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Abstract: Bearing in mind European Green Deal assumptions regarding a significant reduction
of green house emissions, electricity generation from Renewable Energy Sources (RES) is more
and more important nowadays. Besides this, accurate and reliable electricity generation forecasts
from RES are needed for capacity planning, scheduling, managing inertia and frequency response
during contingency events. The recent three years have proved that Machine Learning (ML) models
are a promising solution for forecasting electricity generation from RES. In this review, the 8-step
methodology was used to find and analyze 262 relevant research articles from the Scopus database.
Statistic analysis based on eight criteria (ML method used, renewable energy source involved,
affiliation location, hybrid model proposed, short term prediction, author name, number of citations,
and journal title) was shown. The results indicate that (1) Extreme Learning Machine and ensemble
methods were the most popular methods used for electricity generation forecasting from RES in
the last three years (2020–2022), (2) most of the research was carried out for wind systems, (3) the
hybrid models accounted for about a third of the analyzed works, (4) most of the articles concerned
short-term models, (5) the most researchers came from China, (6) and the journal which published
the most papers in the analyzed field was Energies. Moreover, strengths, weaknesses, opportunities,
and threats for the analyzed ML forecasting models were identified and presented in this paper.

Keywords: machine learning; deep learning; extreme learning machine; renewable energy sources;
electricity production forecasting

1. Introduction

Technological and urban development as well as population growth have resulted in
increased energy demand. Much of the world’s energy demand is covered by fossil fuels,
but it has negative impact on the environment, severely polluting the atmosphere and
increasing the carbon footprint. The European Union Policy, visible in The European Green
Deal, announces the reduction of green house emissions by at least 55% by the year 2030,
placing Europe as the first climate-neutral continent by 2050 [1]. Therefore, in addition to
saving energy [2], it is necessary to produce energy from Renewable Energy Sources (RES)
such as water, sun, and wind, which counteracts global warming. The energy production
from RES is also driven by the threat of a global energy crisis and increasing world’s energy
demand [3,4]. Moreover, the development of environmentally friendly electromobility
increases the need for electricity from RES [5]. All in all, the increasing demand for electrical
energy, the care for the natural environment and the changes in legislation support the fast
development of renewable energy.

Precise and reliable forecasts of electricity generation from renewable systems are
needed for capacity planning, scheduling, managing inertia and frequency response during
contingency events [6]. Imprecise predictions of electricity generation from renewables put
into question smooth operation, balancing, and scheduling of renewable energy systems,
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threatening at the same time the security of the grid. Electricity generation from PV and
wind systems can vary from 0 to 100%. It is affected by meteorological conditions and
geographical characteristics. In order to overcome the negative effects on the grid associated
with this volatility, hydropower plants, PV, and wind farms are required to give electricity
generation forecasts in advance [7,8]. It is important to stress that improper balancing
of electricity generation with a load demand results in fines for power producer [9], the
amount of which varies from country to country which vary by country and is regulated
by different patterns and policies [10]. If the actual amount of energy supplied to the grid
exceeds the amount previously declared, negative pricing can take place in the electricity
market. In the case of PV systems, it usually happens in the middle of the day, when the
sun shines the most, and all PV generators supply energy [11]. Precise, reliable, and flexible
electricity generation forecasts are solution to this phenomenon.

The forecasting of electricity generation from RES is a challenging task, because
it is affected by multiple factors, such as meteorological and climatic conditions in the
analyzed place. In the case of hydropower plants, electricity generation is dependent on,
among others, reservoir or river inflows, temperature, electricity price, abrupt demands,
seasonal demand, gross domestic product, as well as their correlations with human and
meteorological phenomena [12]. In the case of hydropower, the fluctuations in the dam
can occur, leading to fluctuations in hydro energy generation, causing instability of the
system [13]. That is why making decisions for hydropower systems is difficult and requires
having accurate forecasts [14]. In the case of wind power prediction, developing precise
forecasts is very difficult, mainly due to intermittent nature of wind and dependencies on
multiple weather, wind turbine, and rotor features [15].

Machine learning models have been successfully applied in many engineering appli-
cations, e.g., to predict risk value [16,17], for energy use forecasting [18], to predict ground
settlements [19] or to evaluate safety risk [20].

The aim of this review is to present and analyze the existing research on machine
learning approaches to predict electricity production from RES. The three most popular RES
sources were taken into account: wind, sun, and water. This review provides a fresh look
at the current trends in forecasting electricity generation from RES, taking into account the
horizon of the last three years (2020–2022). The main contribution to the body of knowledge
of this review is the presentation state-of-the art machine learning methods applied for
forecasting and providing answers to the following research questions (RQs):

RQ1: What are the trends in the number of articles published in the analyzed field in the
last 3 years in terms of the type of RES?
RQ2: What are the trends in terms of the ML methods used in the analyzed field in the last
3 years in terms of the type of RES?
RQ3: What are the global publication trends concerning location affiliation in the analyzed
field in the whole dataset and in the subsets (photovoltaic, wind, hydro)?
RQ4: Was the application of hybrid ML methods or single ML dominant in the analyzed
field in the last 3 years?
RQ5: Were short-term or long-term predictions ML models dominant in the last 3 years?
RQ6: Which authors published the most articles in the analyzed field in the last 3 years?
RQ7: What are the top 10 most cited articles in each analyzed year and what are the
determinants of their success?
RQ8: What are the titles of the 10 journals in which researchers most frequently published
articles from the analyzed area over the last 3 years?

This paper is organized as follows. Section 2 describes the eight-step methodology
applied to retrieve and analyze relevant literature, Section 3 presents the obtained results,
and Section 4 discusses the results. The paper ends with the conclusion.
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2. Preliminaries of Artificial Intelligence
2.1. ML Models

Most of the ML models are inspired by the nature. The striking examples are neural
networks. The increase in computer computing power has contributed to the development
of more complex machine learning models that can be utilized in many areas. However,
simple models can still prove to be highly useful. The overview of the ML models is
presented in Figure 1.

Figure 1. Machine learning models overview.

The main idea behind the simple ML models lies in finding the partitioning of the
solution space into regions with similar characteristics. Decision Trees (DT) are one of the
most recognizable examples of a such process [21]. In each step of developing DT, the best
possible data partition is found in such a way that the data items inside a partition are
most similar to each other. At the same time, the samples from different partitions are as
different from each other as possible. To capture the optimal partition, even in the case of
non linear problems, the so-called kernel can be utilized. It allows to transform the solution
space in such a way that the given problem can be linearly separable. The Support Vector
Machine (SVM) is one of the most recognizable examples of kernel-based techniques [22].

The availability of more computer power allows the utilization of more complex
models. The Ensemble Learning models are a family of techniques that allow to utilize
a group of basic models that can work in combination to achieve the better results than
a single model; the Random Forest model is one of the most recognizable examples [23].
In this case, a group of DT models is created based on a random subset of the original
data. This allows to avoid typical problems that may arise with classic DT models like
decreasing the accuracy as the next levels of the tree are created. In the case of the Gradient
Boosted Tree [24] technique, the subsequent trees are created in such a way that the next
tree improves the prediction of the previous one. The ensemble methods allow to achieve
good results even when the basic model does not present very good accuracy.

One of the most complicated machine learning models is based on neural networks. A
typical Artificial Neural Network (ANN) is composed of many layers build with neurons.
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They are classically trained using the Back Propagation (BP) algorithm, in which the weights
of the neurons are adjusted sequentially from the last to the first layer.

In many areas of applications, like forecasting, the introduction of recurrent neural
networks (RNN) is especially suitable. In such networks, the actual state is determined
not only by the input values but also by its internal state. Because of that, recurrent neural
networks are useful in time series forecasting. The internal state of the network needs to be
stored in special cells, typically in the form of a Gated Recurrent Network (GRU) [25] or
Long Short-Term Memory [26].

One type of a one-layer recurrent neural networks is a fuzzy cognitive map (FCM). It is
a soft computing technique that enables knowledge representation in the form of important
concepts and relationships between them. Fuzzy cognitive maps and their extensions can
be successfully used for time series forecasting [18,27].

To capture some advanced patterns in the data, Convolution Neural Networks (CNN)
are sometimes used [28]. They are usually used for image prediction, but by using different
kernel and filter shapes, they can also be used in other application areas.

Many modern deep learning applications utilize large number of layers with a large
number of neurons in them. Additionally, using CNN and RNN layers causes there to be
a large number of parameters that need to be optimized during the learning procedure.
Because of that, a large computational power is needed to prepare and use deep learning
models, which seriously limits their real-world applications. To cope with this problem, an
Extreme Learning approach (ELM) was developed. In ELM models, the learning process is
extremely simplified because it only affect the last layer of the neural network [29].

Simplification of parameters tuning in the ELM models allows to use different opti-
mization techniques in exchange for the typical BP algorithm. Particle Swarm Optimization
(PSO) [30], and Chicken Swarm Optimization [31] methods are the most popular.

Apart from those, the most popular methods in some real-world applications use hybrid
models which can integrate different approaches [32]. One of the most popular approaches in
this area is the Evolutionary approach, mostly in the form of Genetic algorithms.

2.2. Evaluation Metrics

The analyzed models can be evaluated with the use of popular prediction metrics, such
as the coefficient of regression R2, Mean Square Error MSE, Root Mean Square Error RMSE,
Normalized Root Mean Square Error NRMSE, Mean Absolute Error MAE, Normalized
Mean Absolute Error NMAE, and Mean Absolute Percentage Error MAPE.

These metrics are describes as follows:

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − ȳ)2

(1)

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (2)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2 (3)

NRMSE =

√
1
N ∑N

i=1(yi − ŷi)2

ymax − ymin
(4)

MAE =
1
N

N

∑
i=1

(yi − ŷi) (5)

NMAE =
1
N ∑N

i=1(yi − ŷi)

ymax − ymin
(6)
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MAPE =
1
N

N

∑
i=1
| yi − ŷi

yi
| (7)

where N is the number of samples, yi is the true value of the i-th sample, ŷi is the predicted
value of the i-th sample, Z̄ is the mean value of the true values, ȳ is the mean value of the
predicted values, and ymax, and ymin are the maximal and minimal values in N samples of
the actual output set, respectively.

In the case of value yi being equal to zero, MAPE can be also calculated as follows:

MAPE =
1
N

N

∑
i=1

| yi − ŷi |
max(ε, |yi|)

(8)

where ε is an arbitrarily small positive number in case of undefined results when y is zero.
In some cases, the proposed models do not predict the exact value of generated energy

but instead predict moments when energy is not generated at all. Those situations occur, for
example, in the case of detecting wind ramp events [33]. In these cases, it is possible to use
metrics typical for classification problems such as accuracy, specificity, and selectivity [33].

