attenuation of CO results
in a higher metallization degree. The degree of metallization increases as the gas
inlet temperature rises. It was discovered that lowering the gas temperature below
973 ◦C (1246 K) is not suggested because sticky iron production would occur. They
also investigated the impact of lowering the iron’s temperature on the generation

of total carbon in the cooling zone and isobaric iron reactor.

[28]

Khalid Alhumaizi et al. USCM/Numerical
(Developed computer code) Saudi Arabia

The simulation of a complete MIDREX unit (shaft furnace, reformer, and
recuperator) and the study of complex mass–energy interactions between the

reformer and the reduction furnace were investigated in an iron plant based on
MIDREX technology. According to their parametric study, the scrubber’s exit

temperature might be lowered in order to create sufficient water vapor to avoid
carbon formation, subject to the limitations placed on preventing carbon

deposition in the reformer tubes. The same constraint should apply to the
optimization of the recycle ratio. The ratio of natural gas to iron ore is optimal. If
we want to improve the natural gas flow rate, it is best to do so at the transition

zone, where methane breaks down into carbon and hydrogen and boosts
metalization and carburization.

[29]
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Table 1. Cont.

Authors Modeling/Simulation Shaft Furnace Name Remark Reference

Shams and Moazeni USCM/Numerical
(Rung–Kutta and Gill) Gilmore

Complete shaft furnace simulation (reduction zone, cooling zone, transition zone) and
validation using Gilmore unit data. The pressure drop for the reduction zone’s 9.75 m

length was demonstrated to be approximately 0.87 bar. The length of the reduction
zone is the only length that has any bearing on pressure drop because of the upward
gas flow. Methane causes the production of carbon. The final product has a carbon
content of 1.4%. A small portion of the cooling gas that helps produce carbon flows

upward and mixes with the reducing gas to cool the solid to about 56 ◦C.

[30]

Ghandi et al. USCM/CFD (FVM) Mobarakeh Gilmore

It was discovered that using the twin gas injection approach increases the radial
average hydrogen concentration. As a result of the addition of a new gas entrance that

injects hot and fresh reducing gas, the overall degree of reduction increases when
operating a reactor with a dual injection system.

[31]

Mirzajani et al.

Three-interface
USCM/Numerical

(Rung-Kutta-
Dormand–Prince)

Khorasan

According to this study, the two factors that impact the conversion of iron oxide are
particle size and gas flow rate. This study has several limitations because most

industrial data is only available for the top and bottom of the reactor, not all along
the reactor.

[14]

Hamadeh et al. Grain model with
Crystallite/CFD (FVM) Contrecoeur Gilmore

A multi-scale approach accurately describes the principal physical, chemical, and
thermal phenomena. The moving bed is assumed to be composed of pellets with grain

and crystallites. Eight heterogeneous chemical reactions and two homogeneous
chemical reactions are also considered. One of their important findings is that they

found a central area with a lower temperature and conversion.

[4]

Béchara et al. Grain model/Aspen Plus
model (FDM) Contrecoeur Gilmore

They built the aspen plus model of the DR shaft derived from the REDUCTOR.
Reduced CO2 emissions were investigated. Computer-aided optimization was used to
adjust a set of ten operating parameters at the same time. The results revealed a 15%

improvement over the original emissions for comparable output values.

[3,32]

This Study ML

Gilmore
Siderca

Khorasan
Mobarakeh

The first modeling was performed using ML, SGD, Adam, and LBFG optimization
methods and optimization functions, and the best network for modeling was found.
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Table 2. Summarized simulation works using non-industrial modeling DRI.

Authors Modeling/Simulation Shaft Furnace Name Remark Ref.

Hara et al. Three-interface
USCM/Numerical Pilot Plant

This model is used for the modeling of the variations in the degree of reduction in an
experimental shaft furnace with a diameter of 0.1 m and a height of 4.0 m. It has been

discovered that the model can accurately simulate the reduction behavior in the
furnace and that the rate constants obtained from the simulation calculation of the

experimental data are very close to those found in the previous literature on the
fundamental research of iron ore pellet reduction.

[33]

Szekely and Evanse Grain model and Pore
model/Numerical Pilot Plant

Part I and II series articles “a structural model for gas-solid reactions with a moving
boundary” introduce two porous models for non-catalytic solid and gas reactions.

They investigate the effects of porosity, grain size, and temperature on the reduction.
[34,35]

Takenaka et al. Grain model/Numerical
(Rung–Kutta and Gill)

Pilot Plant
(Commercial-scale)

They concluded that by increasing the temperature of the reducing gas, the gas ratio
required to produce the desired degree of reduction of product is decreased, thereby
improving the gas economy. When the H/CO ratio of the reducing gas is high, the

endothermic process due to reduction with hydrogen occurs more strongly, decreasing
the temperature within the furnace and so retarding the reduction. In this case, either

the temperature of the reducing gas needs to be raised, or the gas ratio needs to be
raised.

[36]

Negri et al. Three-interface
USCM/Numerical

Pilot Plant Yanagiya [37]
and Takenaka [36].

The consumption of hydrogen is greater than that of carbon monoxide; this is
consistent with the higher reduction rate expected by the given kinetic data for the

first reactant.
[22]

Usai
Zone and Grain

model/Experimental and
Numerical

Pilot Plant

Based on the grain model, they explored the isothermal reduction of wustite pellet
with hydrogen under pseudo-steady state and unsteady state circumstances. They

said that the pseudo-steady state solution of their model performed well when
compared to the unsteady state solution.

