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Abstract: Battery management systems depend on open circuit voltage (OCV) characterization for
state of charge (SOC) estimation in real time. The traditional approach to OCV-SOC characterization
involves collecting OCV-SOC data from sample battery cells and then fitting a polynomial model
to this data. The parameters of these polynomial models are known as the OCV-parameters, or
OCV-SOC parameters, in battery management systems and are used for real-time SOC estimation.
Even though traditional OCV-SOC characterization approaches are able to abstract the OCV-SOC
behavior of a battery in a few parameters, these parameters are only applicable in high precision
computing systems. However, many practical battery applications do not have access to high-
precision computing resources. The typical approach in a low-precision system is to round the
OCV-parameters. This paper highlights the perils of rounding the OCV parameters and proposes
an alternative OCV-SOC table. First, several existing OCV-SOC parameters are compared in terms
of their expected system requirements and accuracy losses due to rounding. Then, a systematic
optimization-based approach is introduced to create an OCV-SOC table that is robust to rounding.
A formal performance evaluation metric is introduced to measure the robustness of the resulting
OCV-SOC table. It is shown that the OCV-SOC table obtained through the proposed optimization
approach outperforms the traditional parametric OCV-SOC models with respect to rounding.

Keywords: battery management system; OCV-SOC characterization; state of charge estimation;
polynomial fitting; hardware implementation of algorithms; memory constraints; sampling of
functions

1. Introduction

Li-ion rechargeable battery packs have been widely used in present day electric vehi-
cles (EVs). To maintain the safety, efficiency, and reliability of the EV system, battery packs
need to be constantly monitored. A battery management system (BMS) [1–3] monitors the
battery pack through instantaneous voltage, current, and temperature measurements and
performs various control operations. The BMS needs to accurately estimate crucial diagnos-
tic parameters of a battery pack, such as—battery impedance [4,5], battery capacity [6–8],
state-of-charge (SOC) [9,10], state-of-health (SOH) [11,12], time to shut down, and the
remaining useful life (RUL) [13]. The battery fuel gauge (BFG) is an important part of the
BMS. It estimates the SOC, SOH and the RUL of the battery pack based on continuous
measurements of current, terminal voltage and temperature from the battery.

Battery SOC estimation is the most important function of a BFG and is an active area of
research [14,15]. The SOC of a battery can be computed through Coulomb counting [16] or
though voltage-lookup [17–23] based method. Both of these methods have limitations: the
Coulomb counting approach requires the knowledge of battery capacity and the initial SOC,
whereas the voltage-based approach suffers from modeling errors. Modern BFGs attempt
SOC estimation by combining both Coulomb counting and voltage-lookup approaches by
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utilizing non-linear filtering techniques [24–28]. The present paper is focused on voltage-
based approach to SOC estimation.

The voltage-based approach to SOC estimation exploits the monotonic relationship
between the open circuit voltage (OCV) and the SOC of the battery. By measuring the
voltage across the battery terminals, if the OCV-SOC relationship is already known, the
SOC can be computed—or ‘looked up’. In general, the battery OCV-SOC relationship
is parametrized through non-linear functions [17]. The OCV-SOC relationship can be
derived through theoretically intense electrochemical approaches. However, the most
practical approach is to obtain the OCV-SOC parameters though empirical means. Empirical
approaches use data collected in a laboratory setting to obtain the OCV-SOC parameters.
In [17], several OCV-SOC models and various OCV parameter estimation (i.e., curve
fitting) approaches are summarized. Figure 1 summarizes the empirical approach to
OCV-SOC characterization.

Offline data 
collection Curve-fitting OCV-SOC 

parameters

Figure 1. Empirical OCV-SOC characterization.

Figure 2 shows a generic illustration explaining how the offline estimated OCV-SOC
parameters are used in battery SOC estimation. The OCV-SOC parameters, estimated
using the offline approach, summarized in Figure 1, needs to be stored in memory for
SOC estimation.

OCV-SOC 
parameters

OCV lookup
SOC  

estimate

Measured 
voltage

Figure 2. SOC estimation using OCV lookup.

1.1. Computing System Requirements

Figure 3 shows two different configurations of a battery management system, which
consists of BFG only in this case, within a device. In the first case, shown in Figure 3a,
the BFG lies within the operating system. In this case, the BFG algorithm, which is part
of the operating system, enjoys a high-precision (i.e., high bit) computing environment.
In the second case, shown in Figure 3b, the BFG lies outside the operating system. Many
practical battery management systems fall under this category [29]. In this case, the
BFG cannot afford the same high-precision computing environment available within an
operating system.
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(a) (b)

Figure 3. Types of BFG installation in a system. (a) BFG within OS. (b) BFG outside OS.

1.2. Rounding Errors

Table 1 lists various OCV-SOC models along with their model parameters reported
in the literature. In order to perform SOC estimation, a BFG needs to store the OCV-SOC
model parameters. The range of parameter values, indicated by the lowest and highest
values in Table 1, is an indicator of system requirements. The range of OCV parameters
needs to be compared with the range of SOC ∈ [0, 1] and the range of OCV ∈ [3 V, 4.2 V]
that it represents. Similarly, the storage and processing of the OCV parameters is an
important indicator of performance. The combined + 3 model needs a 30-bit system to
store its parameters without any approximations—which is very significant for many low
cost BFGs.