3. Materials and Methods

The methodology applied to retrieve and analyze relevant literature consists of 8 steps:
keywords, search scope, and database choice, defining search filtering criteria, searching,
manual screening, defining classification criteria, division into subsets according to the de-
fined classification criteria, statistical analysis, and drawing conclusions. Figure 2 illustrates
the proposed approach.

Figure 2. Proposed approach.

3.1. Keywords, Search Scope, Database Choice and Defining Search Filtering Criteria

It was decided to use the publicly available Scopus database, as it covers 7000 pub-
lishers that are reviewed and chosen by an independent Content Selection and Advisory
Board [34] in order to be indexed, and it provides high quality data. Various unique combi-
nations of keywords and search scopes were analyzed in order to ensure that all relevant
research papers were captured. During trial tests in keyword search using the combination
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of keywords presented in Table 1, but searched by abstracts, keywords, and titles, over
600 articles were found, most of which did not concern directly the studied problem, but
only referred to the given topic. Finally, the list of search keywords and search scopes as
presented in Tables 1 and 2 was selected.

Table 1. List of search keywords and search scopes.

Searched Scope Values

Title, abstract or keywords contains ”machine learning”

Title contains

• “photovoltaic power”, “pv power”,
• “photovoltaic farm”, “pv farm”,
• “wind power”, “wind farm”,
• “hydro power”, “hydropower”, “hydro

plant”

Title contains • “predict”, “prediction”,
• “forecast”, “forecasting”

Table 2 shows the list of criteria used for filtering.

Table 2. The list of criteria used for filtering.

Filtered Scope Values

Document type journal article
Title does not contain ”’review”

Publishing year
• 2020
• 2021
• 2022

Language the whole paper written in English or at least
abstract written in English

3.2. Searching and Manual Screening

In Step 3, the keyword search was carried out in Scopus and 276 articles were found.
Second-stage filtering of articles (manual screening) was also used, as it was taken into
account that the automatic selection of articles is devoid of human intelligence, which
in this case may result in the need to remove mismatched articles. Therefore, manual
screening was carried out to identify out-of-scope papers remaining in the dataset. As a
result, 14 papers were deleted, and the dataset containing 262 articles was further analyzed.

3.3. Defining Classification Criteria

Eight classification criteria were defined and their choice was justified. This enabled
further detailed analysis. The classification criteria included:

• Type of the RES (photovoltaic, wind, hydro)—Types of RES had to be separated so
that, in addition to checking the trends in the entire data set (electricity generation
from RES), it was possible to check the trends in each of these groups separately.

• Type of ML method applied—Various ML methods are used in the literature to
perform electricity generation prediction from RES. The division of the entire dataset
into a number of types of ML enabled to present a distribution of the methods used
can show trends in the application of the various ML methods. It was analyzed in the
whole dataset and in the subsets (photovoltaic, wind, hydro).

• Location affiliation (country of origin of corresponding author)—The insight into
the location affiliation provides global overview, allowing to uncover the global
publication trends in the analyzed fields in the whole dataset and in the subsets
(photovoltaic, wind, hydro).
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• Hybrid model proposed—The division of the whole dataset into Hybrid models and
other allowed to identify the tendency in applying such models. In [35], it was found
that applying hybrid models allowed to obtain better results than single ML models
for forecasting electricity generation from sun and wind; it was shown in [36] for wind
systems, and in [37] for PV systems. Therefore, it was necessary to check if there is a
trend of developing hybrid models. It was analyzed in the whole dataset and in the
subsets (photovoltaic, wind, hydro).

• Short term prediction—The division of the whole dataset into short-term models and
others allowed to identify the tendency in applying such models. In [38] it was found
that short-term models were crucial for RES-integrated energy management systems
and very popular type of models. Therefore, it was necessary to check if there is still
such a trend.

• Author name—It was needed to divide the entire dataset according to the number
of presentations of each author. It allowed to identify top 10 authors publishing the
most articles on the analyzed topic in the last three years. It was analyzed in the whole
dataset and in the subsets (photovoltaic, wind, hydro).

• The number of citations—It was needed to divide the entire dataset according to the
number of citations of the articles. This allowed to identify the group of ten most
cited papers, which have the highest influence. Detailed analysis of these enabled to
determine the reasons for high citations. It was analyzed in the whole dataset and in
the subsets 2020, 2021, and 2022.

• Journal title—It was needed to divide the entire dataset according to journal. It al-
lowed to identify the group of top 10 journals that published the most articles about
application of ML in electricity generation forecasting from RES.

4. Results
4.1. The Summary of Studies on ML Models for Electricity Generation from RES

The intention of this review is to present and classify articles published in Scopus,
which coped with Machine Learning (ML) models applied for forecasting electricity gener-
ation from RES. Tables A1–A3 in Appendix A present an overview of articles on Machine
Learning (ML) models’ applications for forecasting electricity generation from RES in the
years 2020 (Table A1), 2021 (Table A2), and 2022 (Table A3). They present the article first
author, article reference, type of RES, ML method applied, time horizon, and comments.
The summary of results obtained in those studies is presented in Sections 4.1.1–4.1.3.

4.1.1. The Summary of Studies on ML Models for Electricity Generation Prediction from
PV Systems

In [39], the authors carried out a comparison of several forecasting models an elastic
net, support vector regression, random forest, and Bayesian regularized neural networks.
It was found that Bayesian regularized neural networks outperforms other models with
R2 = 99.99%. Ref. [40] suggested a hybrid short-term forecasting model using an improved
bird swarm algorithm and extreme learning machine algorithm. It received R2 of 99.35%
during a cloudy day, and R2 of 99.59% during sunny day. In [41], the authors compared the
performance of SVM, ANN, kernel, nearest-neighbor, and deep learning forecasting models.
It was found that all models received R2 higher than 0.96. The SVM model outperformed
other models and generally presented better prediction results particularly with a satisfying
R2 = 0.9921. Ref. [42] developed a model for short-term PV power prediction using an im-
proved hybrid sparrow search algorithm dedicated for an extreme learning machine neural
network. It resulted in an R2 of more than 99%. Ref. [6] developed and compared several
ML forecasting models, including Linear Regression, Polynomial Regression, Decision Tree
Regression, Support Vector Regression, Random Forest Regression, Long Short-Term Mem-
ory, and Multilayer Perceptron Regression. It was found that the Random Forest Regression
model performed the best with NMAE = 0.0098 and R2 = 0.9919. In [43], a deep machine
learning model based on Variational AutoEncoder for short-term PV power prediction
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was proposed. The research has shown that it outperforms other models with R2 = 0.997,
RMSE = 420.029, and MAE = 193.157 for a 9 MW PV system, and R2 = 0.921, RMSE = 23.134,
MAE = 11.664 for a 243 kW PV system. In [44], 5 ML forecasting models were compared,
including artificial neural network, random forest, decision tree, extreme gradient boosting,
and long short-term memory. It was found that artificial neural network outperformed
other models with the highest R2 = 0.9988. In [45], efforts were made to develop a model
combining random forest with feature selection and Principal component analysis. It re-
sulted in obtaining R2 = 0.9965, MAE = 47.39 kW, and RMSE = 104.67 kW for a 6 MWp
PV station. Ref. [46] proposed a new hybrid model based on modal reconstruction
forecasting for short-term PV power prediction. It allowed to receive R2 higher than 98%.
Ref. [47] compared the performance of support vector machine and Gaussian process
regression forecasting models. It was found that the Matern 5/2 GPR outperforms other
with R2 = 0.98.

In [48], the authors developed a hybrid ensembled model based on Double-Input-
Fuzzy-Modules (DIFM) and Extreme Learning Machine. It allowed to obtain an R2 of
0.9423. In [49], the authors developed and compared the performance of seven ML models
based on Lasso Regression, K-Nearest Neighbors Regression, Support Vector Regression,
AdaBoosted Regression Tree, Gradient Boosted Regression Tree, Random Forest Regression,
and Artificial Neural Network. It was found that the Random Forest Regression model
outperforms the other with R2 = 0.94, MAE = 15.12 kWh, RMSE = 34.59 kWh for a PV farm
of 0.7 MW. In [50], the authors made an effort to develop a short-term forecasting model
using Wavelet Transform and LSTM-dropout network. It resulted in obtaining R2 = 0.93817
for one-month-ahead with night data, and R2 = 0.91145 excluding night data. In [51], efforts
were made to develop a hybrid model combining a deep feed forward network using the
weather forecast data and a recurrent neural network using recent weather observations. It
allowed to obtain an R2 of 92.7% for a 24-hour-ahead prediction task. Ref. [52] proposed a
physics-constrained LSTM for the hourly day-ahead forecasting of PV power generation.
The proposed model outperforms standard LSTM, with NMAE of 2.62× 10−2, and R2 of
0.876 for June. Ref. [53] developed and evaluated the performance of the support vector
machine model based on gray-wolf optimization for PV power output prediction. It was
found that it has a reasonable accuracy with R2 = 0.908.

In [54], a model based on variational mode decomposition and a kernel extreme
learning machine using the firefly algorithm intra-day-ahead PV Power output prediction
was proposed. It reached NRMSE and NMAE below 10% in all weather conditions. Ref. [55]
compared a proposed probabilistic ensemble method with the ensemble based on the mean
value and found that the proposed method allowed to improve the NRMSE metric up
to 4.79% in 2017 in the totally cloudy days in a day-ahead forecasting task. Ref. [56]
proposed a new hybrid multicluster interval prediction method, which uses the sparse
autoencoder, Bayesian regularized NARX network, density peak clustering improved by
kernel Mahalanobis distance, and multivariate kernel density estimation for the PV power
interval forecasting. It allowed to reach the average NRMSE = 4.45%, NMAE = 3.39%, and
R2 = 95.93% for the four periods for the PV installation located in Australia. In [57], a new
ensemble method, called the evidential ELM algorithm, using the ELM and evidential
regression, was proposed. It allowed to reach 15.45% lower NRMSE than the ELM method.
In [58], a new hybrid model was proposed for a day-ahead prediction, which uses a
cloud-based platform, consisting of a data quality block, a weather forecasting and ML
power forecasting models, and an up-scaling aggregation step. In this model, a Bayesian
regularized neural network allowed to obtain NRMSE = 10.29% and MAPE = 9.11% for PV
power output prediction in Cyprus. In [59], the authors proposed a hybrid model based on
Iterative Filtering and Extreme Learning Machine (ELM) for multi-step-ahead forecasting
in a very short time-scale. The proposed model reached NRMSE less than 10% and R2 less
than 98% over all forecasting horizons.