[18]

Kang et al. USCM/Experimental and
Analytical Pilot Plant Using Ishida–Mathematical Wen’s model, the effect of the size and form of iron oxide

samples during reduction with CO–CO2 mixtures at 800 and 900 ◦C were discussed. [38,39]

Bonalde et al.
Grain

model/Experimental and
Numerical

Pilot Plant
Using the grain model, the kinetics of reducing hematite pellets using

hydrogen–carbon monoxide mixtures as the reducing agent was characterized. The
experimental results were compared to the model’s predictions.

[40]

Rahimi and Niksiar Grain Model/Numerical Pilot Plant Takenaka [36].

Their findings indicate that the feed temperature appears to have little effect on reactor
performance. On the other hand, it is expected that the incoming gas flow rate will

have a significant influence. It has also been explained that the significant
interconnection of the reactor’s different zones may prevent general expression.

[41]
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Table 2. Cont.

Authors Modeling/Simulation Shaft Furnace Name Remark Reference

Ranzani da Costa et al. Grain model with
Crystallite/CFD (FVM) Pilot Plant

They simulated a two-dimensional model of hydrogen-based DRI. Their results show
that the use of hydrogen accelerates the reduction in comparison to the CO reaction,

and CO2 emissions would be reduced by more than 80%. They made the REDUCTOR
model, which is the most accurate shaft model (2D, 3 zones, 10 reactions).

[42]

Ponugoti et al. USCM/Experimental and
Numerical Pilot Plant

They et al. took a new strategy, solving physical governing equations for the solid
phase at the same time as gas phase transport equations. The shrinking core model is

used to determine the reaction rate, and the genetic method is used to estimate the
parameters for the kinetic term.

[43]

Yongliang Yan et al. Experimental National Energy
Technology Laboratory

This was determined using the iron Fe3O4-to-Fe and FeO-to-Fe, H2 kinetic rate
constants (for green hydrogen). The response rate of magnetite to iron was

demonstrated. They discovered that the Fe3O4 to Fe reduction is a 1D growth with a
slower nucleation rate, but the FeO to Fe reduction is a 1D to 2D development process

that occurs more rapidly.

[44]
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The reduction zone is a part of the top of the furnace. The followings are the main
chemical reactions that take place in the reduction zone [13,15]:

Fe2O3 + 3H2 → 2Fe + 3H2O (1)

Fe2O3 + 3CO→ 2Fe + 3CO2 (2)

Before recirculation to another usage, a wet scrubber cleans and cools the gas dis-
charged from the top of the furnace shaft. A compressor pressurizes the top gas, which
contains CO2 and H2O, before mixing it with natural gas, preheating, and feeding it into
a reformer furnace. Hundreds of reformer tubes that are filled with a nickel catalyst are
installed in the reformer furnace. The mixture of the top gas and natural gas is reformed in
these tubes to produce reductant gas, which consists of carbon monoxide and hydrogen.
The following is the reaction that takes place in the reformer tubes [45]:

CH4 + H2O→ CO + 3H2 (3)

CH4 + CO2 → 2CO + 2H2 (4)

After ongoing investigations on modeling, Parisi et al. developed a network for stable
solid-state heterogeneous reactors by using neural networks for steam reformers that were
able to respond 20 times faster than the numerical model [46]. In another research, a tubular
reactor with a fixed bed full of porous pellets was developed isothermally by using an
unsupervised grid with an accuracy of approximately 10−9 [47]. The use of ML approaches
in the simulation of the shaft furnace to estimate the conversion rate of pellets for making
sponge iron can overcome the challenges of using nonlinear modeling and is one of the
most important achievements of this research. Due to the complexity of pellet behavior, the
difficulty of modeling, and the precise prediction of pellet behavior, a new model has been
proposed in this study by using an artificial neural network (ANN). Consequently, Figure 3
presents four fundamental models for the DRI process. The low error value in the ANN
method, and the complexity of mathematical modeling caused by the ANN technique,
make it interesting.
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The purpose of this research is to investigate industrial units. Since various industrial
data are either non-existent or limited, it has been tried to construct the network according
to the simulation results that were in high conformity with the industrial data. In this
investigation, modeling was conducted using the four industrial units’ real data, and
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MLP and RBF networks were built [13–15]. Based on the MLP network structure, Several
optimization techniques tuned it after determining the optimal number of neurons in the
hidden layers.

2. Numerical Modeling

As shown in Figures 3 and 4, to understand the DRI modeling process, a control
volume would be positioned in the shaft furnace’s cylindrical point for modeling the
reduction zone, heat transfer, and mass transfer equations.
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Firstly, the extent of the reaction should be defined to derive the balances around the
element:

X1 = Co
H2
− CH2

(5)

X2 = Co
CO − CCO (6)

Xrs = X1 + X2 = 3(Co
Fe2O3

− CFe2O3
) = X3 (7)

This value for the solid and gas phases has been concluded based on the stochiometric
coefficients, mass, and energy balance as follows [13,15]:

ug
dX1

dz
+ Rr1(X1, X3) = 0 (8)

ug
dX2

dz
+ Rr2(X2, X3) = 0 (9)

us
dX3

dz
+ (Rr1(X1, X3) + Rr2(X2, X3)) = 0 (10)

dTg

dz
−

np Aph(Ts − Tg)

GmgCpg(X1, X2, Tg)
= 0 (11)

dTs

dz
−

[
np Aph(Tg − Ts)−

2
∑

i=1
∆Hi(Ts)Rri(Xi, X3, Ts)

]
Gms(X1)Cps(X3, Ts)

= 0 (12)

where ug is gas velocity, us is solid velocity, Rr1 and Rr2 are first and second reaction rate,
np is the quantity of pellets per unit of bed volume, AP is pellet external area, Tg and Ts are
gas and solid temperature, Gmg is gas molar flow, Cpg is heat capacity gas, h is heat transfer
coefficient, and ∆H is reaction enthalpy.