In order to fit the parameters to the available space in low cost systems, it is a common
practice to round them. Figure 4 shows the resulting OCV-SOC curve after rounding the
parameters to lower significant numbers for some of the OCV-SOC models listed in Table 1.
It is evident from Figure 4 that the OCV-SOC parametric representation of a battery may be
significantly altered by rounding. This substantiates that approximating the parameters
have serious effects on the resulting OCV-SOC curve for some models, whereas certain
model parameters are robust to rounding. Table 1 and Figure 4 highlight the problems with
existing OCV-SOC models in low-cost environments:

(a) Existing OCV-SOC models require high-bit computing resources for parameter storage
and processing, and

(b) Existing model predictions are susceptible to significant errors when the model pa-
rameters are rounded.

It is also noteworthy that existing OCV-SOC models listed in Table 1 rely on special
functions, such as logarithmic and trigonometric functions. Most low-cost computing
systems are unable to accurately compute these functions to the highest precision needed
and approximations must be made. In [17], the errors involved in the numerical implemen-
tation of some of these functions are analyzed and alternate approaches are discussed for
the implementation of OCV-SOC models in computationally restrictive environments.
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Table 1. Overview of existing models in the literature.

Reference Model Parameters Lowest
Parameter Value

Highest
Parameter Value

System
Requirement

(Bits)

Combined [24]
k0 +

k1
s + k2s

+k3ln(s) + k4ln(1−
s)

k0 = −1.041084, k1 = −0.809928, k2 = 7.128030, k3 = −4.534755,
k4 = 0.318780 k3 = −4.534755 k2 = 7.128030 25

Combined + 3 [17]
k0 +

k1
s + k2

s2 + k3
s3

+ k4
s4 + k5s + k6ln(s)

k0 = −9.081846, k1 = 103.087009, k2 = −18.184590, k3 = 2.062476,
k4 = −0.101779, k5 = −76.603691, k6 = 141.199419, k7 = −1.116841 k5 = −76.603691 k6 = 141.199419 30

Polynomial [30] p1 + p2s + p3s2

+p4s3 +
p5
s +

p6
s2

p1 = −3.882237, p2 = 15.883339, p3 = −15.742669, p4 = 6.780481,
p5 = 1.737813, p6 = −0.153465 p3 = −15.742669 p2 = 15.883339 26

Sum of sine functions [31]
a1sin(b1s + c1)

+a2sin(b2s + c2)
+a3sin(b3s + c3)

a1 = 4.848, a2 = 7.715, a3 = 6.655,
b1 = 1.512, b2 = 4.756, b3 = 4.928,
c1 = 0.5841, c2 = 1.99, c3 = 5.038

a2 = 7.715 c1 = 0.5841 16

Double exponential &
quadratic [31–33]

a1exp(b1s)
+a2exp(b2s) + cs2 a1 = 3.679, a2 = −0.2528, b1 = −0.1101, b2 = −6.829, c = 0.9386 b2 = −6.829 a1 = 3.679 17

Fractional [34] k0 + k1s + k2s2

−k3Eα,β(−k4sα)
k0 = 1.588, k1 = 4.921, k2 = −3.073, k3 = −1.051, k4 = 13.31,

α = 1.655, β = 1.455 k2 = −3.073 k4 = 13.31 16

Polynomial & exponential [35] k0 + k1s + k2s2

+k3s3 + k4ek5s
k0 = 3.685, k1 = 0.2156, k2 = −0.1178, k3 = 0.3201, k4 = −1.031,

k5 = −35 k5 = −35 k0 = 3.685 16

Linear, logarithmic &
exponential [36]

a + b(−lns)m + cs
+den(s−1)

a = 3.875, b = −0.3351, c = −0.5332, d = 0.8315,
m = 0.6537, n = 0.6 c = −0.5332 a = 3.875 18

8th order polynomial [37,38]
k0 + k1s + k2s2

+k3s3 + k4s4 + k5s5

+k6s6 + k7s7 + k8s8

k0 = 2.85, k1 = 4.80, k2 = −17.8, k3 = 38.59, k4 = 4.91, k5 = −210.52,
k6 = 433.98, k7 = −368.45, k8 = 115.81 k7 = −368.45 k6 = 433.98 19

Weng’s model [39]

k0 + k1
1

1+eα1(s−β1)

+k2
1

1+eα2(s−β2)

+k3
1

1+eα3(s−1)

+k4
1

1+eα4s + k5s

k0 = 3.4002, k1 = 0.0080, k2 = 0.0785, k3 = −0.2150, k4 = −1.3032,
k5 = 0.0891, α1 = −14, α2 = −18, α3 = 28, α4 = 40 α2 = −18 α4 = 40 17

[40]
k0 + k1(1− eα1s)

+k2(1− e
α2

1−s ) + k3s
Not available - - -
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Figure 4. Rounding effects on accuracy in parametric models—(a) combined, (b) combined + 3,
(c) polynomial, and (d) sum of sine functions (e) exponential.

1.3. Contribution of the Paper

The objective of this paper is to present OCV-SOC tables as an alternative to the model
based OCV-SOC characterizations summarized in Table 1. Specifically, this paper presents
the following contributions:

1. For the first time, this paper relates the accuracy of SOC estimation to the nu-
merical stability of the estimated OCV-SOC parameters due to a very common
practice: rounding.

2. The OCV-SOC table formulation is introduced as an objectively defined optimiza-
tion problem.

3. An approach is presented to formally quantify the performance of an OCV-SOC table:
similarity metrics between a tabular OCV model and a hi-fidelity model is proposed
as the performance metric of a particular tabular OCV model.