In [60], the authors proposed a new model using similar days, seagull optimization al-
gorithm, and a deep belief network for a short-term PV power output prediction. It allowed
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to obtain NMAPE of only 1.512% on a sunny day, 5.975% on a rainy day, 3.359% on a cloudy
to sunny day, and 1.911% on a sunny to cloudy day. The short-term forecasting model
proposed by [61] used an online sequential extreme learning machine with a forgetting
mechanism. It allowed to obtain NRSME = 0.024 and MAPE = 9.708%. In [62], a new short-
term prediction model using correlation coefficient method, the chicken swarm optimizer,
and extreme learning machine thresholds was presented. It allowed to obtain average
MAPE = 5.54% and RMSE = 3.08% under different weather conditions. Ref. [63] made
efforts to develop a hybrid prediction model based on information entropy employing gray
relation analysis and extreme learning machine. It allowed to obtain MAPE = 2.8425%,
RMSE = 2.5675%, and the average R2 = 98.66%. Ref. [64] used deep learning–based feed-
forward neural network, LSTM and Gated Recurrent Unit recurrent neural network models
for short-term PV power forecasting. The best results are MAPE for macro-level model
ranging from 1.42% to 8.13% for all weather types and forecast horizons, provided 1–6 h
ahead for a PV system of 75 MW. It was compared with other equivalent inverter-level
forecasts, which provided MAPE values from 1.27% to 8.29%. Ref. [65] presented a novel
discrete gray model with time-varying parameters for long-term PV power generation
forecasting. The proposed solution was tested on data coning from America and China,
and outperformed prevalent benchmarks, giving MAPE = 2.98%. Ref. [66] suggested
using a hybrid model for a day-ahead PV power forecasting using Convolutional Self-
Attention based LSTM. It allowed to improve the forecasting performance when comparing
to other models, lowering MAPE by 7.7% in comparison with Deep Neural Network, by
6% in comparison with LSTM, and by 3.9% in comparison with LSTM with the canonical
self-attention. In [67], the authors proposed a comprehensive hourly averaged day-ahead
forecasting framework, in which artificial neural networks and K-means clustering were
applied. It allowed to obtain MAPE for hot region of 4.7%, and for semi-arid region of 6.3%.

Ref. [68] compared various short-term forecasting models using Random Forest, SVR,
CNN, LSTM, and a Hybrid of SVR and CNN with statistical models. It was found that Ran-
dom Forest model obtained the best results with average RMSE = 11.77% , MAPE = 18.65%
and R2 = 0.94. Ref. [69] proposed a multivariable hybrid prediction framework using
signal decomposition, artificial intelligence, deep learning, and a swarm intelligence opti-
mization strategy. It resulted in obtaining low MAPE using three various datasets, from
2.129% to 3.654% in short-term prediction tasks. Ref. [70] made efforts to develop a hybrid
method applying three independent MLP-type neural networks for a very short-term
forecasting of PV power generation. It allowed to obtain RMSE of 122.558 W for the PV
installation of 3.2 kW, and NMAPE of 1.474%. Ref. [71] developed and compared ANN
and LSTM network short-term forecasting models. It was found that LSTM models have
better accuracy than ANN. The LSTM model obtained MAPE of 19.5%. In [72], the authors
proposed a hybrid model using an ANN with Wavelet Transform for 24-hour-ahead PV
power forecasting. It received a MAPE of 6.75% and symmetric MAPE of 9.95%. Ref. [73]
compared six ML forecasting models: multiple linear regression, ridge regression, decision
tree, random forest, SVM, and K-nearest neighbor. The study revealed that random forest
model outperforms the other methods with MAPE = 2.2790% and RMSE = 0.879%.

4.1.2. The Summary of Studies on ML Models for Electricity Generation Prediction from
Wind Systems

Ref. [74] proposed a hybrid physical process with artificial neural networks for power
prediction for wind turbines. The hybrid model that couples physical model and transfer
learning approach obtained MAE = 94.70, RMSE = 140.11, R2 = 0.91 and outperforms a
pure physical model, a single artificial neural network, and two typical physical guided
neural networks. In [75], artificial neural networks, multiple linear regression, and power
regression techniques were used to predict wind power. Real data from a wind farm in
Sri Lanka during the period of 2015–2020 were used to compare the analyzed models.
The ANN model obtained the best performance with R2 = 0.97, and RMSE = 109. In [76],
the wind power data were utilized to form a graph neural network in order to compute
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the spatiotemporal correlation between the target turbine and adjacent turbines. Next,
deep residual networks were applied for short-term wind power prediction. Real data
collected from China were used to evaluate effectiveness of the proposed solution. The
proposed solution obtained R2 = 0.96 and RMSE = 70.19 kW. The results confirm the
superiority of the approach based on deep residual networks. Short-term forecasting of
wind power based on Three-level Decomposition, kernel extreme learning machine and
Improved Grey Wolf Optimization was proposed in [77]. The proposed solution reached
R2 = 0.9922, NRMSE = 0.5071, NMAE = 0.3861 and outperformed models using different
decomposition level and LSTM models. In [78], an ultra-short-term wind power prediction
method based on swarm optimization–variational mode decomposition, enhanced slime
mold algorithm for elite opposition-based learning strategy and deep extreme learning
machine was proposed. It allowed to reach MAE = 0.9709, RMSE = 1.4188, R2 = 0.9713.
A day-ahead wind power generation forecasting based on a grid selection algorithm and
feature selection models was analyzed in [79]. Results showed that the proposed model
outperformed the other models with NRMSE = 7.6% and R2 = 0.8989. In [80], a short-
term wind power forecasting based on XGBoost Hyper-Parameters Optimization was
analyzed. The proposed approach reached RMSE = 9.29 MW, MAE = 6.52 MW, R2 = 0.64
and outperformed SVM, KELM, and LSTM.

An asexual-reproduction evolutionary neural network for short-term wind power
prediction based on Wasserstein generative adversarial network, gradient penalty, and
ensemble empirical mode decomposition was proposed in [81]. The asexual-reproduction
evolutionary approach was applied to optimize the neural network. The proposed solution
was compared with the neural networks with different loss functions and the SIA-based
neural networks optimized by different swarm intelligence algorithms and outperformed
them with MSE = 70.6169 kW, MAE = 42.2606 kW, R2 = 0.9890. In [82], the transparent
open-box machine learning method for wind-power data forecasting was analyzed. The
method reached good forecasting performance with: RMSE = 791.4 MW and R2 = 0.988.
Two hybrid models of adaptive neurofuzzy inference system using genetic algorithm and
particle swarm optimization each for a turbine were developed in [83] to forecast short-term
wind power. The best prediction accuracy, RMSE = 0.180 and R2 = 0.914, was obtained for
a model based on particle swarm optimization. In [15], kernel-driven machine learning
models (SVR and GPR) and ensemble learning models (Boosting, Bagging, XGBoost,
and RF) were applied to forecast the future trends of wind power. The results showed
that the optimized Gaussian process regression and ensemble models outperformed the
other machine learning model with an average R2 of about 0.95. Random forest, gradient
boosting machine, k-nearest neighbor, decision-tree, and extra tree regression were used to
improve the forecasting accuracy of short-term energy generation in the Turkish wind farms
in [84]. The results showed the best forecasting performance: MAE = 0.0264, RMSE = 0.0634,
R2 = 0.9690 for gradient boosting machine regression.

In [85], deep neural networks were applied to forecast wind power of an offshore
wind turbine based on high-frequency SCADA data. Pearson product–moment correlation
coefficients were applied to select the most significant features.The results showed that
the proposed approach can reduce the computational cost retaining good performance
RMSE = 517.33, R2 = 0.91, MAE = 374.41. Tree-based learning algorithms were used in [86]
to forecast long-term wind power. The presented results demonstrated the effectiveness
of the analyzed models against data uncertainties. XGBoost yield the best results with
higher R2 = 0.9997. In [87], support vector machine with improved dragonfly algorithm
was used in short-term wind power forecasting. The proposed approach allowed to
receive NRMSE = 3.25%, NMAE = 2.75%, MAPE = 10.58%, R2 = 0.9791 in winter, and
NRMSE = 5.24%, NMAE = 4.04% MAPE = 8.64% R2 = 0.9544 in autumn. In [88], support
vector regression was used to estimate the fatigue loads and power of wind turbines under
yaw control. The SVR model outperformed the artificial neural networks with MAPE = 0.4,
NRMSE = 0.0082 and R2 > 0.99. In [89], wind power forecasting based on hourly wind
speed data in South Korea was realized using ANN, KNN, RF and SVM. ANN models
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showed the best performance with R2 above 0.99. Long-term forecasting electricity power
generation of Pawan Danavi Sri Lanka wind farm was presented in [90]. The proposed
approach based on gene expression programming obtained R2 = 0.92 and RMSE = 259 kW.
In [91], sparrow search algorithm optimization deep extreme learning machine was applied
to ultra short-term wind power forecasting. The approach was compared with artificial
neural network, random forest, extreme learning machine, and other deep extreme learning
machine techniques. The proposed model obtained high prediction accuracy: R2 = 0.927,
MAE = 69.803, RMSE = 115.446.

Improved extreme learning machine based on autoencoder and particle swarm op-
timization was applied in [92] to predict short-term wind power. The PSO method was
used to select hyperparameters of the analyzed model. The proposed approach was com-
pared with back propagation, ELM, regularized ELM, and optimal regularized ELM. The
results showed that the proposed solution achieved better accuracy: NMAE = 0.0211,
NRMSE = 0.028 with a faster training time. In [93], a three-stage multi-ensemble short-
term wind power prediction method based on variational mode decomposition, stacked
denoising autoencoder, long short-term memory, bidirectional long short-term memory,
and support vector machine was proposed. A multi-ensemble NRMSE decreased by
0.0343 compared with LSTM, decreased by 0.0336 compared with BLSTM, and decreased
by 0.0323 compared with stacked denoising autoencoder. In [94], a combined model for
wind power prediction based on feature extraction technique, extreme learning machine,
and least squares support vector machine model was presented, improving cuckoo search.
Real data collected from regional wind farms in China was used in the analysis. The results
showed that the proposed solution achieved accuracy NMAE = 5.05%, NRMSE = 8.67% and
outperformed other benchmark prediction models. In [95], extreme learning machine was
used to predict wind power. The ELM model outperformed the artificial neural networks
with NRMSE = 7.01, R = 0.95421 for two hours-ahead, NRMSE = 10.12, R = 0.91373 for
three hours-ahead, NRMSE = 12.06, R = 0.87576 for four hours-ahead. In [96], single and
combined models were analyzed in terms of use in wind power forecasting. The combined
models: XGBoost, Linear SVR, Weighted Ensemble, and Stacking outperformed the single
models XGBoost, Light Gradient Boosting Machine, SVM, Autoregressive Integrated Mov-
ing Average with Exogenous Variable and GAMAR. The ensemble Linear SVR obtained
the best forecasting results with an average NRMSE of 11.59%.