Energies 2022, 15, 9276 9 of 25

The aforementioned mathematical modeling of the moving bed direct reduction reactor
yields a set of nonlinear ordinary differential equations that can be solved by numerical
methods such as Runge–Kutta and the shooting technique [13,15]. Several researchers have
made the assumption that, since the radius of the reactor is 200–250 times greater than the
pellet diameter, porosity fluctuations of the bed are disregarded [48–51].

Case Studies

Gilmore, Siderca, Mobarakeh, and Khorasan are industrial units with a comprehensive
dataset on network inputs, as shown in Table 3. Using these four industrial units, 200
samples were extracted. Due to insufficient parameters, the dataset of other shaft furnaces
could not be used. Developing a new general model using mentioned research dataset
from Figure 5 has been considered dimensionless. We employed simulation results from
previous research projects as a result of mathematical modeling for feed data. The data
in Table 3, in which the error value of mathematical modeling is provided from previous
research efforts (Relative Error).
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The following variables have been selected as network input parameters based on the
effective parameters such as dependent and independent in direct reduction simulation to
achieve the percentage of X3:

(i) dimensionless temperature of the gas and solid, (ii) percentage of gas entering the
furnace, (iii) length-to-diameter ratio of the furnace. The network output is also investigated
as a percentage of X3, which is practical for the calculation of the degree of metallization
(MD) shown in Equation (13) as a key output parameter [30].

MD(%) =
Fe

Total Fe(Fe + FeO)
× 100 (13)
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Table 3. Model parameters range for the current study.

Shaft Furnace
Name

(L/Dtotal)
(−)

XH2
(−)

XCO
(−)

XH2O
(−)

XCO2
(−)

T *
g

(−)
T *

s
(−)

Qg/Qs
(−)

X3final
(−)

Relative Error X3final
(%) Ref.

Gilmore 0–2.2887 0.5268–0.37 0.2997–0.189 0.0465–0.212 0.048–0.143 0.71–1.08 0.33–1.15 9589.24 93 0.215 [13]
Siderca 0–2.0491 0.529–0.49 0.347–0.236 0.0517–0.124 0.0247–0.213 0.8–1.01 0.36–1.04 6580 93.7 0.106 [13]

Mobarakeh 0–1.6545 0.5357–3292 0.3425–2332 0.0583–0.2638 0.021–0.1373 0.7–1.04 0.32–1.09 7570.41 94.8 0.949 [15]
Khorasan 0–1.7857 0.53–0.4 0.345–0.197 0.048–0.180 0.022–0.171 0.52–1.08 0.32–1.11 6336.36 95.86 0.469 [14]
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3. Artificial Neural Network (ANN)

This work aims to examine government machine learning (ML) strategies for address-
ing existing difficulties in DRI performance. Additionally, the optimization of machine
learning (ML) is a promising method that quickly gains attraction in a variety of fields,
such as medicine [52] and engineering [53–56].

Supervised learning is generally the task of machine learning and learning a function
that maps input to output data from sample input–output pairs [57]. During the training
process, information is added to the network validation, and the result data performs the
network testing process. Training for the network is concluded when generalizations have
improved. A variety of active functions have been used to determine the best one. Logistics,
Relu, and identity were used to obtain the optimal function of the MLP network. During
network training, the predicted network error should be maintained to a minimum for
each step of the mean square error (MSE) in each iteration in order to determine the precise
network parameter values. The MSE, square of the correlation coefficient (R2), and root
mean square error (RMSE) are used as assessment metrics to relate the model outputs to
the validation dataset. MSE, RMSE, and R2 are calculated as follows [58–60]:

MSE =
1
n

n

∑
i=1

(
Ypredicted −Yactual

)2
(14)

RMSE =

√
1
n

n

∑
i=1

(
Ypredicted −Yactual

)2
(15)

R2 =

n
∑

i=1

(
Ypredicted −Yactual

)2

n
∑

i=1

(
Ypredicted −Ymean

)2 (16)

Three types of algorithms, stochastic gradient descent (SGD) Equation (17) [61], adap-
tive moment estimation (Adam) Equation (18) [62], and Broyden–Fletcher–Goldfarb–Shanno
(BFGS) Equation (19) [63], were applied to find the best ANN algorithm which has the
lowest MSE, RMSE, and highest R2. The basic concept of the mentioned algorithms is as
follows:

w(k + 1) = w(k) − η
∂E(k)
∂w(k)

+ m · (w(k) − w(k− 1)) (17)

where w represents the weight factor, k represents the position vector, η is the learning rate,
E represents the cost function, and m represents the first moment.

w(k + 1) = w(k) − η(
m√

V(k) + e
) (18)

where V is the second moment, and e is a small scalar that is used to prevent division
by zero.