4. Three new approaches are presented to create OCV-SOC tables based on
hi-fidelity models.
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5. The resulting three tables are evaluated based on the metrics developed in this paper.

In order to make use of the proposed approach, the OCV-SOC parameters need to
be first estimated offline using data collected in a high precision computing environment,
such as a personal computer. After that, the proposed algorithms are employed to convert
the OCV-SOC parameters into tabular OCV-SOC models. The tabular OCV-SOC models
are created in a way that they can be stored and processed in much simpler computing
environments, such as low-bit microcontrollers. It is also noteworthy that, in typical Li-ion
batteries, the OCV ranges between 3 V and 4.2 V, whereas the SOC ranges between 0 and 1.
The mentioned OCV-SOC range is true for all the models listed in Table 1. However, they
are a much smaller range compared to the range of OCV-SOC parameters listed in Table 1.
The proposed OCV-SOC table can be used for SOC estimation using state-space techniques,
such as the extended Kalman filter [24] without requiring any additional parameters to be
stored—since the change in SOC is much smaller between samples, linear interpolation is
adequate to compute the required Jacobian for the EKF-based SOC estimation using the
tabular OCV-SOC models.

The rest of the paper is organized as follows—Section 2 describes the problem of
finding a non-uniform sampling of the OCV-SOC curve such that the sampling error is
minimized. In Section 3, different approaches to developing a tabular OCV model are
presented. Tabular approaches developed are implemented on the combined + 3 OCV
model, which is discussed in Section 4. Results are presented in Section 6. Section 7
concludes the paper.

2. Problem Description

Consider a function f (x) that is defined in x ∈ [a, b]. The goal is to represent this
function at n discrete points, i.e.,

g(x) =
n

∑
i=1

f (x)δ(x− xi) i = 1, . . . , n (1)

such that the sampling error is minimized. Let us define the sampling error as the following

e(xi) =
∆i
2
( f (xi) + f (xi+1))−

∫ xi+1

xi

f (x)dx i = 2, . . . , n (2)

where

∆i = xi+1 − xi (3)

Figure 5 shows an example of sampling error when ∆i = xi+1 − xi = ∆, i.e., uni-
form sampling.

x1 x2 x3 x4 x5               x6 x7

f(x
)

x

Figure 5. Uniform sampling: It can be seen that uniform sampling error (samples shown in dotted
blue) increases with the magnitude of the curvature (function shown in red).
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The objective of this paper is to find a non-uniform sampling of the function such that
the sum of the squared sampling errors in (2) is minimized. That is, for a given n

X̂ = arg min
X

n

∑
i=1

e(xi)
2 (4)

where X = {x1, x2, . . . xn}.

3. Solution Approaches

In this section, we describe several approaches to obtaining the samples.

3.1. Cumulative Approach

Let us define the area of f (x) as

I f =
∫ xn=b

x1=a
f (x)dx (5)

Of the n points, x1 = a and xn = b are preassigned. This leaves us with L = n− 2 points to
be assigned. The first unknown sample x2 is selected such that∫ x2

a
f (x)dx =

I f

L + 1
(6)

The subsequent samples xi, i = 3, . . . , n− 1, are selected such that∫ xi

xi−1
f (x)dx =

I f

L + 1
, i = 3, . . . , n− 1 (7)

Evidently, the last sample satisfies,∫ xb

xn−1

f (x)dx =
I f

L + 1
(8)

Figure 6 shows an example of cumulative tabular approach for n = 6 points.

Pre-assigned points

Assigned through 
cumulative approach

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5

𝑥2 𝑥3 𝑥4 𝑥5𝑥1 = 𝑎 𝑥6 = 𝑏

𝑥1 𝑥6

Find 𝑥2, 𝑥3… 𝑥5 such that 𝐴1 = 𝐴2 = ⋯ = 𝐴5

𝑥2, 𝑥3… 𝑥5

𝑓(𝑥)

𝑥

Figure 6. Pictorial representation of cumulative approach for n = 6 points.

Algorithm 1 shows the procedural steps for placing table support points in the cumu-
lative approach.



Energies 2022, 15, 9142 8 of 23

Algorithm 1 Cumulative approach.

1: Compute I f defined in (5)
2: Compute the first unknown sample according to (6)
3: Compute all samples until n− 1 as defined in (7)

3.2. Inflection Point Approach

The curvature of a function is defined as

C(x) =
d2 f (x)

dx2 (9)

This approach assumes that the sign of the curvature changes at least once in the interval of
x ∈ [a, b]. This is a valid assumption for all the OCV-SOC models. Let us assume, without
loss of generality, that the sign of curvature changes at k (≥1) points and denote these
k values as xi1 , xi2 , . . . , xik . That is, xi = {xi1 , xi2 , . . . , xik} will satisfy

C(xij) =
d2 f (x)

dx2

∣∣∣∣
x=xij

= 0, j = 1, 2, . . . , k (10)

These k values of xi are denoted as the “inflection points” or “critical points” from now
on. The nature of the curve significantly changes at critical points, that is the function
changes from convex to concave when the sign of the curvature changes from positive to
negative, and vice versa; hence, one support point is assigned to each of the k critical points.
Additionally, one support point is assigned, each at the start and end of the interval [a, b],
i.e., out of the n available support points, k + 2 points—x1 = a, xn = b and the k values of
xi—are preassigned. These k + 2 points are denoted as the “preassigned points” from now
on. This leaves us with n− k− 2 points to be assigned. In the remainder of this section,
two different approaches are discussed to assign these remaining support points. Each of
these two approaches consists of the following two steps:

(a) Find number of support points to be allocated to each of the k + 1 sections created by
the k inflection points.