In [97], a hybrid model based on Complementary Ensemble Empirical Mode Decom-
position and Whale Optimization Algorithm–Kernel Extreme Learning Machine was used
to predict short-term wind power. The proposed approach outperformed other benchmark
models with MAE = 0.2911 mw/s, RMSE = 0.4305 mw/s, MAPE = 6.66%. Enhanced crow
search algorithm optimization–extreme learning machine model was applied in [98] to fore-
cast short-term wind power. The proposed approach obtained RMSE < 20%, MAPE < 4%
and outperformed the state-of-the-art wind power prediction models, traditional machine
learning models and ELM optimized by other techniques. An offshore wind power ramp
prediction method was presented in [99]. It was based on Variational Modal Decomposition,
Seagull Optimization Algorithm, Extreme Learning Machine, and Bayesian optimized Long
Short Term Memory network. The approach was compared with BP, RNN, LSTM, and
single model. The combined model obtained lower forecasting errors: RMSE of 71.10 kW,
MAE of 50.26 kW and MAPE of 0.01%. In [100], various machine learning techniques were
applied to predict day-ahead wind power at national level. The results showed that the
Extreme Gradient Boosting obtained the best forecasting accuracy with MAPE = 26.7%,
RMSE = 4.5%. In [101], wavelet decomposition-support vector machines-improved atomic
search algorithm was proposed to predict wind power. SVM decreased of MAE = 1.14%,
decrease of MAPE = 2.60% and decrease of RMSE = 1.52% in comparison to other models.
A hybrid model based on convolutional layers, gated recurrent unit layers and a fully
connected neural network was applied in [102] to predict wind power in Bodangora wind
farm located in Australia. The analyzed approach improved MAE up to 1.59%, RMSE up
to 3.73% and MAPE up to 8.13% in comparison to other methods.
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In [103], a power system scheduling model based on wind power output forecasting
errors was proposed. An Adaptive Mutation Fruit Fly Optimization Algorithm was used
to optimize Extreme Learning Machine parameters. The proposed approach obtained
MAE = 0.5483, RMSE = 0.0246, MAPE = 1.0712% and outperformed empirical formula
and PSO-SVM model. In [104], robust regression models for forecasting the wind power
generated through turbines based were compared. XGBoost regressor outperformed ran-
dom forest regression model, k-nearest neighbors regression model, and gradient boosting
regression model with RMSE = 0.1073, MAPE = 3.283% and MAE = 0.0524. An approach
based on optimal weighting density peak clustering (DPC), principal component analysis
and long short-term memory was applied in [105] to predict the potential of the wind
energy. Compared with the traditional DPC-LSTM algorithm, the proposed approach
obtained MAPE and RMSE value reduction of 0.014 and 0.068. A hybrid wind power
prediction model based on extreme learning machine, improved teaching-learning-based
optimization and recursive feature elimination was proposed in [106]. The hybrid ap-
proach outperformed the basic methods with RMSE = 3.64–6.16, MAE = 2.57–4.54 and
MAPE = 5.59–9.76. An integrated machine learning and enhanced statistical approach for
wind power interval forecasting was proposed in [107]. It was based on the nonlinearity
and the time-changing distribution of wind speed, and six machine learning regression
algorithms: linear regression, LSTM, lazy learning, regression tree, multilayer percep-
tron, and decision table. The results showed, that the long short-term memory network
algorithm outperformed other methods with MAPE = 8.1. In [108], a long-short-term
memory network two-stage attention mechanism for short-term wind power forecasting
was presented. The proposed approach obtained MAPE = 2.66%, MAE = 131.11kW and
outperformed the basic methods without attention mechanism.

4.1.3. The Summary of Studies on ML Models for Electricity Generation Prediction from
Hydro Power Plants

In [109] the highest R2 = 0.99992 was reached in the 1-day-ahead hydropower genera-
tion prediction task for Bayesian Linear Regression model. In second place was Boosted
Decision Tree Regression model also with a very good R2 of 0.998952. Ref. [110] pro-
posed a hydropower capacity prediction model based on MLP, ELM, and SVR algorithms
with various kernels. The research revealed that MLP outperformed other models with a
RMSE = 0.2593, MAE = 0.2128 TWh and a correlation of 0.9735 for the hydropower plants
in Northern Italy with the total installed capacity 12.40 TWh. Ref. [111] developed and eval-
uated the hydropower forecasting performance of the Gaussian process regression (GPR),
support vector regression (SVR), multiple linear regression (MLR), and power regression
(PR). It was found that GPR outperformed other models with a correlation coefficient of
0.92 and MAPE = 4.5%. In [112], the performance of various ensemble models based on the
typical Random Forest was analyzed. It was found put that the best results (NMAE = 0.17,
NRMSE = 0.2, R = 0.9) were obtained after introducing a finer spatial resolution for the
inputs. In [113] the authors proposed a hybrid model consisting of signal decomposition
and adaptive switching between ELM, backpropagation neural network (BP), and general
regression neural network. The established hybrid model has shown to be superior on
typical days and over the whole year, with MAPE of the whole year of 8.38%. In [14], the
authors proposed proposed: ANN, AutoRegressive Integrated Moving Average (ARIMA),
and SVM to predict hydropower generation. It was found that ANN outperformed SVM
and ARIMA with correlation coefficient R = 0.94 for daily power generation prediction,
R = 0.95 for monthly power generation prediction and R=0.96 for seasonal power generation
prediction.

Ref. [114] developed an ANN model for future small hydropower potential prediction
using a climate change scenario. It was found that the proposed model has sufficient
efficiency measured with sufficient predictive performance with a coefficient of coefficient
value of 0.77, percent bias of 16.8% and Nash–Sutcliffe efficiency of 0.6. In [115], a new hy-
dropower generation capacity prediction model based on ELM with Monte Carlo algorithm



Energies 2022, 15, 9146 13 of 41

was proposed. The performance evaluation of this model shown that proposed hybrid
method outperforms traditional ELM. In [116], a Deep Feed Forward Neural Network was
proposed to predict day-ahead energy generation in a small run-of-river hydropower plant
in Western Greece. It was found that the ML model provides a better fitting to the observed
flows than the simple regression model (84% vs. 63%). However, the conversion to energy
was disappointing with the classical efficiency metric (measured by R2 of only 50.7%), and
the modified efficiency (modified version of R2) being strongly negative.

In [117], a hybrid model using ELM and artificial bee colony (ABC) algorithm was
suggested for prediction of small hydropower plant generations. It was found that the
proposed model outperformed backpropagation-based artificial neural network, radial
basis function-based ANN, and long short-term memory, with improvement percentages
in comparison to traditional ELM for correlation coefficient of 6.20%, in RMSE of 29.80%,
and in MAE of 26.29% for 14-days-ahead predictions. In [118], MLP, SVR, ELM or Gaus-
sian processes were tested. These were applied for long- and short-term hydropower
generation forecasting. The research revealed that SVR linear performed the best in spring
with RMSE = 17.41 hm3, MAE = 13.94 hm3; ELM performed the best for summer with
RMSE = 7.83, MAE = 5.73; GP in autumn with RMSE = 14.40 hm3, MAE 1 1.01 hm3; and
SVR in winter with RMSE = 22.14 hm3, MAE = 15.38 hm3. In [119], a hybrid forecast tool
aiming to support hydropower production decision making was developed. The prediction
performance of SVR, Gaussian processes, LSTM, non-linear autoregressive neural networks
with exogenous inputs, and a deep-learning neural networks model were compared. It was
found that the ML models based on a complex or recurrent architecture better simulate the
temporal dynamic behavior of the accumulated river discharge inflow.

4.2. RQ1: What Are the Trends in the Number of Articles Published in the Analyzed Field in the
Last 3 Years in Terms of the Type of RES?

The intention of this review is to present and classify articles published in Scopus,
which coped with Machine Learning (ML) models applied for forecasting electricity gener-
ation from RES. Tables A1–A3 present an overview and comparative analysis of articles
on Machine Learning (ML) models applications for forecasting electricity generation from
RES in the years 2020 (Table A1), 2021 (Table A2), and 2022 (Table A3). They present the
article first author, article reference, type of RES, ML method applied and describe briefly
the main results.

Figure 3 presents the number of published papers concerning machine learning appli-
cations in prediction of the electricity generation from RES in the years 2013–2022. Despite
the fact that 2022 is not over yet (the research was conducted until 21 October 2022), it is
easy to see a growing trend in the number of articles published in the years 2020–2022.
This confirms that the topic of using machine learning to predict the amount of energy
produced from RES is current. The increasing trend in the annual publications indicates
that applications of machine learning in forecasting of electricity generation from RES
is a developing field of study. This is likely due to the growing number of installations
using RES to produce electricity and the growing amount of miscellaneous data collected
by sensors within the RES installations themselves. In addition, the need to generate
accurate and reliable forecasts of energy production for network operators requires the
use of advanced tools, such as machine learning models, which will be able to meet the
stringent requirements.

Figure 4 shows the number of published papers on ML applications in prediction
of electricity generation with the division into various RES (wind, PV, and hydro). It
can be seen that most articles (147) were published on the use of ML in predicting elec-
tricity generation from wind systems. Articles on electricity generation forecasting from
PV installations also comprise a large group (106 papers). Moreover, four papers were
found which concerned forecasting electricity generation from both PV and wind systems.
Only 13 articles on forecasting electricity generation from hydropower plants using ML
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were published. It reflects a research gap in machine learning applications in forecasting
electricity generation from hydropower plants.
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Figure 3. The number of published papers concerning machine learning applications in prediction of
the electricity generation from RES.

It indicates that there is an open space for future works concerning ML applications
for prediction of electricity generation from hydropower plants.

Looking at the detailed graphs of the number of articles published on individual RES
(wind, PV, hydro) in individual years, it can be seen that the upward trend is particularly
evident in the case of wind and PV systems. In 2022 in particular, there can be observed a
large number of articles on both wind and solar PV systems. It indicates growing interest
in ML applications in electricity generation forecasting from wind and solar systems.
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Figure 4. Annual distribution of published journal papers concerning machine learning applications
in prediction of electricity generation from various RES (papers search last updated in October 2022).

4.3. RQ2: What Are the Trends in Terms of the ML Methods Used in the Analyzed Field in the Last
3 Years in Terms of the Type of RES?

All articles considered were analyzed according to the ML methods used. The overall
results are presented in Figure 5. Extreme learning machines and ensemble methods
were the most popular techniques. They were used in 64 and 62 papers, respectively.
The popularity of ELM methods can be justified by the fact that they do not need a large
amount of computational power.

Figure 5. Top ML methods used in anayzed papers.
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The annual distribution of the tools used is presented in Figure 6. The figure presents
that the Ensemble methods, RNN, and CNN are gaining more and more popularity.
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Figure 6. Top ML methods used in particular years.