He(k + 1) = He(k) +
ykyT

k
yT

k ∆xk
−

Hek∆xk∆xT
k Hek

∆xT
k Hek∆xk

(19)

yk = ∇ f (xk+1)− ∇ f (x k ) (20)

∆xk = ψk pk (21)

where He is Hussein matrix, ψ is step size, and P is Direction of search. The flowchart, as
shown in Figure 6, is developed to select the best model.
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4. Results and Discussion

Firstly, the MLP network has been constructed by practicing all three optimization tech-
niques and the Relu activation function. The parameters of the algorithms are optimized to
achieve the optimal network. In the SGD algorithm, there are three parameters: batch size,
learning rate, and momentum. The batch size is the number of training samples used in
one iteration. The learning rate is the amount of each iteration’s step while approaching a
minimal loss function. The momentum considers the gradient of previous steps rather than
depending just on the current step gradient to control the process. The selected algorithm
changes the learning rate and batch size to 0.02 and 20, respectively. A high learning rate
enables the model to learn more rapidly but at the expense of a less-than-optimal final
weight set. A slower learning rate may enable the model to discover a more optimal or
even globally optimal combination of weights, but training will take significantly longer.
Concerning deep learning, most practitioners set the value of momentum to 0.9. The
optimized SGD algorithm parameters are shown in Figure 7.
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Figure 7. Optimization Parameters SGD algorithm. (a) Study the effect of batch size on the MSE.
(b) Study the effect of momentum on the MSE (c) Study the effective learning rate on the MSE.

To examine the RBF network and compare it with the MLP network, RBF network
parameters should be optimized. Therefore, according to Figure 8, the spread parameter
should be optimized by network data.
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4.1. Comparative Analysis of ANN Models

In order to design the structure of the MLP network, it should be optimized for the
effective components of the network. One of the most crucial components is the activation
function used in the network. According to Figure 9, different activation functions in
the MLP network were evaluated according to the number of hidden layer neurons and
were found to be the best activation functions. Although the Relu function provides an
unsatisfactory output when the number of neurons is smaller than 20, it makes fewer errors
when the number of neurons is greater than 20.
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Figure 9. Comparison between different activation functions to find best function in MLP network
(a) comparison of four activation functions; (b) comparison of three activation function.

The MSE, RMSE, and R parameters for the MLP and RBF networks were determined
in Tables 4 and 5. The LBFGS approach is preferable based on the evaluator parame-
ters. In the MLP network, several activation functions and optimization algorithms were
also evaluated. As illustrated in Figure 9, the Relu activation function provided a more
accurate result.

Figure 10 presents the R of MLP network data with the Relu activation function
and different optimization methods in various hidden layer neurons for each network
optimization method, which means that the BFGS approach is desirable.

As shown in Table 4, the BFGS optimization algorithm method was selected as the
optimization method because it has the lowest error considering the number of hidden
layer neurons. According to network comparison, the MLP network with the 27 neurons
in the hidden layer has the best result and an MSE value of 8.95 × 10−6. The structures
of other networks can cause minor errors when they have more neurons. In Figure 11,
three types of different optimization algorithms that have been used for the mlp network
are compared with the RBF network. The comparison of different algorithms in Figure 11
shows that the lowest number of neurons concerning the mean squared of error has the
LBFG optimization method.
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Figure 10. Comparison accuracy performance of MLP network using the Relu activation function.
(a1–a3) SGD method, (b1–b3) Adam method, and (c1–c3) BFGS methods (blue dotes are data and the
red line is the fit line).
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Table 4. Accuracy prediction of DRI ANN structures using MLP model algorithms with learning rate = 0.02, momentum = 0.9, and batch size = 20.

Optimization
Algorithms

Training
Function

DRI−ANN Structure

MSE
(−)

RMSE
(−)

Rtrain
(%)

R
(%)

Neurons in
Hidden Layers

MSE
(−)

RMSE
(−)

Rtrain
(%)

R
(%)

Neurons in
Hidden Layers

Adam Relu

3.05 × 10−4 1.74 × 10−2 0.9985 0.9986 6 8.67 × 10−5 9.3 × 10−3 0.9995 0.9996 57
1.67 × 10−4 1.29 × 10−2 0.9992 0.9993 10 2.48 × 10−5 4.9 × 10−3 0.9998 0.9998 64
1.41 × 10−4 1.18 × 10−2 0.9993 0.9995 15 1.77 × 10−5 4.2 × 10−3 0.9999 0.9999 72
1.35 × 10−4 1.16 × 10−2 0.9993 0.9994 20 3.76 × 10−5 6.1 × 10−3 0.9998 0.9998 74
1.13 × 10−4 1.06 × 10−2 0.9994 0.9994 27 9.61 × 10−5 9.8 × 10−3 0.9995 0.9996 76
7.04 × 10−5 8.3 × 10−3 0.9996 0.9997 43 1.94 × 10−5 4.4 × 10−3 0.9999 0.9999 82