(b) Placement of support points in each section.

The following notations will be used to describe these approaches:

r =
⌊

n− k− 2
k + 1

⌋
(11)

m = mod
(

n− k− 2
k + 1

)
(12)

where b·c denotes the floor operation and mod(·) denotes the modulus operation. Here,
one can see that

n− k− 2 = r(k + 1) + m (13)

The absolute area of the curvature in each of the k + 1 sections is defined as

Aj =
∫ xij+1

xij

|C(x)|dx j = 0, 1, . . . , k (14)

where xi0 = a, xik+1
= b, and xi1 , xi2 , . . . , xik are defined according to (10). It is to be noted

that xi0 = a and xik+1
= b are not the critical points.

The next two subsections describe two different approaches to allocate these remaining
r(k + 1) + m support points.
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3.2.1. Approach-1 Based on Equal Distance in Each Section

In this approach, the goal is to place the n− k− 2 support points equally between the
k inflection points in each of the k + 1 sections.
(a) Number of support points:

1. Each section gets r support points.
2. The remaining m support points are allocated as follows:

If m ≤ 3, the m support points are assigned to section j such that

Aj > Ai ∀i = {0, 1, . . . , k}, i 6= j (15)

Otherwise, if m > 3 and m is even, m/2 support points are assigned to each of section
j1 and section j2 such that

Aj1 , Aj2 > Ai ∀i = {0, 1, . . . , k}, i 6= j1, i 6= j2 (16)

Otherwise, if m > 3 and m is odd, dm/2e support points are assigned to section j1
such that

Aj1 > Ai ∀i = {0, 1, . . . , k}, i 6= j1 (17)

bm/2c support points are assigned to section j2 such that

Aj2 > Ai ∀i = {0, 1, . . . , k}, i 6= j1, i 6= j2 (18)

(b) Placement of support points: Once the number of points in each section is allocated, the
points in each section are then placed equally distant within that section. Let us assume that
section j, which is bounded by xij and xij+1 , was assigned L support points. The location of
these L support points can be written as

xl = xij + d ∗ l, l = 1, 2, . . . , L (19)

where

d =
xij+1 − xij

L + 1
(20)

where the distance in each section is determined by the difference between the preassigned
points of that section divided by the total number of points plus one of that section.

Figure 7 explains allocation and placement of tabular support points by the inflection-1
approach for the example of a single inflection point of f (x).

Algorithm 2 shows the procedural steps for allocating and placing table support points
in the inflection-1 approach.

3.2.2. Approach-2 Based on Equal Area in Each Section

In this approach, the goal is to place the n− k− 2 support points as a ratio of the area
under the curvature defined in (14).
(a) Number of support points:

1. Each section j gets rj support points as follows

rj =

⌊
Aj

∑k
i=0 Ai

⌋
× (n− k− 2) (21)

where j = 0, . . . , k and the remaining number of points m is given by

m = n− k− 2−
k

∑
j=0

rj (22)

2. The remaining m support points are allocated as follows: The section with the highest
area under the curvature gets one point; next, the section with the second highest area
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under the curvature gets one point; this is continued until all the remaining m points
are assigned to a section.

(b) Placement of support points: Once the number of points in each section is allocated, the
points in each section are then placed based on equal area sampling in each of those sections.
The approach to assign support points for each section is very similar to the approach
described in Section 3 with one difference: In Section 3, area under f (x) is considered; here,
the area under the curvature C(x) is considered.

Pre-assigned points

Inflection point

𝑥1 = 𝑎 𝑥𝑛 = 𝑏𝑥𝑖

𝑥1 ,

• Assign (𝑛 − 3)/2 points 𝑥2, … , 𝑥𝑖−1 to the left of 𝑥𝑖
• Assign (𝑛 − 3)/2 points 𝑥𝑖+1, … , 𝑥𝑛−1 to the right of 𝑥𝑖
• Follow Algorithm 2 to assign remaining points (if any) 
• Place points 𝑥2, … , 𝑥𝑖−1 such that 𝑥2 − 𝑥1 = 𝑥3 − 𝑥2 =

⋯ , 𝑥𝑖 − 𝑥𝑖−1
• Place points 𝑥𝑖+1, … , 𝑥𝑛−1 such that 𝑥𝑖+2 − 𝑥𝑖+1 =

𝑥𝑖+3 − 𝑥𝑖+2 = ⋯ , 𝑥𝑛 − 𝑥𝑛−1

𝑓(𝑥)

𝑥

𝑥𝑖

𝑥𝑛

𝑥𝑖−1 𝑥𝑖+1 𝑥𝑛𝑥2

Assigned through 
inflection-1 approach

𝑥2, … , 𝑥𝑖−1
𝑥𝑖+1, … , 𝑥𝑛−1

…… ……

Figure 7. Pictorial representation of inflection-1 approach considering one inflection point.

Algorithm 2 Inflection-1 approach.