The use of individual methods in relation to the installations used is presented in
Figure 7. In the case of the wind systems, the ELM and Ensemble methods were the most
popular (43 and 35 cases, respectively). In the case of PV installations, the Ensemble and
RNN were most often used (27 and 18 cases, respectively). In the case of hydro-powered
plants, the most popular were SVM and ANN (6 in both cases).
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Figure 7. Top ML methods used in particular types of installations.

4.4. RQ3 and RQ4: Was the Application of Hybrid ML Methods or Single ML Dominant in the
Analyzed Field in the Last 3 Years? Were Short Term or Long Term Predictions ML Models
Dominant in the Last 3 Years?

The analysis of the works from Tables A1–A3 revealed that hybrid models were
developed in 86 articles. It can be seen that these models account for 32.82% of all proposed
models (34.91% for PV, 31.97% for wind, and 16.67% for hybrid power plants). It should
be noted that not all articles from the tables in the Appendix A clearly indicated whether
they concerned short-term, mid-term or long-term predictions. Among the articles that
explicitly hinted at the time horizon, it can be observed that short-term forecasts are
dominant, constituting 85% of the papers with clearly defined time horizon. The explicitly
indicated time horizon of the forecast is shown in the Time horizon column in the table in
the Appendix A.

4.5. RQ5: What Are the Global Publication Trends Concerning Location Affiliation in the Analyzed
Field in the Whole Dataset and in the Subsets (Photovoltaic, Wind, Hydro)?

Figure 8 shows a Cholorpeth map with the number of papers on ML in electricity
generation forecasting from RES published per country of the main author’s affiliation.
It can be seen that China has the highest number of published papers (124). It is followed by
India with 14 contributions, South Korea with 11 contributions, Turkey with 8 contributions,
Italy with 7, and the USA with 8 contributions. Poland, Pakistan, Saudi Arabia, Spain, and
Australia contributed with 5 papers each. Most of the authors coping with ML prediction
models for wind systems came from China (83), India (7), the USA (5), and Turkey (4). Most
of the contributions concerning PV systems came from China (38), South Korea (8), and
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India (7). Most authors proposing ML models for hydropower plants came from China,
Italy, and Turkey.

Figure 8. Global distribution of published journal papers concerning machine learning applications in
prediction of the amount of energy produced from RES papers search last updated in October 2022).

4.6. RQ6: Which Authors Published the Most Articles in the Analyzed Field in the Last 3 Years?

It was also found which authors contributed with the most papers in the analyzed
field in the last three years. Li L.-L., Tseng M.-L. and Zhang X. contributed with 5 papers
each. Each of those authors contributed with papers both to PV and wind subsets. They are
followed by Wan C., Ou Z., Li Z., Meng A., Song Y. and Yin H. with 4 papers each. After
analysis of this issue in the subsets (PV, wind, and hydro), it can be concluded that the
largest number of occurrences of the same author in the wind subset was 4 (authored by
Yin H., Ou Z., Song Y., Li Z., and Meng A.). In the PV subset, a very large number of
appearances of two articles by the same authorship was observed, and in the hydro subset
the largest number of occurrences of the same author was 2.

4.7. RQ7: What Are the Top 10 Most Cited Articles in Each Analyzed Year and What Are the
Determinants of Their Success?

In order to identify papers with the highest influence and find out the reasons for their
success, the ten most cited papers were selected in each analyzed year. The list of these
papers is presented in Table 3. It allowed to select top-cited papers fairly, avoiding the
problem of multiple citations for articles that have been published previously. The research
revealed that the top cited paper in 2020 is [87] with a record number of 169 citations. It is not
an open access article. In this paper, a hybrid model for short-term wind power forecasting
was proposed, which was a combination of SVM and improved dragonfly algorithm. It was
proposed to improve the traditional dragonfly algorithm’s performance using the adaptive
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learning factor and differential evolution strategy. This algorithm is applied to choose the
optimal parameters of SVM. The proposed model was verified using a real datasets from
a wind farm in France and received NRMSE = 3.25%, NMAE = 2.75%, MAPR = 10.58%,
R2 = 0.9791 for winter, and NRMSE = 5.24%, NMAE = 4.04%, MAPE = 8.64%, R2 = 0.9544
for autumn. The proposed model outperforms back propagation neural network and
Gaussian process regression models.

Table 3. Top cited papers.

Article Type Year Cited by

Li L.-L. et al. [87] Wind 2020 169
Zhou Y. et al. [120] PV 2020 75
Liu W. et al. [121] PV 2020 69
Lin Z. et al. [85] Wind 2020 65

Shahid F. et al. [122] Wind 2020 64
Hossain M.S. et al. [123] PV 2020 64

Theocharides S. et al. [67] PV 2020 46
Mishra M. et al. [50] PV 2020 43

Li L.-L. et al. [87] Wind 2020 41
Behera M.K. et al. [124] PV 2020 41

Shahid F. et al. [125] Wind 2021 84
Ding S. et al. [65] PV 2021 61

Neshat M. et al. [126] Wind 2021 51
Luo X. et al. [52] PV 2021 44

Kabilan R. et al. [127] PV 2021 32
Hossain M.A. et al. [102] Wind 2021 30

Liu Z.-F. et al. [46] PV 2021 24
Hu W. et al. [60] Wind 2021 23

Mahmud K. et al. [6] PV 2021 21
du Plessis A.A. et al. [64] PV 2021 21

Li H. et al. [128] Wind 2022 26
Ribeiro M.H.D.M. et al. [129] Wind 2022 17

Markovics D. et al. [130] PV 2022 16
Ding Y. et al. [97] Wind 2022 15

Visser L. et al. [131] PV 2022 13
Li Z. et al. [132] Wind 2022 12
Zazoum B. [47] PV 2022 10

Guo H. et al. [133] Wind 2022 9
Sasser C. et al. [134] Wind 2022 9
Huang X. et al. [135] PV 2022 8

In 2021, the top cited paper is [125] with 84 citations. This is also not an open access
paper. In this paper, authors proposed a new genetic LSTM approach to predict short-term
wind power. Genetic algorithm was used to optimize window size and the number of
neurons in LSTM layers. The proposed solution was evaluated on the basis of real datasets
form seven wind farms in Europe. The genetic LSTM received MAE = 0.92%, MAE = 7.2%
and outperformed the standard LSTM and SVR models. The Wilcoxon Signed-Rank test
showed a significant difference between genetic LSTM and standard LSTM.

In 2022, the top cited paper is [76] with 26 citations. In contrast to the previous
two works, this is an open access paper. In this paper, graph neural network was used
to visualize a relationships between the target turbine power and power generated by
adjacent turbines. The model showed the correlation between power output and a better
power prediction result. The deep residual network was applied to the short-term wind
power prediction. The real dataset from a wind farm named Kushui Wind Farm was used
to evaluate the proposed solution. The proposed solution received the mean value of
R2 = 0.96 and outperformed ANN, SVR, and ELM.
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In each analyzed year, the article on wind takes first place. Moreover, the real data
from wind farms were used to evaluate the proposed methods in each of the most cited
papers. All three papers concerned short-term forecasting, which is definitely the most
frequently chosen one in the field of electricity production predcition. The most cited paper
in each analyzed year presents an innovative and quite complex solution that gave better
forecasting results compared to other popular models, such as ANN, SVR, and LSTM.

4.8. RQ8: What Are the Titles of the 10 Journals in Which Researchers Most Frequently Publish
Articles from the Analyzed Area over the Past 3 Years?

In order to identify journals which contributed the most articles to the analyzed field,
the entire dataset containing articles from 102 journals was divided according to the number
of appearances of individual journals. It resulted in the identification of the top 10 journals
which published the most papers: Energies (25 articles), Energy (22), IEEE Access (15),
Energy Reports (13), Renewable Energy (11), Taiyangneng Xuebao/Acta Energiae Solaris
Sinica (8), Applied Energy (8), IEEE Transactions on Sustainable Energy (7), Mathematical
Problems in Engineering (7), and Energy Conversion and Management (7). In those journals,
readers can find a lot of up-to-date papers in the analyzed field. A summary of this analysis
can be found in Figure 9.

Figure 9. Top journals which contributed the most articles to the analyzed field.

5. Discussion of Results

Table 4 presents the results of the Strengths, Weaknesses, Opportunities and Threats
(SWOT) analysis for papers concerning ML applications for prediction of electricity genera-
tion from RES. This table is a result of the analysis of the articles listed in Tables A1–A3, as
well as related literature and contains conclusions drawn from this analysis. Those strengths,
weaknesses, opportunities and threats were grouped into several topics and are discussed
below.

5.1. Data Granularity

Data granularity influences the model performance. In the analyzed papers, various
data granularities were found: 5-min (e.g., in [136,137]), 10-min (e.g., in [84,126]), 15-min
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(e.g., [45,64]), and hourly (e.g., in [103]). It can be observed that gathering data with a
smaller time interval positively influences the prediction metrics.

Table 4. SWOT analysis for papers concerning ML applications for prediction of energy generation
from RES.

STRENGTHS

1. ML models are able to provide better performance
than traditional forecasting models

2. Simple ML models with low computational cost are
able to give sufficient results

3. ML models enable both short-term and long-term
forecasting

4. Possibility of adjusting the ML model to changing
climatic condition

5. Enabling adequate planning of the operation of coal
and gas-fired power plants

6. Enabling a RES installation owner getting a higher
price for the volume introduced to the power grid

WEAKNESSES

1. Too short time horizon of the data taken into account
2. Too small dataset
3. Improper matrices chosen
4. Weather data from another location
5. Unjustifable choice of features
6. Difficult access to historical data needed for training

the model
7. Dedication to a specific place

OPPORTUNITIES

1. Introducing data preprocessing
2. Introducing data normalization
3. Using data with a small time interval
4. Carrying out analysis of the relationship between

renewable energy sources power output and meteo-
rological parameters for a certain location

5. Uncertainty quantification

THREATS

1. Lack of comparability of the results due to filtering
zero values (e.g., in the case of PV systems during
night time

2. Lack of comparability of the results due to various
time horizons taken into account

3. Lack of comparability of the results from the same
region due to various scales of studies

4. Lack of cross-validation in works, which do not cope
with time series forecasting

5. High computational costs and complexity of DL mod-
els

6. Difficulties with comparability of the results coming
from various regions

5.2. Representativeness of the Data

The quality of the prediction model depends on the representativeness of the data.
It also depends on the type of data used. Various types of data are used for training the ML
models, e.g., real-time data, benchmark data, and simulation data. Moreover, the dataset
size defined by total time duration and the dataset recording step is important.

In the case of using meteorological data that will be later selected as features, ideally
they should be collected from the same location as the renewable energy installation in
question or possibly close to it. In the absence of data from the analyzed region, taking
data from other regions may cause an additional error in the analysis. It is also import ant
to consider the impact of air pollution on renewable energy generation, especially in the
case of PV systems. The ground receives less solar radiation during a polluted day due to
attenuating the solar radiation received by the panel, which affects the performance of the
prediction model. Moreover, dust from air pollution settles on the panel, decreasing the
power production [11,138].