Broyden,
Fletcher,

Goldfarb,
and Shanno

Relu

4.09 × 10−4 2.02 × 10−2 0.9980 0.9983 6 1.29 × 10−5 3.6 × 10−3 0.9999 0.9999 57
3.03 × 10−4 1.74 × 10−2 0.9985 0.9987 10 1.7 × 10−5 4.13 × 10−3 0.9999 0.9999 64
1.24 × 10−4 1.11 × 10−2 0.9994 0.9996 15 1.05 × 10−5 3.25 × 10−3 0.9999 0.9999 72
2.88 × 10−5 5.37 × 10−3 0.9998 0.9998 20 1.78 × 10−5 4.21 × 10−3 0.9999 0.9999 74
8.95 × 10−6 2.99 × 10−3 0.9999 0.9999 27 5.63 × 10−6 2.37 × 10−3 0.9999 0.9999 76
1.15 × 10−5 3.39 × 10−3 0.9999 0.9999 43 8.15 × 10−6 2.85 × 10−3 0.9999 0.9999 82

Scaled
Conjugate
Gradient

Relu

6.37 × 10−3 3.94 × 10−2 0.9693 0.9695 6 3.4 × 10−4 1.84 × 10−2 0.9984 0.9985 57
5.2 × 10−3 3.31 × 10−2 0.9734 0.9735 10 1.46 × 10−4 1.21 × 10−2 0.9992 0.9992 64
2.59 × 10−3 4.19 × 10−2 0.9877 0.9878 15 3.39 × 10−4 1.84 × 10−2 0.9983 0.9984 72
9.1 × 10−4 3.02 × 10−2 0.9952 0.9955 20 1.53 × 10−4 1.24 × 10−2 0.9992 0.9993 74
6.81 × 10−4 2.61 × 10−2 0.9966 0.9967 27 1.38 × 10−4 1.18 × 10−2 0.9993 0.9994 76
3.9 × 10−4 1.97 × 10−2 0.9981 0.9984 43 2.34 × 10−4 1.53 × 10−2 0.9988 0.9990 82

Broyden,
Fletcher,

Goldfarb,
and Shanno

tanh

8.08 × 10−5 8.99 × 10−3 0.9996 0.9997 6 2.59 × 10−5 5.09 × 10−3 0.9998 0.9998 57
3.53 × 10−5 5.94 × 10−3 0.9998 0.9998 10 3.41 × 10−5 5.84 × 10−3 0.9998 0.9998 64
4.86 × 10−5 6.97 × 10−3 0.9997 0.9997 15 3.82 × 10−5 6.18 × 10−3 0.9998 0.9998 72
1.87 × 10−5 4.33 × 10−3 0.9999 0.9999 20 2.53 × 10−5 5.03 × 10−3 0.9998 0.9998 74
2.56 × 10−5 5.06 × 10−3 0.9998 0.9998 27 2.45 × 10−5 4.95 × 10−3 0.9998 0.9998 76

2.69 × 10−5 5.18 × 10−3 0.9998 0.9998 43 2.39 × 10−5 4.89 × 10−3 0.9998 0.9999 82
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Table 4. Cont.

Optimization
Algorithms

Training
Function

DRI−ANN Structure

MSE
(−)

RMSE
(−)

Rtrain
(%)

R
(%)

Neurons in
Hidden Layers

MSE
(−)

RMSE
(−)

Rtrain
(%)

R
(%)

Neurons in
Hidden Layers

Broyden,
Fletcher,

Goldfarb,
and Shanno

identity

3.81 × 10−3 6.17 × 10−2 0.9823 0.9825 6 3.42 × 10−3 5.85 × 10−2 0.9837 0.9839 57
3.55 × 10−3 5.96 × 10−2 0.9831 0.9833 10 3.41 × 10−3 5.84 × 10−2 0.9841 0.9843 64
3.79 × 10−3 6.15 × 10−2 0.9815 0.9818 15 3.83 × 10−3 6.19 × 10−2 0.9817 0.9817 72
3.78 × 10−3 6.14 × 10−2 0.9828 0.9830 20 3.45 × 10−3 5.87 × 10−2 0.9835 0.9836 74
3.58 × 10−3 5.99 × 10−2 0.9829 0.9831 27 3.67 × 10−3 6.06 × 10−2 0.9810 0.9812 76
3.35 × 10−3 5.79 × 10−2 0.9841 0.9844 43 3.43 × 10−3 5.86 × 10−2 0.9841 0.9842 82

Broyden,
Fletcher,

Goldfarb,
and Shanno

logistic

4.05 × 10−5 6.37 × 10−3 0.9997 0.9998 6 4.54 × 10−5 6.74 × 10−3 0.9997 0.9997 57
4.03 × 10−5 6.35 × 10−3 0.9998 0.9998 10 7.12 × 10−5 8.44 × 10−3 0.9996 0.9996 64
5.92 × 10−5 7.7 × 10−3 0.9997 0.9998 15 6.02 × 10−5 7.76 × 10−3 0.9997 0.9997 72
3.89 × 10−5 6.23 × 10−3 0.9998 0.9998 20 4.84 × 10−5 6.96 × 10−3 0.9997 0.9997 74
4.39 × 10−5 6.62 × 10−3 0.9997 0.9998 27 5.25 × 10−5 7.25 × 10−3 0.9997 0.9997 76
4.8 × 10−5 6.93 × 10−3 0.9997 0.9997 43 1.16 × 10−4 1.08 × 10−2 0.9994 0.9994 82

Table 5. Accuracy prediction of DRI ANN structures using RBF model algorithms, according to the number of neurons studied and the optimal MLP network.