(I) Allocation of support points
1: Compute C(xij), i.e., determine k inflection points of (10)
2: Compute r defined in (11)
3: Allocate r points to each of the k + 1 sections created by the k inflection points
4: Compute the remaining points, m, defined in (12)
5: if m ≤ 3 then
6: assign all m points to section j s.t. Aj > Ai ∀i = {0, 1, . . . , k}, i 6= j ; where Aj is

defined in (14)
7: else
8: if m is even then
9: assign m/2 points each to sections j1, j2 s.t. Aj1 , Aj2 > Ai ∀i = {0, 1, . . . , k},

i 6= j1, i 6= j2
10: else
11: (a) assign dm/2e points to section j1 s.t. Aj1 > Ai ∀i = {0, 1, . . . , k}, i 6= j1
12: (b) assign bm/2c points to section j2 s.t. Aj2 > Ai ∀i = {0, 1, . . . , k}, i 6= j1,

i 6= j2
13: end if
14: end if

(II) Placement of support points
15: For each section, place support points according to the distance d defined for that

section in (20).



Energies 2022, 15, 9142 11 of 23

Figure 8 explains the allocation and placement of tabular support points by the
inflection-2 approach for the example of a single inflection point of f (x).

• Assign 𝑟0 points to the left of 𝑥𝑖 ;

• Assign 𝑟1 points to the right of 𝑥𝑖 ;

• Follow Algorithm 3 to assign remaining points 
(if any) 

• Place 𝑟0 points cumulatively (follow Figure 6.)
• Place 𝑟1 points cumulatively (follow Figure 6.)

Pre-assigned points

Inflection point

𝑥1 = 𝑎 𝑥𝑛 = 𝑏𝑥𝑖

𝑥1,

𝑓(𝑥)

𝑥

𝑥𝑖

𝐴0 𝐴1

Area of 
section = 

𝑟0 =
𝐴0

𝐴0 + 𝐴1
(𝑛 − 3)

Area of 
section = 

𝑟1 =
𝐴1

𝐴0 + 𝐴1
(𝑛 − 3)

𝑥𝑛

Assigned through 
inflection-2 approach

Figure 8. Pictorial representation of inflection-2 approach considering one inflection point.

Algorithm 3 shows the procedural steps for allocating and placing table support points
in the inflection-2 approach.

Algorithm 3 Inflection-2 approach.

(I) Allocation of support points
1: Compute C(xij), i.e., determine k inflection points of (10)
2: Compute rj defined in (21)
3: Allocate rj points to each jth section, where j = 0, . . . , k
4: Compute the remaining points, m, defined in (22)
5: Place each point in m to section j from the largest to the least area.

(II) Placement of support points
6: For each section, place support points based on the cumulative approach in Algorithm 1

In Section 4, the approaches presented in this section are elaborated using a particular
OCV-SOC curve.

4. Implementation on OCV Model

In this section, the combined + 3 model from Table 1 is taken as the reference OCV-SOC
model to implement the tabular approaches presented in Section 3. The combined + 3
OCV-SOC model is given by,

V◦(s) =k0 +
k1

s
+

k2

s2 +
k3

s3 +
k4

s4

+ k5s + k6 ln(s) + k7 ln(1− s) (23)

where it is assumed that the OCV parameters k0, k1, . . . k7 are obtained by linearly scaling
s ∈ [0, 1] to lie between [ε, 1− ε] [41]. The implementation detailed below assumes the
parameters of the combined + 3 model as those provided in Table 1 with ε = 0.175.

4.1. Cumulative Approach

The area under the OCV-SOC curve, shown in Figure 9a, is given by
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I f =
∫ 1−ε

ε
V◦(s)ds (24)

=

[
k0s + k1 ln(s)− k2

s
− k3

2s2 −
k4

3s3 + k5
s2

2

+ k6(s ln(s)− s)− k7((1− s) ln(1− s)− (1− s))

]1−ε

ε

= 2.5073 (25)

Out of the n available support points, x1 = ε and xn = 1− ε are preassigned. The remaining
L = n− 2 points are found as follows. The first unknown support point x2 can be found
such that ∫ x2

x1=ε
V◦(s)ds =

[
k0s + k1 ln(s)− k2

s
− k3

2s2 −
k4
3s3 + k5

s2

2

+ k6(s ln(s)− s)− k7((1− s) ln(1− s)− (1− s))

]x2

ε

=
2.5073
L + 1

(26)

Similarly, the second unknown point x3 can be found such that∫ x3

x2

V◦(s)ds =
2.5073
L + 1

(27)

By continuing in a similar fashion, the (n− 1)th point can be found as∫ xn−1

xn−2

V◦(s)ds =
2.5073
L + 1

(28)

The nth point, xn = 1− ε, automatically satisfies∫ 1−ε

xn−1

V◦(s)ds =
2.5073
L + 1

(29)

A demonstration of this approach for different numbers of support points n is pre-
sented in Section 6.

4.2. Inflection Point Approach
In this approach, we have to find the points where the curvature of the OCV model,

C(s) = d2V◦(s)
ds2 = 0 and find locations where it changes sign.

d2V◦(s)
ds2 =2

k1
s3 + 6

k2

s4 + 12
k3

s5 + 20
k4
s6 −

k6

s2 −
k7

(1− s)2 = 0 (30)

There are six roots of the equation above, however only three are in the range,
s ∈ [ε, 1− ε]. Figure 9 represents the curvature of the OCV model considered and the
inflection points are marked. The inflection points are thus, s = [0.2334, 0.2773, 0.3995] in
the range [ε, 1− ε] . These three inflection points create four sections in the OCV-SOC curve.
The inflection points, along with the points at s = ε and s = 1− ε, form the k + 2 = 5
preassigned points, [ε, 0.2334, 0.2773, 0.3995, 1− ε]. With the identified inflection points,
approaches as discussed in the previous section help in determining the support points for
the tabular OCV model.