The main challenges connected with applying ML models for prediction of electricity
generation from wind systems are the variations in the dataset. The main reasons for varia-
tions of the wind data are climate change, weather anomalies, storms, seasons, showing
intermittency and the stochastic nature of wind. They lead to inconsistency in a regular
electricity generation that can severely affect the power system operation. In the case of
training a model on such inconsistent data, there is a risk of getting a false system image.
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Such a problem may also occur when too short time horizon of the data is taken into
consideration. It may result in obtaining a model which is suitable e.g., only for several
days in the year or one month in the year.

It should be noted that gathering historical data from sensors needed for development
of the ML model can be problematic for a researcher. Many renewable energy installation
owners and utility companies treat these data as confidential because of privacy concerns
and security restrictions. Most of the data were gathered using sensors, which influences
its quality due to possible mislabeling, duplication or temporary loss.

5.3. False Readings and Data Preprocessing

It is important to note that PV installation is not active during night time, so if there
are readings in the data that show different values, they are erroneous and may be due to a
system breakdown. Even in the case of just after or before the sunrise/sunset, it advised to
remove the reading from the dataset to avoid the problem of false reading due to cosine
instrumentation error [11,139]. In the case of prediction of PV installation output, some
researchers (e.g., [49,140,141]) decide to filter non-zero values during the night time, which
improves the forecasting performance. It is also advised to filter out the values created
during the failure or renovation of the installation.

5.4. Enhancement of Results

PV installation is not active during night time; therefore, its energy generation during
night time is always 0, which is easy to predict. Some researchers evaluate the performance
of the proposed models based on both day and night, which can improve the final results,
making them difficult to compare with those obtained only from the night data.

5.5. Dedication to a Specific Place

It can be noticed that most of the research papers concerning renewable energy gener-
ation forecasting are based on the data gathered from a single PV or wind farm, proposing
a machine learning model dedicated for a specific place and specific conditions. However,
utility companies prefer to receive a tool enabling forecasting electricity generation from
renewable energy for a whole city [142]. Spatiotemporal forecasting dedicated for smart mi-
crogrids may be the answer to the needs of utility companies, rather than a single location
technique [143].

5.6. Uncertainty Quantification

There are several uncertainties that could be involved in forecasts developed by ML
models. The development of machine learning prediction model starts with the gathering
an appropriate datasets, choice of the machine learning models to be considered, training
the models, and optimizing various learning parameters. These uncertainties are e.g.,
selection of training data set, and completeness and accuracy of the model [144].

5.7. Normalization

Some authors decide to normalize the training data. The most typical method for
standardizing data is to use mean and standard deviation value [145]. In [6], it was found
that it resulted in slightly better performance compared to data without normalization.
On the other hand, in [49] the normalization did not allow to obtain better results. It
should be noted that the normalization, apart from the improvement in the quality of the
model occurring in some cases, allows for easier comparison of the analysis results from
installations of different sizes.

5.8. Lack of Cross Validation

Another issue worth mentioning is a lack of cross validation carried out in works,
which does not cope with time series forecasting. Carrying out cross validation makes it so
that the results can be most reliably assessed, because the sets for validation are selected
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randomly and there are several of them (usually k = 5), and this reduces the possibility of
obtaining high model parameters at the end of the day, and the possibility of overfitting
the model is reduced. In some analyzed works e.g., in [49,141,146,147], a cross validation
was carried out.

5.9. Choice of the Proper Metrics and Units

Some researchers [49,148], when developing machine learning models for PV or wind
farms, reported that the mean absolute percentage error and root mean squared percentage
error are not recommended as reliable error indicators. They tend to be very high even
if the forecasting results are very close to the real values. Because in many situations,
generated power can equal zero, the percentage value cannot be calculated based on the
classical equation (4) and needs to be calculated using (7). The introduction of ε in the
denominator can seriously increase the output value. Moreover, in some of the analyzed
papers, it was found that in the case of non-standardized MAE and RMSE metrics, units
and maximum energy production are not given as a reference point, which makes these
results incomparable with the studies of other researchers.

5.10. Installation Scales

When comparing the ML performance, attention should also be paid to the different
forecasting scales of energy generation from renewable energy sources. It is possible to
forecast energy production at the level of a single installation, region or country, and
at the same time for one renewable energy source and many renewable energy sources.
It is difficult to compare the prediction model performance for a single PV farm to that
developed for a national scale. It was noticed that the electricity generation process from PV
installations on the regional level is associated with less fluctuation and better stability [149].

5.11. The Forecasting Performance for Various Regions

The studies concerning various types of RES systems performance (with different
technologies applied) under different climatic conditions are much desired [150,151]. In the
case of developing a prediction model for a single renewable energy installation, its per-
formance is strongly affected by its climatic characteristics and geographical environment.
Model performance may differ even if both analyzed installations are located in the same re-
gion [149]. Therefore, it is difficult to compare ML models performance for various regions,
and it is necessary to consider various spatial characteristics when trying to compare it.

5.12. The Forecasting Performance for Various Time Horizons

The best solution is to show the possibility of forecasting, taking into consideration
difficulties associated with the seasonality and specificity of individual seasons. That is
why the results covering a wider time horizon are especially interesting, as they allow a
more consistent comparison. It can be seen that, in the papers presented in Tables A1–A3,
short-term models are dominant.

5.13. The Importance of Carrying out Analysis of the Relationship between Renewable Energy
Sources Power Output and Meteorological Parameters for a Certain Location

Carrying out analysis of the relationship between renewable energy sources power
output and meteorological parameters for a certain location can be very beneficial, im-
proving the ML model’s performance. For example, In the case of a warm temperate
transitional climate, characterized by high fluctuations in temperature and solar radiation,
the dependence between solar radiation and PV panel output can be much less remarkable
than in a tropical and isothermal climate or continental climate, providing some challenges
for the forecasting. Therefore, it may be needed to add several other features to improve
the performance of the ML model. The proper choice and number of analyzed features
determines the final performance of the forecasting model. In some cases, the greater
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number of the analyzed features gives the result with smaller forecast error, while in other
cases it does not improve the performance of the model [49].

5.14. Dealing with High Computational Cost

Deep learning approaches application is associated with high computational cost
and complexity [152]. Therefore, in the case of applying deep learning models, a lot
of data storage devices and considerable processing power devices are needed to carry
out a forecasting task. From the literature review presented in Tables A1–A3, it can be
seen that Extreme learning approaches are becoming more and more popular nowadays,
making it possible to deal with the problems encountered in deep learning by reducing the
computational cost and complexity of the model.

5.15. Strengths

The analysis of the results obtained in the research articles listed in the Appendix A
indicates that ML models are able to provide better performance than traditional forecasting
models. It can be concluded that simple ML models with low computational cost are able
to give sufficient results (e.g., ELM, ensemble, SVM), so the application of computationally
expensive and more complex ML models such as ANN, RNN, CNN models is, in many
cases, not needed. ML models enable both short-term and long-term electricity generation
forecasting. Bearing in mind the fact that climate changes, it is important to note that it
is possible to adjust the ML model to changing climatic condition thanks to relearning
the model on changing data. In the analyzed works many reliable and accurate ML
models were developed, which enable delivering precise and reliable ML forecasts of
electricity generation from RES. Such forecasts are indispensable for adequate planning of
the operation of coal and gas-fired power plants at individual hours in the national energy
system. Besides this, precise and reliable ML forecasts of electricity generation from RES
enable a RES installation owner getting a higher price for the volume introduced to the
power grid at the specified time.

6. Conclusions

This review identifies the growing interest in the subject of ML applications in elec-
tricity generation prediction from RES in the last 10 years. A particularly large number of
articles were written in the years 2020–2022. The increased interest in RES due to Green
Deal requirements and associated growth of the number of RES installations, drives the
need to develop many various ML models taking into account the specificity of location’s
spatial characteristics. In this review, 262 articles from Scopus from the years 2020 to 2022
were analyzed. Statistic analysis based on eight criteria (ML method used, renewable
energy source involved, affiliation location, hybrid model proposed, short-term prediction,
author name, the number of citations, and journal title) was shown. The main contribution
to the body of knowledge of this review is uncovering answers to the research questions
stated, which are as follows:

RQ1: A growing trend in the number of articles published in the years 2020–2022 was
identified, which confirms that the topic of using machine learning to predict the amount
of energy produced from RES is current, being a developing field of study. It was found
that 56.11% of articles concerned ML applications in predicting electricity generation from
wind systems, 40.46% from PV systems and only 4.96% from hydropower plants. It reflects
a research gap in machine learning applications in forecasting electricity generation from
hydropower plants, and indicates that further research is needed in this field.
RQ2: It was found that Extreme learning machines and ensemble methods were the most
popular ML techniques in the analyzed papers in the last three years. In the case of the
wind systems, the ELM and Ensemble methods were the most popular; in the case of
PV installations, the Ensemble and RNN were most often used; and in the case of hydro-
powered plants, the most popular were SVM and ANN. The growing popularity of ELM
methods can be justified by the fact that they do not need a large amount of computational
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power. Simple ML models with low computational cost are able to give sufficient results
(e.g., ELM, ensemble, SVM), so the application of computationally expensive and more
complex ML models such as ANN, RNN, CNN models is, in many cases, not needed.
RQ3: Was the application of hybrid ML methods or single ML dominant in the analyzed
field in the last 3 years? The hybrid models constituted 32.82% of all analyzed works, so
they are not dominant in the analyzed field in the last 3 years.
RQ4: It was found that short-term forecasts are dominant among the articles that explicitly
hinted at the time horizon.
RQ5:The global publication trends concerning location affiliation in the analyzed field were
uncovered. China revealed to have the highest number of published papers (125) in the
analyzed field in the last three years. It is followed by India with 14 contributions, South
Korea with 11 contributions, Turkey with 8 contributions, Italy with 7, and the USA with 8
contributions.
RQ6: The study revealed that Li L.-L., Tseng M.-L. and Zhang X. contributed with the most
papers (5 each) in the analyzed field in the last three years.
RQ7: The most cited articles in each analyzed year and the determinants of their success
were presented in Section 4.
RQ8: The study revealed the top 10 journals which published the most papers in the
analyzed field in the last three years: Energies, Energy, IEEE Access, Energy Reports,
Renewable Energy, Taiyangneng Xuebao/Acta Energiae Solaris Sinica, Applied Energy,
IEEE Transactions on Sustainable Energy, Mathematical Problems in Engineering, and
Energy Conversion and Management.

Moreover, strengths, weaknesses, opportunities and threats for the analyzed ML
forecasting models were identified and presented in Table 4. Despite identifying some
weaknesses related to the use of a too short time horizon or problems with data, the results
presented in the analyzed papers confirm that the machine learning approaches can be
effectively used to forecast electricity production in modern renewable energy systems.