Optimization
Algorithms

Training
Function

MSE
(−)

RMSE
(−)

Rtrain
(%)

R
(%)

Neurons in
Hidden Layers

MSE
(−)

RMSE
(−)

Rtrain
(%)

R
(%)

Neurons in
Hidden Layers

RBF
Gaussian
function

7.57 × 10−3 8.7 × 10−2 0.9908 0.9908 6 1.15 × 10−5 3.39 × 10−3 0.9999 0.9999 57
3.66 × 10−3 6.6 × 10−2 0.9956 0.9956 10 9.8 × 10−6 3.14 × 10−3 0.9999 0.9999 64
3.73 × 10−4 1.93 × 10−2 0.9995 0.9995 15 7.8 × 10−6 2.79 × 10−3 0.9999 0.9999 72
1.29 × 10−4 1.13 × 10−2 0.9998 0.9998 20 7.6 × 10−6 2.75 × 10−3 0.9999 0.9999 74
4.38 × 10−5 6.61 × 10−3 0.9999 0.9999 27 7.2 × 10−6 2.68 × 10−3 0.9999 0.9999 76
1.58 × 10−5 3.97 × 10−3 0.9999 0.9999 43 6.3 × 10−6 2.5 × 10−3 0.9999 0.9999 82
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4.2. Optimum ANN Results for Prediction of Solid Conversion for DRI Process

The accuracy of network results and the comparison of real data with the prediction
amount are quite acceptable. The neural network has a low error rate, and it can calculate
the percentage of X3 from the shaft furnace based on input variables such as diameter,
length, and input flow to the shaft furnace. The best result was shown using the LBFGS
optimization method and the Relu activation function in Figure 12.
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Figure 12. The best network-developed MLP with two hidden layers (a) Compare predicted using
real data (b) strong positive correlation.

As a result, the most functional network consists of two hidden layers, with 13 neurons
in the first layer and 14 neurons in the second layer. According to Figure 13, these neurons
are fully connected using weights. Furthermore, each neuron has a bias that is listed in
Appendix A, along with its weight. The matrix created using the MLP algorithm simulated
for the prediction of the MIDREX process is shown in Appendix A.
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4.2.1. Effect of Dimensions on Pellet Conversion Rate

Heatmap and pair plot have been used to show the effects of different parameters on
the sponge iron produced, as shown in Figures 14 and 15. In the heatmap chart, Pearson’s
correlation coefficients show the relationship between various parameters [64]. In Figure 14,
the effect of different parameters of the network is shown as a linear and nonlinear spectrum,
with the interpretation that the farther from the unit value (1 and −1), the more nonlinear it
is, and the closer to the unit value, the effect of two parameters is proportional and are more
linear. The closer value is to one, the more linear relationship between the two parameters.
If this value is positive, it indicates a direct relationship between those the two parameters,
while if this value is negative, it means that those two parameters are opposite of each other
(they increase or decrease in opposite directions). According to Figure 14, the correlation
coefficients between the real data of the network and the prediction value of the network
are equal to one, which shows that it can completely predict the real data. The correlation
coefficient for the effect of dimensions on the conversion rate is 0.91, which shows that the
relationship between the two is linear and direct. Based on Figure 15, the direct relationship
between these parameters and the degree of linearity is clear. This direct relationship is
because of the longer reactor, the longer pellets in the regeneration zone, and the higher
conversion rate [15].
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4.2.2. The Effect of Gaseous Compounds on Pellet Conversion

According to Figure 14, the correlation coefficient between XCO2 and XH2O with pellet
conversion rate is −0.83 and −075, indicating that there is a nonlinear link between them
and the direction of their changes is the opposite of each other. These values for the
relationship between XCO and XH2 with pellet conversion are equal to 0.74 and 0.77, which
proves that the relationship between them is direct and nonlinear. The connection is formed
when H2 and CO gases enter the furnace from the bottom of the reduction zone. After
interaction with the iron oxide pellets, they turn into CO2 and H2O and exit from the top of
the reduction zone. Hence, changes in XCO2 and XH2O have an inverse relationship with
changes in pellet conversion rate. From the top of the regeneration zone to the bottom, the
amount of pellet conversion increases, and the amount of XCO2 and XH2O decreases. This
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relationship can be seen in the performance of all stimulations shown in Figure 15 for four
shaft furnaces.
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4.2.3. The Effect of Flow Rate on Pellet Conversion Rate

According to Figure 14, the correlation coefficient between the ratio of gas to solid flow
rate is 0.22. This value proves several facts: firstly, the relationship between the solid flow
rate and the pellet conversion rate is opposite of each other because the solid flow rate is in
the denominator of the dimensionless flow parameter; secondly, the relationship between
the gas flow rate and the conversion rate is because the gas flow rate in the case of the
dimensionless flow parameter is direct. In addition, this relationship is nonlinear since the
correlation coefficient is near zero. By examination of other parameters in Figure 14, it can
be seen that the most nonlinear parameter is the ratio of flow rates. This sign of nonlinearity
demonstrates that the impact of this parameter on iron ore recovery is greater than other
parameters. This conclusion has been proved by solving the governing equations of the
problem [14].

The relationship between solid flow rate and conversion rate is very similar to the
relationship between dimensions and conversion rate (both are due to residence time).
Furthermore, because of the lower solid flow rate and lower speed of pellets, the pellets
and the regeneration gas are more in contact with each other. Consequently, the conversion
rate grows as the residence time of the pellets in the regeneration area increases. Contrary
to the relationship between solid flow rate and pellet conversion, the pellet conversion
rate increases with increasing gas flow rate. This increase is not due to the reduction
of external mass transfer resistance from gas to solid. However, simulations reveal that
even at the lowest flow rate, the Sherwood number is sufficiently large to render the mass
transfer resistance insignificant [15]. Consequently, as the flow rate increases, so does the
concentration of reducing gases in the top portion of the reactor.