4.2.1. Approach-1 Based on Equal Distance

1. The first step is to allocate the number of points to each of the four sections, given
the total number of support points, n. Denote the number of points allocated to each
section by an array, say

L = [L0, L1, L2, L3] (31)
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where each Lj, j = 0, 1, 2, 3 is determined by the logic discussed in Section 3.2.1.
2. The distance between the points in each section is then the difference between the

preassigned points of that section divided by the number of points plus one of the
corresponding section, which is

[d0, d1, d2, d3] =

[
0.2334− ε

L0 + 1
,

0.2773− 0.2334
L1 + 1

,

0.3995− 0.2773
L2 + 1

,
(1− ε)− 0.3995

L3 + 1

]
(32)

3. Points in the first section are then placed at,

xl = ε + d0l (33)

where l = 1, . . . , L0, while in the second section, points are placed at,

xl = 0.2334 + d1l (34)

where l = 1, . . . , L1.
4. Similarly, points in the third and fourth section are placed accordingly.
5. Thus, x(1 : n) and the corresponding OCV at those points form the support (SOC,

OCV) pairs of the tabular OCV model.

(a) (b)

(c)

Figure 9. OCV model and its first two derivatives—(a) OCV model-V◦(s), (b) first derivative-V′◦(s),
and (c) second derivative-V′′◦ (s).

4.2.2. Approach-2 Based on Equal Area

1. The first step is to allocate the number of points to each of the four sections, given
the total number of support points, n. Denote the number of points allocated to each
section as in (31).

2. The absolute area of each of the sections is determined as in (14). Denote the absolute
area of each of the sections as [A0, A1, A2, A3].
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3. The points in the first section can thus be determined as∫ xi+1

xi

C(x)dx =
A0

L0 + 1
, i = 1, . . . , L0 (35)

while in the second section, points are determined as∫ xi+1

xi

C(x)dx =
A1

L1 + 1
, i = 1, . . . , L1 (36)

4. Similarly, points in the third and fourth section are placed accordingly.
5. Thus, x(1 : n) and the corresponding OCV at those points form the support (SOC,

OCV) pairs of the tabular OCV model.

5. Experimental Details

The proposed approach is demonstrated using data collected from four commercially
available Li-ion batteries.

5.1. Batteries Tested

The model number of the battery is Samsung-30T INR21700. One of the four identical
cells is shown in Figure 10 and the features of the cell is summarized in Table 2. The
four tested battery cells are labeled ‘C1202’, ‘C1203’, ‘C1204’, and ‘C1205’ and will be
referred using these labels in the remainder of this paper.

Figure 10. Samsung-30T INR21700 Li-ion battery.

5.2. Testing Equipment

The data from batteries is collected using Arbin battery cycler (LBT21084, Arbin Instru-
ments, College Station, TX, USA). It has 16 independently controlled channels, each with
a voltage range of 0–5 V and a current range of ±10 A. Four channels were used to collect
OCV-SOC data simultaneously from four cells at room temperature. The experimental
setup used for testing the batteries is shown in Figure 11.
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Table 2. Specifications of Li-ion battery.

Specification Value (Unit)

Nominal capacity 3000 mAh
Max. continuous discharge current 35 A
Nominal voltage 3.6 V
Height 70 mm
Diameter 21 mm
Weight 70 g
Internal resistance 15 m Ω

Figure 11. Experimental setup for battery testing.

5.3. OCV-SOC Characterization Test

A constant current–constant voltage (CC-CV) charging regime is followed to fully
charge the battery before conducting an OCV-SOC test. A low current slow discharge–
charge of the battery is pursued to perform the OCV-SOC test.

1. A constant current is supplied to the battery until the terminal voltage reaches 4.2 V.
2. The terminal voltage is maintained at 4.2 V for constant voltage charging until the

current drops to 0.01 A.
3. The battery is rested for one hour.
4. A constant current of C/30 is supplied to slowly discharge the battery for thirty hours

until the SOC reaches 0%. A rest of 1 h follows, before the battery is charged back
again by C/30 for thirty hours until the SOC reaches 100%.

The battery terminal voltage and current data recorded by Arbin cycler during the
OCV experiment is shown in Figure 12. The data is then processed to obtain the typical
OCV-SOC curve represented by the combined + 3 model in (23).

5.4. OCV Parameter Estimation

The terminal voltage, Vt and current, I, recorded from the battery during OCV experi-
ment can be written in the form of observation model as follows:

Vt = Vo(s) + IR + n (37)

where Vo(s) is the OCV of the battery represented using the combined + 3 model in (23)
as a function of the SOC, s, and R denotes the internal resistance of the battery. n is the
zero-mean Gaussian noise in the measurement of voltage.

The estimation of OCV parameters is the solution to the least-squares problem formu-
lated using the observation model in (37) as follows:

Vt = [1
1
s

1
s2

1
s3

1
s4 s ln(s) ln(1− s)]

[
k◦
R

]
+ n

= p(s)Tk + n (38)

where
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p(s)T = [1
1
s

1
s2

1
s3

1
s4 s ln(s) ln(1− s)]

k =

[
k◦
R

]
k◦ = [κ0 κ1 κ2 κ3 κ4 κ5 κ6 κ7]

T

A batch of L observations of (38) from the characterization test, spanning the entire
range of OCV and SOC, can be written in the vector observation form as

vt = pTk + n (39)

where the data (of length L) is collected during the entire SOC region as required in OCV-
SOC characterization [17]. For example, the data collected from each battery is similar to
the one shown in Figure 12.