This review is a response to the needs of engineers and PV, water, and hydro-power
plants and RES installations’ owners who are willing to develop reliable and accurate
electricity generation forecasts. The information provided in this review, together with
critical discussion and future research directions included, also gives a helping hand to
researchers involved in forecasting electricity generation from RES in finding a proper ML
model that could best meet the specificity of their needs. The development of methods for
forecasting electricity production from RES also contributes to the reduction of harmful
carbon dioxide emissions, as the utility owners become aware of the fact that they can
find reliable tools for precise electricity generation forecasts are more willing to start RES
power plants.

The main limitation of this study is the fact that it covered only whole papers or at
least abstracts written in English. Therefore, it is possible that some valuable research
articles having abstracts in other languages, which concerned the analyzed topic, were not
covered by this work. Besides this, this study was limited to the Scopus database to ensure
high quality data, as this database covers publishers that are reviewed and chosen by an
independent Content Selection and Advisory Board. However, it cannot be ruled out that
other valuable, high-quality papers were created in the analyzed period and published in
journals outside Scopus. Another limitation of this study is the fact that, in some analyzed
research papers, the units of unnormalized metrics or a reference value in terms of the
largest observed reading were not provided. This made it impossible to compare the results
with the work of other researchers.
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Abbreviations
The following abbreviations are used in this manuscript:

AdaBoost Adaptive boosting
AE-SCN Stochastic configuration networks
ALO Ant Lion Optimizer
ANN Artificial Neural Networks
BP BackPropagation
BTR Boosted Regression Tree
CEEDMAN complete ensemble empirical mode decomposition with adaptive noise
CSO Chicken Swarm Optimization
CNN Convolutional Neural Network
CVOA-LSTM Long short-term memory with the coronavirus optimization algorithm
DA-ELM Deep auto-encoded extreme learning machine
DAFT-E Dynamic Adaptive Feature-based Temporal Ensemble
DBN Deep Belief Network
DL Deep Learning
DT Decision Tree
EDNQR Ensemble deep learning based non-crossing quantile regression
ELM Extreme Learning Machine
EELM Evidential extreme learning machine
ET Extra trees
FCM Fuzzy Cognitive Maps
FTSVM Fuzzy-Twin Support Vector Machine
GAM Generalized additive model
GAN Generative Adversarial Network
GB Gradient Boosting
GCLSTM Graph-convolutional long short term memory
GCTrafo Graph-convolutional transformer
GEP Gene expression programming
GPR Gaussian stochastic-based machine learning process model
GRU Gated Recurrent Unit
HFCM High-order Fuzzy Cognitive Maps
IFOA-BP Fly optimization algorithm and back propagation neural network
IVOA improved whale optimization algorithm
IVMDHFCM Improved Variational Mode Decomposition HFCM
KNN K-Nearest Neighbors
LSTM Long Short-Term Memory
LR Linear regression
M2TNet Multi-modal multi-task transformer network
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
ML Machine Learning
MSE Mean Square Error
MVEW-DNN Multi-view ensemble width-depth neural network
NARX Nonlinear autoregressive exogenous neural network model
NMAE Normalized Mean Absolute Error
NN Neural Networks
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NRMSE Normalized Root Mean Square Error
PLSR Partial least squares regression
PSO Particle Swarm Optimization
PV Photovoltaic
R2 Coefficient of regression
RES Renewable Energy Sources
RFR Random forest regressor
RMSE Root Mean Square Error
RNN Recurrent Neural Network
RVFLN Random vector functional-link network
RVM Relevance vector machine
SD Signal decomposition
SI Swarm intelligence
SSA Sparrow search algorithm
SSA-DELM Deep extreme learning machine optimized by the SSA
SVM Support Vector Machine
SVR Support Vector Regression
TCN Temporal convolu-tional network
TGML Theory-guided machine learning
TL Transfer learning
TSVR Wavelet-Twin support vector regression
VMD Variational Mode Decomposition
VMD-ALODLFTSVM VMD combined FTSVM using ALO and DL
XGB Extreme gradient boosting

Appendix A

Table A1. An overview and comparative analysis of articles from 2020.

Article Type Used Tools Time Horizon Comment

Chang G.W. et al. [153] PV DBN day-ahead hybrid
Behera M.K. et al. [124] PV ELM short-term
Lawan S.M. et al. [154] Wind ANN

Li L.-L. et al. [87] Wind SVM short-term hybrid
Liu Z.-F. et al. [62] PV ELM, CSO short-term

Nielson J. et al. [155] Wind ANN
Rana M. et al. [156] PV ANN, Ensemble, SVM multiple step ahead

Dorado-Moreno M. et al. [33] Wind ANN hybrid
Zhao C. et al. [157] Wind ELM

Shahid F. et al. [122] Wind Ensemble
Wang H. et al. [158] Wind ELM, SVM
Ding J. et al. [159] Wind ELM, GWO short-term

Li P. et al. [108] Wind Attention network short-term hybrid
Tian B. et al. [160] Wind Other short-term hybrid
Yin H. et al. [161] Wind CNN, GRU short-term

Maitanova N. et al. [162] PV LSTM
Kosovic B. et al. [163] Wind Fuzzy

Tan L. et al. [164] Wind ELM short-term
Lu H. et al. [148] Wind GWO hybrid

Theocharides S. et al. [67] PV ANN, Clustering hourly-averaged
day-ahead

Acikgoz H. et al. [95] Wind ANN short-term
Spiliotis E. et al. [165] Wind Ensamble

Lin Z. et al. [85] Wind ANN
Han Y. et al. [77] Wind ELM, GWO short-term

Alessandrini S. et al. [166] PV, Wind Ensemble hybrid
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Table A1. Cont.

Article Type Used Tools Time Horizon Comment

Li N. et al. [167] Wind ELM, Evolution
Li J. et al. [168] PV ELM short-term

Shahid F. et al. [169] Wind LSTM hybrid
Yi J. et al. [170] Wind ELM

Zhang J.-Y. et al. [171] PV ANN short-term hybrid
Rushdi M.A. et al. [172] Wind ANN

Zhou Y. et al. [120] PV Genetic, ELM hybrid
Chang X. et al. [173] PV Ensemble short-term hybrid
Carrera B. et al. [51] PV ANN, RNN hybrid
Li L.-L. et al. [101] Wind SVM hybrid

Huang Q. et al. [174] PV CNN day-ahead
Ağbulut Ü. et al. [41] PV ANN, SVM, Other

Castillo-Botón C. et al. [118] Hydro SVM long and short-term
Chen J. et al. [175] Wind Autoencoder short-term
Yu M. et al. [176] Wind ANN

Wang Y. et al. [115] Hydro ELM, Monte Carlo
Hashemi B. et al. [177] PV Ensemble, ANN, RNN

Yongsheng D. et al. [178] PV ELM, LSTM short-term
Mishra M. et al. [50] PV LSTM short-term hybrid

Wood D.A. [82] Wind Other
Sapitang M. et al. [109] Hydro ANN, Ensemble 1-day-ahead

Yu D. et al. [66] PV CNN, Attention, LSTM day-ahead hybrid
Wan C. et al. [179] Wind ELM
Wu X. et al. [54] PV ELM
Aly H.H.H. [147] Wind ANN hybrid

Ahmadi A. et al. [86] Wind DT, Ensamble long term
Choi S.-H. et al. [180] PV Ensamble, LSTM

Yao F. et al. [107] Wind LSTM hybrid
Tahmasebifar R. et al. [181] Wind ELM 1h-ahead and day-ahead hybrid

Wang H. et al. [182] Wind ELM short-term hybrid
De Caro F. et al. [183] Wind Ensemble short-term

Wei M. et al. [184] PV ELM
Buhan S. et al. [185] Hydro ANN, SVM, PSO hybrid
Xue W. et al. [106] Wind ELM, TLBO hybrid
Chen Y. et al. [186] Wind DT
Wang Q. et al. [187] PV ELM
Dairi A. et al. [43] PV CNN, LSTM short-term

Zhang H. et al. [188] Wind ELM short-term
Hu W. et al. [189] Wind ANN, SVM short-term hybrid

Yang X. et al. [190] Wind ELM
Hossain M.S. et al. [123] PV LSTM short-term

Liu W. et al. [121] PV Ensemble hybrid
Huang Y. et al. [105] Wind Clustering, ANN short-term

Gómez J.L. et al. [191] PV ANN hybrid
Essenfelder A.H. et al. [119] Hydro SVM, LSTM, ANN hybrid

Ananthanatarajan V. et al. [192] Wind LSTM
Yan H. et al. [193] Wind ELM short-term hybrid

Daneshvar Dehnavi S. et al. [194] Wind Fuzzy, SVM, FPA
Guo X. et al. [195] PV Ensemble short-term
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Table A2. An overview and comparative analysis of articles from 2021.

Article Type Used Tools Time Horizon Comment

Marinšek A. et al. [196] Wind Ensemble, SVM, LSTM short-term hybrid
Adedeji P.A. et al. [83] Wind PSO hybrid

Yildiz C. et al. [197] PV ELM short-term
Ding S. et al. [65] PV GWO, Genetic long

Özen C. et al. [198] Wind Ensemble hybrid
Lee D. et al. [199] PV LSTM
Hu W. et al. [60] PV DBN short-term

Khan M. et al. [145] Wind DT hybrid
du Plessis A.A. et al. [64] PV ANN, LSTM, GRU short-term

Pathak R. et al. [104] Wind Ensemble, KNN
Yildiz C. et al. [117] Hydro ELM hybrid
Meka R. et al. [200] Wind CNN short-term

Phan Q.T. et al. [201] Wind Ensemble short-term hybrid
Li Y. et al. [202] PV LSTM short-term hybrid

Zhao C. et al. [203] Wind ELM

Konstantinou M. et al. [146] PV LSTM short-term and long-term
PV

Shahid F. et al. [125] Wind LSTM, Genetic
Zhao W. et al. [204] PV Genetic day-ahead hybrid

Li Q. et al. [205] PV ELM
Cheng L. et al. [206] PV Graph Modeling short-term

Sun K. et al. [103] Wind ELM
Hu S. et al. [207] Wind Evolutionary short-term hybrid

Liu Z.-F. et al. [46] PV GWO short-term hybrid
Hossain M.A. et al. [102] Wind GRU very short-term hybrid

Luo X. et al. [52] PV LSTM hybrid
Fan H. et al. [208] Wind Clustering short-term

Mahmud K. et al. [6] PV Ensemble, ANN, LSTM short-term and long-term
PV

Ti Z. et al. [209] Wind ANN
Condemi C. et al. [110] Hydro ANN, SVM

Ziane A. et al. [45] PV Ensemble
Rodríguez F. et al. [210] PV Ensemble short-term

Chen H. et al. [211] Wind SVM, ANN, Ensemble,
LSTM short-term

Neshat M. et al. [126] Wind Deep belief network hybrid
Kabilan R. et al. [127] PV ANN short-term

Miao C. et al. [212] Wind CNN, LSTM short-term hybrid
Bochenek B. et al. [100] Wind Ensemble day-ahead

Niu H. et al. [213] Wind ELM, PSO

Ahmad T. et al. [214] PV, Wind GPR short-term,
medium-term

Lee D. et al. [215] PV EM short-term
Ekanayake P. et al. [75] Wind ANN

Lv J. et al. [216] Wind Other short-term
Yin H. et al. [217] Wind CNN, LSTM, CCO
Jung J. et al. [114] Hydro ANN
Putz D. et al. [218] Wind N-BEATS multi-horizon hybrid

Dhiman H.S. et al. [219] Wind TSVM short-term hybrid
Massaoudi M. et al. [136] PV Ensemble, KNN short-term

Li L.-L. et al. [98] Wind ELM short-term
Zhang H. et al. [220] Wind Attention network
Gupta D. et al. [221] Wind CNN, LSTM short-term

Guermoui M. et al. [59] PV Hybrid

multi-step ahead
forecasting in a very

short time-scale (up to 60
min)
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Table A2. Cont.