4.2.4. The Effect of Temperature on the Pellet Conversion Rate

The lowest part of the reduction zone, where the reduction gas enters, has the highest
temperature [4]. Furthermore, in this area, the pellet conversion is maximum, proving
that increasing the gas and the solid temperature raises the pellet conversion rate. The
correlation coefficient between the gas and solid temperature with the solid conversion rate
shows the value of 0.71 and 0.72. These values show the direct and nonlinear relationship
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between the parameters. The smaller the particle, the higher the mass transfer coefficient,
which means the film resistance is lower. Thus, the film resistance is maximized if the larger
particle is chosen. To explain, if we can remove this film resistance at speed, all smaller
particles can be removed at the same speed as the film resistance [50].

Considering the environmental issues, air pollution has been one of the most challeng-
ing issues for humans in recent years. Since 7% of carbon dioxide production is derived
from the steel industry [9], it can be modeled in future research. The production of Midrex
with green hydrogen was aimed at its feasibility from thermal and economic points of
view. Another vital issue is the analysis of energy consumption in the MIDREX unit. Re-
cently Salimi et al. investigated the technical and economic study of energy harvesting
from the waste heat of the Midrex process by the Kalina cycle in the process of direct iron
reduction [65].

5. Conclusions

In this study, two networks were constructed for the percentage of X3 output parame-
ters from the shaft furnace. Two networks were investigated using different optimization
methods. The Adam and LBFGS optimization algorithm methods were faster and more
accurate, delivering results for MSEs in order 8.95 × 10−6. Furthermore, various activation
functions were practiced to improve the network by the Relu, which can cause the least
error due to the number of hidden layer neurons. After optimization of both networks,
RBF and MLP, they were compared with the same number of hidden layer neurons. The
MLP network was able to generate 8.95 × 10−6 errors and better predict the conversion
percentage of the pellet as an output parameter. This network could be used to improve the
performance of the shaft furnace and make modeling to predict the conversion percentage
of iron oxide output of the shaft furnace straightforward. The predictive advantage of the
shaft furnace can be determined using the network results, such as weights and biases,
in the shortest time and with the highest accuracy. Finally, for a better analysis of the
effect of different parameters, using a heat map, it was shown that the coefficient of each
of the network inputs can communicate with the output and other input parameters of
the network. This research could be the beginning of the utilization of ML in the direct
reduction process, which is due to the complex behavior of pellets in the shaft furnace and
its complex reactions (six heterogeneous reactions of iron oxide phases, methane reforming
reactions, water gas shift reactions, and other side reactions) can help the pellet behavior
with high speed and accuracy through ML. This modeling is superior to earlier approaches
because it is more precise and quick than earlier numerical methods. Another application
for ML is in unit control; for instance, it could be used to optimize the temperature of
the bustling gas in the shaft furnace. This alone could make for some very fascinating
research in the future. ML could be used in future studies for control purposes, such as the
MIDREX process.
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Nomenclature

Ap Pellet external area [cm2]
b Bias [−]
Cps,Cpg The heat capacity of solids and gases [J/Kg K]
D Reduction zone diameter [cm]
E Cost function
Fk Nonlinear functions of activation transmission
G Function of Gaussian
f Function
Gmg gas molar flow

[
mol/cm2s

]
h heat transfer coefficient [W /cm2 K]
H Reaction enthalpy [cal/mol]
He Approximate of the Hussein matrix
i Number of neurons in the hidden layer
k Position vector
L Reduction zone length [cm]
m first moment (the mean) [−]
N Number of data sets for training [−]
Np number of pellets per unit volume of the bed

[
1/cm3]

n Neurons
P Direction of search

Q Flow-rate
[
Nm3/h

]
Rr Reaction rate per pellet [mol/s]
R,R2 Correlation coefficient [%]
s Direction vector
T∗ Dimensionless temperature [−]
T∗g Dimensionless gas temperature [−]
T∗s Dimensionless solid temperature [−]
u Velocity [m/s]
V Second moment (the uncentered variance)
W Factor of weight [−]
Wij Weight-related to each hidden neuron [−]
xk Input variable [−]
X1 The extent of reaction/extent of reactant conversion for H2 [mol/cm3]

X2 The extent of reaction/extent of reactant conversion for CO [mol/cm3]

X3 Extent of reaction/extent of reactant conversion for Fe2O3 [mol/cm3]

Y Output vector [−]
yj Target output
Greek symbols
α Constants in turbulence models [−]
β jk Weight of bias for neuron j in layer k
γjk The output of neuron j from the layer of k
ψk Step size
θ Threshold limit [−]
σ Radial Basis Function (RBF) kernel width [−]
σi Gaussian function distribution [−]
Subscripts
c Characteristic
rs Reactive solid (Fe2O3)
g Gas
n Gaseous reactant
p Pellet
s Solid
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Acronyms
ANN Artificial Neural Networks
MSE Mean Square Error
Terminology
Neurons Neurons are the fundamental components of the vast neural network.

Bias
Bias is a constant that allows the model to be optimally fitted to the
available data.

Activation function
This function is a mathematical function between the input that feeds
the current neuron and its output that travels to the next layer.