The OCV parameters can then be estimated through the least squares approach as
follows [17]:

k̂ = arg min
k
‖vt − pTk‖ (40)

Table 3 gives the values of the obtained OCV parameters for all four battery cells
obtained by incorporating a linear scaling approach presented in [41].

Figure 12. V-I data in OCV test.

Once the OCV parameters, k◦, are determined, OCV-SOC tables can be created using
one of the three approaches detailed in Section 3.

Table 3. Obtained OCV-SOC parameters.

C1202 C1203 C1204 C1205

k0 −7.583571 −7.97819289 −8.066393564 −8.958403863

k1 167.937349 163.9771372 162.9340579 142.8466347

k2 −28.707024 −28.0994585 −27.93066927 −24.66098891

k3 3.179598 3.119518894 3.101048887 2.753908717

k4 −0.154205 −0.151625024 −0.150700733 −0.13454535
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Table 3. Cont.

C1202 C1203 C1204 C1205

k5 −136.082267 −132.0073615 −130.9737274 −111.5824628

k6 239.483802 233.2027873 231.5789098 201.0624577

k7 −1.939093 −1.842637102 −1.825728052 −1.337800859

6. Results

In this section, results for the proposed tabular OCV modeling approaches, described
in Section 3, are illustrated using data collected from C1202.

Figure 13a shows the plot of the OCV-SOC curve, corresponding to the combined +
3 model (23). The first and second derivatives of the curve is shown in Figure 13b and
Figure 13c, respectively.

(a) (b)

(c)

Figure 13. OCV model and its first two derivatives—(a) OCV model-V◦(s), (b) first derivative-V′◦(s),
and (c) second derivative- V′′◦ (s).

Figure 14 shows a comparison of the three approaches. The solid red line shows the
parameterized OCV-SOC curve (the same curve as in Figure 13a) and the blue‘*’ markers
denote the tabular entries obtained using the proposed approaches. The left column
of Figure 14 summarizes the results for n = 16 support points and the right column
summarizes the results for n = 32 support points. The first, second, and third rows of
Figure 14 show the true OCV-SOC curve and the resulting tabular approximations using the
cumulative, inflection-1, and inflection-2 approaches. The last row of Figure 14 shows the
SOC lookup error based on the resulting tabular OCV model for each approach. Here, the
SOC lookup error is computed for each possible OCV within the given range by employing
linear interpolation to find SOC for a given OCV. Both the cumulative and the inflection-1
approaches produce less than 1% in SOC lookup error with just 32 points.
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(a) (b)

(c) (d)

(e) (f)

0 20 40 60 80 100

0

0.5

1

1.5
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2.5

3

3.5

Cumulative

Inflection-1

Inflection-2

0 20 40 60 80 100

0

0.5

1

1.5

2
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Cumulative

Inflection-1

Inflection-2

(g) (h)

Figure 14. Tabular approximation error—(a) cumulative-16 point, (b) cumulative-32 point,
(c) inflection-1-16 point, (d) inflection-1-32 point, (e) inflection-2-16 point, (f) inflection-2-32 point,
(g) SOC lookup error for 16 points, and (h) SOC lookup error for 32 points.
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Table 4 shows the obtained tabular OCV model for the inflection-1 approach for n = 16
points, for all four batteries. It can be noticed that the variance in the values is less compared
to the model parameters shown in Table 3.

Table 4. Tabular OCV model.

C1202 C1203 C1204 C1205

SOC OCV SOC OCV SOC OCV SOC OCV

0 2.6929 0 2.6902 0 2.7003 0 2.7296

0.0236 3.1683 0.0238 3.1678 0.0236 3.1692 0.0246 3.1836

0.0473 3.3177 0.0476 3.3175 0.0472 3.3171 0.0492 3.3247

0.0709 3.3668 0.0714 3.3667 0.0708 3.3658 0.0738 3.3725

0.0945 3.3923 0.0951 3.3923 0.0944 3.3910 0.0984 3.3991

0.1238 3.4225 0.1245 3.4226 0.1242 3.4216 0.1254 3.4270

0.1530 3.4561 0.1539 3.4562 0.1539 3.4557 0.1523 3.4570

0.2417 3.5478 0.2428 3.5481 0.2432 3.5479 0.2416 3.5469

0.3303 3.6094 0.3318 3.6103 0.3325 3.6101 0.3308 3.6099

0.4644 3.7059 0.4660 3.7075 0.4673 3.7073 0.4706 3.7129

0.5985 3.8368 0.6003 3.8384 0.6021 3.8384 0.6103 3.8511

0.7391 3.9740 0.7418 3.9760 0.7425 3.9748 0.7618 3.9999

0.8798 4.0759 0.8833 4.0784 0.8829 4.0773 0.9132 4.1080

0.9199 4.1018 0.9222 4.1036 0.9219 4.1029 0.9421 4.1260

0.9599 4.1315 0.9611 4.1321 0.9610 4.1319 0.9711 4.1453

1.0000 4.1710 1.0000 4.1693 1.0000 4.1696 1.0000 4.1676

Figure 15 shows the tabular approximation error defined in (2) for all the three approaches
for different number of support points, n. Here, it can be seen that each approach results
in reduced error with increasing number of points. The inflection-1 approach consistently
outperforms the other two approaches.