Article Type Used Tools Time Horizon Comment

Bezerra E.C. et al. [222] Wind Self-Adaptive Multikernel
Machine short term

Li W. et al. [223] Wind CSO, ELM
An G. et al. [224] Wind Ensemble, PSO, ELM short term hybrid

Ekanayake P. et al. [111] Hydro SVM
Li Q. et al. [225] Wind ELM, ECBO, VMD ultra short term hybrid
Lu P. et al. [94] Wind SVM, ELM hybrid

Ahmad T. et al. [226] PV, Wind KNN, Ensemble hybrid
An Y.-J. et al. [227] PV LSTM
Singh U. et al. [84] Wind Ensemble, KNN short term

Chahboun S. et al. [39] PV Ensemble, SVM, ANN
Wu D. et al. [40] PV ELM, SVM short term hybrid
Yin H. et al. [81] Wind GAN, Evolutionary

Xiang W. et al. [228] Wind DT
An G. et al. [91] Wind ELM, SSA ultra short-term

Verma A. et al. [73] PV MLP, Ridge regression, DT,
Ensemble, SVM, KNN

Shams M.H. et al. [229] PV, Wind Ensemble, ANN, LSTM,
SVM

Matsumoto T. et al. [230] PV GAM
Zhang Q. et al. [231] Wind LSTM short term
Lin W.-H. et al. [232] Wind LSTM, GRU, CNN long-term

Zhang C.-Y. et al. [233] Wind SVM, PSO
Qin J. et al. [234] Wind ANN, SVM short term

Massaoudi M. et al. [235] PV ELM, Ensemble, KNN short term
Chen H. et al. [236] Wind ANN, LR, Ensemble ultra-short-term

Micha G.O. et al. [237] PV Ensemble hybrid
Xu H. et al. [238] Wind ELM

Chen H. et al. [239] PV LSTM
Li J. et al. [240] Wind SVM short term hybrid

Salman D. et al. [241] Wind RNN, SVM, Hybrid short-term hybrid
Mohana M. et al. [242] PV ANN, Ensemble

Zeng L. et al. [243] Wind ELM short term
Ramkumar G. et al. [61] PV ELM short term

Baran S. et al. [244] Wind Ensemble
Dimitropoulos N. et al. [137] PV Autoencoder short term

Pu S. et al. [63] PV Hybrid hybrid
Sessa V. et al. [112] Hydro Ensemble

Table A3. An overview and comparative analysis of articles from 2022.

Article Type Used Tools Time Horizon Comment

Theocharides S. et al. [58] PV Hybrid day-ahead hybrid
Rodríguez F. et al. [245] PV ANN intra hour term

El Bourakadi D. et al. [92] Wind Autoencoder, ELM short term

Ribeiro M.H.D.M. et al. [129] Wind Ensemble very short-term and
short-term

Keynia F. et al. [246] Wind LSTM the next 24 h prediction hybrid
Guo H. et al. [133] Wind ELM hybrid

Simeunovic J. et al. [247] PV LSTM, CNN short-term

Visser L. et al. [131] PV Regression, SVM, Ensemble,
Physical based techniques day-ahead

Sasser C. et al. [134] Wind Other
Akhter M.N. et al. [248] PV Hybrid an hour ahead hybrid

Zazoum B. [47] PV SVM
De Caro F. et al. [249] Wind Ensemble multi-step ahead
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Table A3. Cont.

Article Type Used Tools Time Horizon Comment

Abubakar Mas’ud A. [250] PV KNN, DT
He B. et al. [251] Wind CNN, LSTM short term hybrid

Luo X. et al. [252] PV TL, LSTM hybrid

Zhang M. et al. [253] Wind ANN, LSTM, NARX,
Persistence short-term

Pretto S. et al. [55] PV Ensemble day-ahead
Huang H. et al. [254] Wind Echo state networks short-term

Drakaki K.-K. et al. [116] Hydro Other day-ahead
Shi J. et al. [255] PV ELM, Autoencoders

Huang X. et al. [135] PV Hybrid short-term hybrid
Piotrowski P. et al. [256] Wind Ensemble, Hybrid one-day-ahead hybrid

Özen C. et al. [79] Wind Ensemble day-ahead
Li H. et al. [128] Wind ELM short term
Li Z. et al. [132] Wind SVM
Wood D.A. [257] Wind CNN, Ensemble
Liu Y. et al. [258] Wind ELM

Chen X. et al. [259] PV ELM, PSO short term
Ding Y. et al. [97] Wind ELM short term hybrid

Zhang S. et al. [113] Hydro Hybrid hybrid
Tovilović D.M. et al. [260] PV Ensemble

Zhang H. et al. [48] PV ELM, Fuzzy hybrid
Li C. et al. [93] Wind Ensemble short term

Nespoli A. et al. [261] PV Ensemble, ANN short-term hybrid
Xiao B. et al. [53] PV SVM

Markovics D. et al. [130] PV ANN
Yadav H.K. et al. [72] PV ANN, Hybrid 24-h-ahead hybrid

Akhter M.N. et al. [262] PV LSTM short-term, an
hour-ahead hybrid

Alkesaiberi A. et al. [15] Wind SVM, Ensemble
Yin S. et al. [263] Wind Other

Chen W.-H. et al. [56] PV Hybrid hybrid
Wentz V.H. et al. [71] PV LSTM, ANN short-term
Wang Q. et al. [264] PV RVM short-term hybrid

Ye J. et al. [265] Wind ELM, Ensemble short term hybrid
Shin W.-G. et al. [266] PV ANN

Piotrowski P. et al. [70] PV Hybrid very-short-term hybrid
Li J. et al. [267] Wind ELM, SVM short term

Suárez-Cetrulo A.L. et al. [268] Wind Ensemble Short -term
Bai M. et al. [269] PV CNN, LSTM
Tian W. et al. [270] Wind ANN, IFOA hybrid

Li H. [76] Wind DBN short term

Pombo D.V. et al. [68] PV CNN, Ensemble, LSTM,
SVM, Hybrid, Persistence short term hybrid

Zheng X. et al. [99] Wind ELM, LSTM hybrid
Xiong X. et al. [80] Wind Ensemble short term
Wan J. et al. [271] Wind Ensemble, ANN short-term

Wang M. et al. [57] PV ELM short-term
Galphade M. et al. [272] Wind Ensemble

Herath D. et al. [90] Wind Genetic long-term
Chen H. et al. [273] Wind Ensemble day-ahead

Krechowicz M. et al. [49] PV SVM, Ensemble, ANN
Sun Y. et al. [274] Wind Attention network, LSTM

Wang L. et al. [275] Wind M2TNet short-term
Gunadin I.C. et al. [276] Wind ELM

Zhong W. et al. [277] Wind ELM short term hybrid
An G. et al. [78] Wind ELM, PSO short term

Ghenai C. et al. [278] PV ANN
Zhou Y. et al. [69] PV Hybrid short-term hybrid
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Table A3. Cont.

Article Type Used Tools Time Horizon Comment

Peng X. et al. [279] Wind ELM short term
Xu T. et al. [280] Wind ELM

Amato F. et al. [281] Wind ELM

Mayer M.J. [282] PV
hybrid method based on the
most physically-calculated

predictors, ANN
hybrid

Kuzlu M. et al. [283] PV ANN
Yadav O. et al. [284] PV ANN
Wang L. et al. [285] Wind Attention network short term

Abdelmoula I.A. et al. [286] PV Ensemble
Guo X. et al. [287] PV Ensemble short-term

Huang Y. et al. [288] Wind Hybrid ultra-short-term hybrid

Rosa J. et al. [96] Wind RNN, Ensemble short-term,
medium-term hybrid

Sattar Hanoon M. et al. [14] Hydro ANN, SVM
Meng A. et al. [289] Wind ELM hybrid

Ma W. et al. [290] PV SSA, RVM ultra-short-term (4 h
ahead) hybrid

Zhou X. et al. [291] Wind LSTM
Zhou H. et al. [74] Wind ANN hybrid

Wang N. et al. [292] Wind Enemble short-term
Mishra S.P. et al. [293] Wind ELM short term hybrid

Zjavka L. [294] PV ANN intra day ahead, day
ahead hybrid

Hu D. et al. [295] PV ELM hybrid
Yu R. et al. [296] Wind LSTM

Abdellatif A. et al. [297] PV Ensemble Short-term
Zhou Q. et al. [298] Wind ELM short term
Cui W. et al. [299] Wind Ensemble
Qiao B. et al. [27] Wind HFCM, IVMDHFCM

Yang S. et al. [300] Wind LSTM, ELM, IWOA ultra short-term hybrid
Pang C. et al. [301] Wind Ensemble short term
Balraj G. et al. [302] PV VMD-ALODLFTSVM hybrid

Guo N.-Z. et al. [303] Wind ANN short term
Yan M. et al. [42] PV ELM short term hybrid

Liu Y. [304] PV GRU, Clustering short-term
He R. et al. [88] Wind SVM, ANN

Zhang W. et al. [305] PV CNN,LSTM short-term

Essam Y. et al. [44] PV ANN, Ensemble, LSTM, DT,
LSTM

Polo A. [306] PV SVM short-term, long-term
Kim J. et al. [89] Wind ANN, KNN, Ensemble, SVM 1 h
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4. Kuźniak, R.; Pawelec, A.; Bartosik, A.; Pawelczyk, M. Determining the Power and Capacity of Electricity Storage in Cooperation
with the Microgrid for the Implementation of the Price Arbitration Strategy of Industrial Enterprises Installation. Energies 2022,
15, 5614. [CrossRef]
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