Weight
demonstrates the significance and ability of the characteristic/input
to the neurons.

Epoch
In the training process, each training step’s inputs produce an output
that is compared to the goal in order to determine an error. Weights
and biases are calculated and adjusted in each epoch using this method.

Batch size
For stochastic optimizers, the size of mini-batches is important.
(The classifier will not use minibatch if the solver is lbfgs.)

Momentum Update on gradient descending momentum. Only when the solver is sgd.
Learning rate For weight updates, we have to learn a rate schedule (used for SGD).

Appendix A

Table A1. Characteristic weights and biases of the DRI−ANN−MLP model with the best algorithm.

Neuron 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

First
hidden
layer

wi

−0.5261 0.3122 0.3003 −0.3842 −0.1168 −0.4217 −0.4679 0.5963 −0.5029 0.2167 0.1923 0.2747 −0.0355 - -
0.1414 −0.6600 0.3918 −0.4975 −0.1184 −0.0795 −0.2839 0.2968 −0.1454 −0.3495 0.1552 0.2744 −0.5067
−0.4716 0.1534 0.1572 0.0499 −0.1170 −0.5092 0.0669 0.3481 0.3992 −0.3800 −0.0519 0.2840 0.3226 - -
−0.4195 0.2306 0.4402 0.3055 −0.3375 −0.2342 0.4835 0.5569 −0.0585 −0.0243 0.3713 0.2479 −0.4035 - -
−0.3103 −0.4300 −0.4428 −0.3570 −0.1607 −0.3180 0.3841 0.3178 0.4336 0.2486 −0.0613 −0.1156 0.1871 - -
0.1264 0.2072 −0.1894 0.3279 −0.4434 −0.3503 0.2591 −0.1250 −0.0045 −0.2883 −0.1393 0.5487 0.1746 - -
−0.0399 0.4145 −0.1454 0.4606 0.4224 −0.4450 0.4078 0.1576 −0.2562 −0.3226 −0.4084 0.4207 −0.4346 - -
−0.2834 0.6741 −0.3418 0.3441 0.1340 0.1127 −0.0791 −0.1540 −0.3525 −0.2026 −0.2172 −0.3762 −0.0161 - -

b −0.1834 −0.1580 −0.0837 −0.2541 0.1330 0.4629 −0.1553 −0.2419 −0.4652 −0.1960 −0.3441 −0.1922 −0.1461 - -

Second
hidden
layer

wi

0.0312 0.0689 0.4262 0.2687 −0.0318 0.1865 −0.2655 −0.0196 0.1368 −0.3179 −0.3118 −0.0888 −0.2162 0.3304 -
0.0045 0.2990 −0.0313 0.3231 0.0983 0.2352 0.2577 0.3021 −0.5072 0.3468 −0.0712 −0.6618 0.0328 0.3322 -
−0.1573 0.1815 0.1161 −0.0604 0.0848 −0.4078 0.2779 0.1774 −0.1519 −0.2078 −0.4528 −0.3158 0.3392 −0.0341 -
0.5107 0.2276 −0.0847 0.3726 −0.4047 0.0170 0.2782 −0.3967 0.0856 0.2555 −0.0656 0.1127 −0.0742 −0.1451 -
−0.0711 −0.4243 0.4544 0.4096 0.1945 0.2685 −0.1691 0.2535 0.1275 −0.1207 0.0698 0.2671 −0.0571 0.3847 -
0.4588 −0.1143 0.1844 0.4392 0.0310 0.0494 0.2749 −0.2550 −0.3050 0.2182 −0.1881 −0.0108 −0.3532 0.3005 -
0.2885 0.2154 0.1225 0.0524 0.3704 −0.3282 0.3586 −0.4109 0.3636 −0.3674 −0.0109 −0.2198 0.3213 0.4504 -
−0.0564 0.2155 −0.1700 −0.1756 −0.0896 −0.1456 0.1221 −0.1117 −0.3548 −0.1415 0.1060 −0.0106 0.2727 −0.5645 -
0.0639 −0.1984 −0.1939 0.3111 −0.3191 −0.3805 0.2158 0.0610 −0.2565 0.2141 0.4456 −0.2957 −0.0531 −0.1954 -
−0.2476 0.0253 −0.0674 −0.0173 −0.4643 0.1050 0.1627 −0.4444 −0.3693 0.3759 −0.2169 0.2445 0.3126 0.1138 -
−0.2510 0.3462 −0.4332 0.3669 −0.4641 0.3092 0.4015 0.0386 0.0139 0.2427 −0.3794 −0.1944 −0.2762 −0.1957 -
0.34032 0.1627 −0.0866 0.4185 −0.2898 −0.3095 0.2176 0.1026 0.1285 0.4677 0.24473 0.0041 0.14404 0.0999 -
−0.4088 0.1685 −0.1742 0.4011 −0.0112 0.4490 0.1211 −0.1369 −0.0108 0.2971 −0.2613 0.4224 0.2733 −0.1892 -

b 0.0027 0.3390 −0.1864 −0.3606 −0.3528 −0.0716 0.2954 −0.3802 0.2887 0.0372 0.3559 0.3273 0.0601 0.2710 -

Output
layer

wl

0.1855
0.5334
−0.1828
0.1919
0.2326
−0.3029
−0.0028
−0.2619
−0.6629

b 0.0341 - - - - - - - - - - - - - -
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