Cumulative

Inflection-1

Inflection-2

Figure 15. Tabular approximation error vs. number of points.
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Figure 16 shows the results of rounding the digits of tabular approaches. This figure
must be viewed in comparison to Figure 4, which shows how rounding in parametric
models resulted in significantly altered OCV-SOC curves.

0 0.2 0.4 0.6 0.8 1
2.5

3

3.5

4

4.5

Combined+3 model

Tabular without rounding

rounded to 1significant points

rounded to 2significant points

rounded to 3significant points

0 0.2 0.4 0.6 0.8 1
2.5

3

3.5

4

4.5

Combined+3 model

Tabular without rounding

rounded to 1significant points

rounded to 2significant points

rounded to 3significant points

(a) (b)

0 0.2 0.4 0.6 0.8 1
2.5

3

3.5

4

4.5

Combined+3 model

Tabular without rounding

rounded to 1significant points

rounded to 2significant points

rounded to 3significant points

(c)

Figure 16. Effect of rounding in tabular models—(a) cumulative, (b) inflection-1,and (c) Inflection-2.

The following two metrics are used to quantify the distortion of an OCV curve in
relation to the original, high-precision model in (23).

KL divergence =
n

∑
i=1

OCV0(si) log
(

OCV0(si)

OCV1(si)

)
(41)

Cosine distance = 1− ∑n
i=1 OCV0(si)OCV1(si)√

∑n
i=1 OCV2

0(si)
√

∑n
j=1 OCV2

1(si)
(42)

where s1, s2, . . . , sn span the entire SOC range [0, 1]. Using the above two metrics, the
combined + 3 parametric and the inflection-1 tabular models with rounding are compared
to the true combined + 3 model without any rounding. The results of such a comparison
are tabulated in Table 5.

Table 5. KL divergence and cosine distance.

Parametric Combined + 3 Model Tabular Inflection-1 Model

Rounded to
1 Digit

Rounded to
2 Digits

Rounded to
3 Digits

Without
Rounding

Rounded to
1 Digit

Rounded to
2 Digits

Rounded to
3 Digits

KL divergence 0.044608 0.002606 0.000167 2.41 × 10−8 4.13 × 10−5 2.54 × 10−7 2.76 × 10−8

Cosine
distance 0.058112 0.00275 0.000147 2.49 × 10−8 3.77 × 10−5 2.54 × 10−7 2.85 × 10−8
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A uniform SOC grid of hundred samples is selected. The OCV values corresponding
to the SOC grid for the parametric combined + 3 model are obtained through (23) by
rounding the OCV parameters, k0, k1, . . . k7, from one to three significant digits. For the
tabular model, since, the inflection-1 method performs significantly better than the other
two tabular models, the OCV values corresponding to the SOC grid are found by linear
interpolation using Table 4 inflection-1 values as is and by rounding the table values from
one to three significant digits. The OCV values obtained from rounding the parameters
of the OCV model and from rounding the table are compared to the OCV values of the
true combined + 3 model without any rounding in (23) through KL divergence and cosine
distance and the following observations are made.

It can be seen that, the KL divergence for the parametric model with rounding is greater
than that for the tabular model with rounding. Hence, the parametric model with rounding
is more divergent from the true model as compared to the tabular model with rounding.
This clearly indicates that, even with rounding, the tabular approach performs better than
the parametric approach. Cosine distance, another indicator of divergence, similar to KL,
also shows how rounding in the parametric model largely affects its approximation to
the true combined + 3 model, as compared to the tabular model with rounding. Within
the parametric and tabular models themselves, rounding the significant digits from three
to one renders the approximation to be more divergent from the true model. Thus, the
rounding effects seen visually in the parametric and tabular models in Figures 4 and 16,
respectively, are also formally validated through the KL divergence and cosine distance
metrics in Table 5. This clearly concludes how even with rounding, the tabular approach
outperforms the parametric model.

7. Conclusions

This papers outlines the difficulties in traditional OCV-SOC characterization employed
in battery management systems. It is shown that traditional approaches, which store
the OCV-SOC characteristics in the form of parameterized functions, suffer from high
computing requirements and susceptibility to rounding errors. As opposed to storing the
parameters of the OCV-SOC functions, the advantages of a tabular OCV-SOC model are
detailed in this paper.

Three different approaches are presented to convert traditional, high-precision OCV-
SOC parameters into OCV-SOC tables. The proposed approaches can be employed to
create OCV-SOC tables based on the available computing capabilities. It is also possible
to select tabular OCV-SOC models that guarantee a certain maximum SOC estimation
error. Memory and computational power are valuable resources of a BMS in battery packs.
It is shown that significant savings in memory can be achieved by the proposed tabular
OCV-SOC models. The resulting OCV-SOC table is shown to be less sensitive to rounding,
compared to their parametric counterparts.

The present work can be extended in several of the following directions (i) the pro-
posed algorithms should be implemented in a BMS for SOC estimation; (ii) currently, the
proposed tabular approaches are developed on a fitted OCV-SOC combined + 3 model;
future work should be focused on developing these approaches directly from battery exper-
imental data; (iii) applicability of the proposed approach in different battery chemistries,
for example LFP batteries, needs to be investigated; and (iv) performance of the proposed
tabular approaches in the implementation of Kalman Filter needs to be analyzed.
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